欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (2): 310-320.doi: 10.3724/SP.J.1006.2023.24015

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆蛋白含量主效位点qPRO-20-1的精细定位

杨硕1,3(), 武阳春4, 刘鑫磊2, 唐晓飞2, 薛永国2, 曹旦2, 王婉3, 刘亭萱3, 祁航3, 栾晓燕2,*, 邱丽娟1,3,*()   

  1. 1东北农业大学农学院, 黑龙江哈尔滨 150030
    2黑龙江省农业科学院, 黑龙江哈尔滨 150030
    3农作物基因资源与遗传改良国家重大科学工程 / 农业农村部种质资源利用重点实验室 / 中国农业科学院作物科学研究所, 北京 100081
    4吉林农业大学生命科学学院, 吉林长春 130000
  • 收稿日期:2022-01-10 接受日期:2022-06-07 出版日期:2022-07-08 网络出版日期:2022-07-08
  • 通讯作者: 栾晓燕,邱丽娟
  • 作者简介:杨硕, E-mail: 857813782@qq.com第一联系人:

    **同等贡献

  • 基金资助:
    国家自然科学基金项目(31960408);中央级公益性科研院所基本科研业务费专项(S2022ZD02);中国农业科学院科技创新工程项目资助。

Fine mapping of qPRO-20-1 related to high protein content in soybean

YANG Shuo1,3(), WU Yang-Chun4, LIU Xin-Lei2, TANG Xiao-Fei2, XUE Yong-Guo2, CAO Dan2, WANG Wan3, LIU Ting-Xuan3, QI Hang3, LUAN Xiao-Yan2,*, QIU Li-Juan1,3,*()   

  1. 1College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
    2Heilongjiang Academy of Agricultural Sciences, Harbin 150030, Heilongjiang, China
    3National Key Facility for Gene Resources and Genetic Improvement / Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture and Rural Affairs / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    4College of Life Sciences, Jilin Agricultural University, Changchun 130000, Jinlin, China
  • Received:2022-01-10 Accepted:2022-06-07 Published:2022-07-08 Published online:2022-07-08
  • Contact: LUAN Xiao-Yan,QIU Li-Juan
  • About author:First author contact:

    **Contributed equally to this work

  • Supported by:
    National Natural Science Foundation of China(31960408);Central Public-interest Scientific Institution Basal Research Fund(S2022ZD02);Agricultural Science and Technology Innovation Program

摘要:

蛋白质含量是大豆重要的品质性状, 受多基因控制, 定位大豆蛋白质含量相关位点并挖掘候选基因, 对定向培育高蛋白含量大豆品种具有重要意义。本研究以优良品种黑农88作为母本与高蛋白优异种质P73-6B作为父本杂交, 构建了一个由265个单株组成的F2群体, 利用中豆芯1号对F2群体进行基因型鉴定并构建图谱, 结合蛋白质含量表型数据, 采用IciMapping 4.2软件在20号染色体上定位了一个QTL, 物理距离为2.46 Mb, 在区间附近筛选出11个多态性SSR标记并分析群体, 将定位区间从2.46 Mb缩小至100.8 kb。增加Gm20_28349696、Gm20_30805913、Gm20_31341532和Gm20_31483719共4个SNP位点, 进一步将区间缩小到95.8 kb。对区间内包含的4个基因的9个不同组织在Phytozome v13.1和PPRD RNA-seq 2个数据库中的表达量分析得到了2个候选基因, 分别为Glyma.20g081800Glyma.20g082000基因, 本试验结果为大豆蛋白质含量基因克隆及蛋白质调控机制研究提供了理论基础, 为大豆高蛋白分子标记育种提供材料和技术支撑。

关键词: 大豆, 蛋白质含量, QTL定位, 候选基因

Abstract:

Protein content is a crucial quality trait of soybean, which is controlled by multiple genes. It is of great significance to locate soybean protein content-related loci and mine candidate genes for directional breeding of soybean varieties with high protein content. In this study, an F2 population consisting of 265 individual plants was constructed by crossing the excellent variety Heinong 88 as the female parent with the high-protein germplasm P73-6B as the male parent. The genotypes of F2 population were identified by using high-density SNP chip of “ZDX1” and the physical map was constructed. Combined with the protein content phenotypic data, the initial mapping interval of a 2.46 Mb QTL was located on chromosome 20 using the IciMapping 4.2 software. Using 11 polymorphic SSR markers screened out, the mapping range was narrowed from 2.46 Mb to 100.8 kb. Adding four SNP markers (Gm20_28349696, Gm20_30805913, Gm20_31341532, and Gm20_31483719), the interval was further reduced to 95.8 kb. The relative expression levels of the four genes contained in the interval in nine different tissues in both databases Phytozome v13.1 and PPRD RNA-seq yielded two candidate genes (Glyma.20g081800 and Glyma.20g082000). These results provide a theoretical basis for soybean protein content gene cloning and protein regulation mechanism research, as well as elite material and molecular marker for breeding high protein soybean.

Key words: soybean, protein content, QTL mapping, candidate genes

表1

精细定位所用SSR标记"

引物名称
Primer name
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
BARCSOYSSR_20_0608 GTGTTCCACTCCACGTTTCC CATTTCCCCTTTCACAATCG
BARCSOYSSR_20_0613 AACCGAGTTTGGTTCGATTC TGCTGCTTGATGATGAGGAC
BARCSOYSSR_20_0616 CCATCTTATGGACTTGTTTGGA GCCAAGAATGACCATTATGC
BARCSOYSSR_20_0618 TCACTAATCACAACAACCCAAA CGACCGGTGTGTTTAAGGTC
BARCSOYSSR_20_0619 TCAGTCGCAGATTGATCAGG CCCAATTGTATCCATCAACG
BARCSOYSSR_20_0629 AACCTAGCATTGCAACCTGC TCATCACCCCTTATCCGTTC
BARCSOYSSR_20_0636 AAAACGAGGCCTTAATCGAAA AAACCAAAGAATACCGTGAAAAA
BARCSOYSSR_20_0638 CGAAATGCCACCTTTTCAAT AGCAAACTAAGGTCGTTTTCG
BARCSOYSSR_20_0644 GCAGTTGTGCGTGGGAGAGAG GCGACATAGCTAATTAAGTAAGTT
BARCSOYSSR_20_0647 GCGTGGTGCACGATCATATAGA GCGTCTCCTTCGCTATCTCAAAC
BARCSOYSSR_20_0649 CCAGGAATGCAGGTTTCTCT CGTGACTCTTCTTCCTTTCCA

图1

亲本及F2群体蛋白质含量频率分布直方图 垂直虚线表示两亲本表型的平均值和标准差。曲线代表密度图。***, P<0.001。"

表2

亲本及F2群体蛋白质含量统计分析"

群体
Population
母本
Female parent
(mean±SD, %)
父本
Male parent
(mean±SD, %)
F2分离群体F2 segregation population
变异范围
Range
平均数±标准差
(mean±SD, %)
变异系数
CV (%)
峰度
Kurtosis
偏度
Skewness
黑农88×P73-6B
Heinong 88×P73-6B
43.67±0.67 49.64±2.50 39.22-53.25 47.01±3.98 8.48 2.94 0.26

图2

用黑农88和P73-6B构成的F2群体在大豆20号染色体定位蛋白质QTL"

表3

在黑农88×P73-6B F2群体鉴定到的QTL"

群体
Population
染色体
Chr.
标记区间
Marker interval
LOD得分
LOD score
表型贡献率
R2
加性效应
Additive
effect
显性效应
Dominant
effect
F2 20 Gm20_28349696-Gm20_30805913 12.23 19.31 -1.79 0.19

图3

蛋白含量QTL qPRO-20-1的精细定位 A: 利用HN88×P73-6B F2 200K芯片测序数据遗传图谱构建定位的QTL位点qPRO-20-1在SNP2839696~SNP30805913之间。B: 利用BARCSOYSSR_20_0608、BARCSOYSSR_20_0613、BARCSOYSSR_20_0616、BARCSOYSSR_20_0618、BARCSOYSSR_20_0619、BARCSOYSSR_20_0629、BARCSOYSSR_20_0636、BARCSOYSSR_20_0638、BARCSOYSSR_20_0644、BARCSOYSSR_20_0647、BARCSOYSSR_20_0649共11个标记鉴定5个交换单株(297、272、68、72和209)的基因型, 并验证并初定位。C: 利用芯片数据SNP位点标记28349696、30805913、31343532、31483719和3个SSR标记BARCSOYSSR_20_0636、BARCSOYSSR_20_0647、BARCSOYSSR_20_0649将区间精细定位至标记30805913~BARCSOYSSR_20_0649之间。D: 获得4个候选基因Glyma.20g081800、Glyma.20g081900、Glyma.20g082000、Glyma.20g082100。"

图4

利用7个分子标记定位黑农88×P73-6B大豆F2群体20号染色体的蛋白质QTL"

表4

在黑农88×P73-6B F2群体验证得到的QTL"

群体
Population
染色体
Chr.
标记区间
Marker interval
LOD得分
LOD score
表型贡献率
R2
加性效应
Additive effect
显性效应
Dominant effect
F2 20 Gm20_30805913-BARCSOYSSR_20_0649 12.75 21.44 -2.03 0.56

图5

F2群体中qPRO-20-1位点两侧标记Gm20_30805913与BARCSOYSSR_20_0649的基因型与蛋白质表型相关性分析 A: Gm20_30805913的基因型与表型相关性分析; B: BARCSOYSSR_20_0649的基因型与表型相关性分析。图中横坐标为基因型, 低蛋白为a, 高蛋白为b, 纵坐标为蛋白质含量。***: P < 0.001。"

表5

定位区间内候选基因注释"

基因
Gene name
基因注释
Gene annotation
Glyma.20g081800 具有RNA结合(RRM-RBD-RNP基序)域的核运输因子2 (NTF2)家族蛋白
Nuclear transport factor 2 (NTF2) family protein with RNA binding (RRM-RBD-RNP motifs) domain
Glyma.20g081900 PTHR32246:SF16与钙相关的脂质结合蛋白
PTHR32246:SF16-calcium-dependentlipid-binding domain-containing protein-related
Glyma.20g082000 未知
Unknown
Glyma.20g082100 PantherFam黄嘌呤-尿嘧啶/维生素C渗透酶家族成员
PantherFam Xanthine-uracil/Vitamin C permease family member

图6

用Phytozome v13.1获得4个基因的表达谱"

图7

用PPRD数据库获得4个基因在大豆9个不同组织的表达量"

[1] Leamy L J, Zhang H Y, Li C B, Chen C Y, Song B H. A genome-wide association study of seed composition traits in wild soybean (Glycine soja). BMC Genomics, 2017, 18: 18.
doi: 10.1186/s12864-016-3397-4 pmid: 28056769
[2] 陈静静, 刘谢香, 于莉莉, 卢一鹏, 张嗣天, 张昊辰, 关荣霞, 邱丽娟. 利用BSA法发掘野生大豆种子硬实性相关QTL. 中国农业科学, 2019, 52: 2208-2219.
Chen J J, Liu X X, Yu L L, Lu Y P, Zhang S T, Zhang H C, Guan R X, Qiu L J. Mining QTLs related to seed firmness of wild soybean by BSA method. Sci Agric Sin, 2019, 52: 2208-2219. (in Chinese with English abstract)
[3] 邱丽娟. 大豆高蛋白育种的研究概况与展望. 作物杂志, 1990, (2): 3-5.
Qiu L J. Research situation and prospect of soybean high protein breeding. Crops, 1990, (2): 3-5 (in Chinese with English abstract).
[4] 时玉强, 鲁绪强, 马军, 刘军, 刘汝萃. 大豆蛋白在传统豆制品中的应用. 中国油脂, 2017, 42(3): 155-157.
Shi Y Q, Lu X Q, Ma J, Liu J, Liu R C. Application of soybean protein in traditional soybean products. China Oils Fats, 2017, 42(3): 155-157. (in Chinese with English abstract)
[5] Liu Z H, Zhao J H. Research progress of soybean protein. Int J Comput Eng, 2019, 4: 69-72.
[6] Teng W, Lei F, Wen L, Wu D, Xue Z, Han W, Li W. Dissection of the genetic architecture for soybean seed weight across multiple environments. Crop Pasture Sci, 2017, 68: 358-365.
doi: 10.1071/CP16462
[7] 刘代铃, 谢俊锋, 何乾瑞, 陈四维, 胡跃, 周佳, 佘跃辉, 刘卫国, 杨文钰, 武晓玲. 净作和套作下大豆贮藏蛋白11S、7S组分相对含量的QTL分析. 作物学报, 2020, 46: 341-353.
doi: 10.3724/SP.J.1006.2020.94076
Liu D L, Xie J F, He Q R, Chen S W, Hu Y, Zhou J, She Y H, Liu W G, Yang W Y, Wu X L. QTL analysis of relative contents of 11S and 7S components of soybean storage protein under net cropping and intercropping. Acta Agron Sin, 2020, 46: 341-353. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94076
[8] Huang J H, Ma Q B, Cai Z D, Xia Q J, Li S X, Jia J, Chu L, Lian T X, Nian H, Cheng Y B. Identification and mapping of stable QTLs for seed oil and protein content in soybean [Glycine max (L.) Merr.]. J Agric Food Chem, 2020, 68: 6448-6460.
doi: 10.1021/acs.jafc.0c01271
[9] 李曙光, 曹永策, 贺建波, 王吴彬, 邢光南, 杨加银, 赵团结, 盖钧镒. 大豆巢式关联作图群体蛋白质含量的遗传解析. 中国农业科学, 2020, 53: 1743-1755.
Li S G, Cao Y C, He J B, Wang S B, Xing G N, Yang J Y, Zhao T J, Gai J Y. Genetic analysis of protein content in soybean population based on nested association mapping. Sci Agric Sin, 2020, 53: 1743-1755. (in Chinese with English abstract)
[10] 张琦, 尹彦斌, 蒋洪蔚, 张维耀, 潘校成, 武小霞. 大豆子粒蛋白质含量QTL的精细定位. 分子植物育种, 2019, 17: 8152-8157.
Zhang Q, Yin Y B, Jiang H W, Zhang W Y, Pan X C, Wu X X. Fine mapping of QTL for protein content in soybean kernel. Mol Plant Breed, 2019, 17: 8152-8157 (in Chinese with English abstract).
[11] Porebski S, Bailey L G, Baum B R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep, 1997, 15: 8-15.
doi: 10.1007/BF02772108
[12] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269-283.
doi: 10.1016/j.cj.2015.01.001
[13] Mao T T, Jiang Z M, Han Y P, Teng W L, Zhao X, Li W B. Identification of quantitative trait loci underlying seed protein and oil contents of soybean across multi-genetic backgrounds and environments. Plant Breed, 2013, 132: 630-641.
doi: 10.1111/pbr.12091
[14] Chung J, Babka H L, Graef G L, Staswicka P E, Lee D J, Cregan P B, Shoemaker R C, Specht J E. The seed protein, oil, and yield QTL on soybean linkage group I. Crop Sci, 2003, 43: 1053-1067.
doi: 10.2135/cropsci2003.1053
[15] 魏荷, 王金社, 卢为国. 大豆籽粒蛋白质含量分子遗传研究进展. 中国油料作物学报, 2015, 37: 394-400.
Wei H, Wang J S, Lu W G. Advances in molecular genetics of soybean grain protein content. Chin J Oil Crop Sci, 2015, 37: 394-400. (in Chinese with English abstract)
[16] 郭方亮. 大豆7S与11S球蛋白亚基缺失品系的鉴定与品质评价. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2019.
Guo F L. Identification and Quality Evaluation of Soybean 7S and 11S Globulin Subunit Deletion Strains. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2019. (in Chinese with English abstract)
[17] 武阳春, 郭兵福, 谷勇哲, 栾晓燕, 邱红梅, 刘鑫磊, 李海燕, 邱丽娟. 大豆蛋白含量新位点qPRO-19-1的定位. 植物遗传资源学报, 2021, 22: 139-148.
Wu Y C, Guo B F, Gu Y Z, Luan X Y, Qiu H M, Liu X L, Li H Y, Qiu L J. Localization of a new protein content locus qPRO-19-1 in soybean. J Plant Genet Resour, 2021, 22: 139-148. (in Chinese with English abstract)
[18] Yang H Y, Wang W B, He Q Y, Xiang S H, Tian D, Zhao T J, Gai J. Identifying a wild allele conferring small seed size, high protein content and low oil content using chromosome segment substitution lines in soybean. Theor Appl Genet, 2019, 132: 2793-2807.
doi: 10.1007/s00122-019-03388-z pmid: 31280342
[19] Zhang T F, Wu T T, Wang L W, Jiang B J, Zhen C X, Yuan S, Hou W S, Wu C X, Han T F, Sun S. A combined linkage and GWAS analysis identifies QTLs linked to soybean seed protein and oil content. Int J Mol Sci, 2019, 20: 19.
doi: 10.3390/ijms20010019
[20] 郭茜茜. 大豆子粒蛋白质积累与碳代谢关系的研究. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2010.
Guo X X. Study on the Relationship Between Protein Accumulation and Carbon Metabolism in Soybean Seeds. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2010. (in Chinese with English abstract)
[21] Zhong Y S, Lu X D, Deng Z W, Lu Z Q, Fu M H. A 1232 bp upstream sequence of glutamine synthetase 1b from Eichhornia crassipes is a root-preferential promoter sequence. BMC Plant Biol, 2021, 21: 14.
doi: 10.1186/s12870-020-02788-4
[22] 陈欢. 大豆籽粒不同发育时期基因表达谱的研究. 吉林农业大学博士学位论文, 吉林长春, 2012.
Chen H. Study on Gene Expression Profile of Soybean Grain at Different Development Stages. PhD Dissertation of Jilin Agricultural University, Changchun, Jilin, China, 2012. (in Chinese with English abstract)
[23] Wei Z Y, Pan T, Zhao Y Y, Song B H, Qiu L J. Rab5a and its gefs are involved in post-golgi trafficking of storage proteins in developing soybean cotyledon. J Exp Bot, 2019, 71: 808-822.
doi: 10.1093/jxb/erz454
[24] Wolf W J, Briggs D R. Purification and characterization of the 11S component of soybean proteins. Arch Biochem Biophys, 1959, 85: 186-199.
pmid: 13845671
[25] Hara-Nishimura I, Nishimura M. Proglobulin processing enzyme in vacuoles isolated from developing pumpkin cotyledons. Plant Physiol, 1987, 85: 440-445.
doi: 10.1104/pp.85.2.440 pmid: 16665717
[26] Kirsch T, Paris N, Butler J M, Beevers L, Rogers J C. Purification and initial characterization of a potential plant vacuolar targeting receptor. Proc Natl Acad Sci USA, 1994, 91: 3403-3407.
doi: 10.1073/pnas.91.8.3403
[27] Okita T W, Rogers J C. Compartmentation of proteins in the endomembrane system of plant cells. Annu Rev Plant Physiol, 1996, 47: 327-350.
doi: 10.1146/annurev.arplant.47.1.327
[28] Nishizawa K, Maruyama N, Satoh R, Fuchikami Y, Higasa T, Utsumi S. A C-terminal sequence of soybean β-conglycinin α’ subunit acts as a vacuolar sorting determinant in seed cells. Plant J, 2003, 34: 647-659.
pmid: 12787246
[29] Rillingos S. Insights to the evolution of nucleobase-ascorbate transporters (NAT/NCS2 family) from the Cys-scanning analysis of xanthine permease XanQ. Int J Biochem Mol Biol, 2012, 3: 250-272.
pmid: 23097742
[30] Karena E, Frillingos S. The role of transmembrane segment TM3 in the xanthine permease XanQ of Escherichia coli. J Biol Chem, 2011, 286: 39595-39605.
doi: 10.1074/jbc.M111.299164
[31] Amillis S, Kosti V, Pantazopoulou A, Mikros E, Diallinas G. Mutational analysis and modeling reveal functionally critical residues in transmembrane segments 1 and 3 of the uapa transporter. J Mol Biol, 2011, 411: 567-580.
doi: 10.1016/j.jmb.2011.06.024 pmid: 21722649
[32] Gournas C, Papageorgiou I, Diallinas G. The nucleobase- ascorbate transporter (NAT) family: genomics, evolution, structure- function relationships and physiological role. Mol BioSyst, 2008, 4: 404-416.
doi: 10.1039/b719777b
[33] Eberhardt R Y, Chang Y Y, Bateman A G, Axelrod A L, Hwang W C, Aravind L. Filling out the structural map of the NTF2-like superfamily. BMC Bioinf, 2013, 327: 11.
[34] Guillen K D, Lorrain C, Tsan P, Barthe P, Hecker A. Structural genomics applied to the rust fungus Melampsora larici-populina reveals two candidate effector proteins adopting cystine knot and NTF2-like protein folds. Sci Rep, 2019, 9: 18084.
doi: 10.1038/s41598-019-53816-9 pmid: 31792250
[35] Carazo-Salas R E, Gruss O J, Mattaj I W, Karsenti E. Ran-GTP coordinates regulation of microtubule nucleation and dynamics during mitotic-spindle assembly. Nat Cell Biol, 2001, 3: 228-234.
pmid: 11231571
[36] Hetzer M, Bilbaocortés D, Walther T C, Gruss O J, Mattaj I W. GTP hydrolysis by ran is required for nuclear envelope assembly. Mol Cell, 2000, 5: 1013-1024.
pmid: 10911995
[37] Zhang Q, Wang B, Wei J, Wang X, Han Q, Kang Z. TaNTF2, a contributor for wheat resistance to the stripe rust pathogen. Plant Physiol Biochem, 2018, 123: 260-267.
doi: 10.1016/j.plaphy.2017.12.020
[38] Yang J, Yu D, Shen S. Expression analyses of miRNA Up-MIR- 843 and its target genes in Ulva prolifera. Acta Oceanol Sin, 2020, 39: 27-34.
doi: 10.1007/s13131-020-1657-2
[39] 王婉, 韩德志, 闫洪睿, 栾晓燕, 王俊, 邱丽娟. 大豆高蛋白种质中引1106蛋白质含量的QTL分析. 植物遗传资源学报, 2020, 21: 130-138.
Wang W, Han D Z, Yan H R, Luan X Y, Wang J, Qiu L J. QTL analysis of protein content in soybean high-protein germplasm for citation 1106. J Plant Genet Resour, 2020, 21: 130-138. (in Chinese with English abstract)
[40] 闫海波, 王艳, 赵琳, 韩英鹏, 李文滨, 王桂玲. 大豆蛋白和油分含量的QTL分析. 大豆科学, 2016, 35: 228-233.
Yan H B, Wang Y, Zhao L, Han Y P, Li W B, Wang G L. QTL analysis associated with protein and oil content in soybean. Soybean Sci, 2016, 35: 228-233. (in Chinese with English abstract)
[41] Huang J H, Ma Q B, Cai Z D, Xia Q J, Li S X, Jia J, Chu L, Lian T X, Nian H, Cheng Y B. Identification and mapping of stable QTLs for seed oil and protein content in soybean [Glycine max (L.) Merr.]. J Agric Food Chem, 2020, 68: 6448-6460.
doi: 10.1021/acs.jafc.0c01271
[42] Kaleri A, Li L, Zhang Y, Liu W, Jiang C, Zhang Y, Liu C, Kaleri A H, Nizamani M M, Mehmood A, Bahadur S, Li W X, Ning H. Recognition of QTL for seed protein and oil content in two soybean recombinant inbred lines populations. J Animal Plant Sci, 2021, 31: 1669-1685.
[1] 杨俊芳, 王宙, 乔麟轶, 王亚, 赵宜婷, 张宏斌, 申登高, 王宏伟, 曹越. 基于高密度遗传图谱的蓖麻种子大小性状QTL定位[J]. 作物学报, 2023, 49(3): 719-730.
[2] 杨斌, 乔玲, 赵佳佳, 武棒棒, 温宏伟, 张树伟, 郑兴卫, 郑军. 小麦旗叶叶绿素含量的QTL定位及验证[J]. 作物学报, 2023, 49(3): 744-754.
[3] 马雅杰, 鲍建喜, 高悦欣, 李雅楠, 秦文萱, 王彦博, 龙艳, 李金萍, 董振营, 万向元. 玉米株高和穗位高性状全基因组关联分析[J]. 作物学报, 2023, 49(3): 647-661.
[4] 刘姗姗, 庞婷, 袁晓婷, 罗凯, 陈平, 付智丹, 王小春, 杨峰, 雍太文, 杨文钰. 种间距对不同结瘤特性套作大豆根瘤生长及固氮潜力的影响[J]. 作物学报, 2023, 49(3): 833-844.
[5] 殷芳冰, 李雅楠, 鲍建喜, 马雅杰, 秦文萱, 王锐璞, 龙艳, 李金萍, 董振营, 万向元. 玉米雌穗产量相关性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2023, 49(2): 377-391.
[6] 才晓溪, 胡冰霜, 沈阳, 王研, 陈悦, 孙明哲, 贾博为, 孙晓丽. GsERF6基因过表达对水稻耐盐碱性的影响[J]. 作物学报, 2023, 49(2): 561-569.
[7] 王慧, 吴志医, 张玉娥, 喻德跃. 应用RNA重测序分析低硫条件下大豆基因表达谱[J]. 作物学报, 2023, 49(1): 105-118.
[8] 梁政, 柯美玉, 陈志威, 陈栩, 高震. 大豆GmPIN2家族基因调控根系发育功能初探[J]. 作物学报, 2023, 49(1): 24-35.
[9] 白智媛, 陈向阳, 郑阿香, 张力, 邹军, 张大同, 陈阜, 尹小刚. 1991—2019年美国大豆区试品种(系)农艺和品质性状时空变化特征[J]. 作物学报, 2023, 49(1): 177-187.
[10] 王锐璞, 董振营, 高悦欣, 鲍建喜, 殷芳冰, 李金萍, 龙艳, 万向元. 玉米籽粒淀粉含量全基因组关联分析和候选基因预测[J]. 作物学报, 2023, 49(1): 140-152.
[11] 齐阳阳, 窦汝娜, 赵彩桐, 张帜, 李文滨, 姜振峰. 大豆生长节间响应温度和外源GA诱导的赤霉素途径关键基因分析[J]. 作物学报, 2023, 49(1): 62-72.
[12] 柯会锋, 张震, 谷淇深, 赵艳, 李培育, 张冬梅, 崔彦茹, 王省芬, 吴立强, 张桂寅, 马峙英, 孙正文. 低磷胁迫下陆地棉苗期根生物量相关性状全基因组关联分析[J]. 作物学报, 2022, 48(9): 2168-2179.
[13] 张超, 杨博, 张立源, 肖忠春, 刘景森, 马晋齐, 卢坤, 李加纳. 基于QTL定位和全基因组关联分析挖掘甘蓝型油菜收获指数相关位点[J]. 作物学报, 2022, 48(9): 2180-2195.
[14] 刘成, 张雅轩, 陈先连, 韩伟, 邢光南, 贺建波, 张焦平, 张逢凯, 孙磊, 李宁, 王吴彬, 盖钧镒. 野生大豆染色体片段代换系群体中与百粒重关联的野生片段及其候选基因[J]. 作物学报, 2022, 48(8): 1884-1893.
[15] 怀园园, 张晟瑞, 武婷婷, 李静, 孙石, 韩天富, 李斌, 孙君明. 大豆主要营养品质性状相关分子标记的育种应用潜力评价[J]. 作物学报, 2022, 48(8): 1957-1976.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!