欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (2): 321-331.doi: 10.3724/SP.J.1006.2023.24013

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用CRISPR/Cas9技术突变BnaMPK6基因降低甘蓝型油菜的耐盐性

张文宣(), 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝()   

  1. 华中农业大学作物遗传改良全国重点实验室 / 国家油菜工程技术研究中心 / 洪山实验室, 湖北武汉 430070
  • 收稿日期:2022-01-10 接受日期:2022-06-07 出版日期:2022-07-08 网络出版日期:2022-07-08
  • 通讯作者: 马朝芝
  • 作者简介:E-mail: 18645272827@163.com
  • 基金资助:
    中央高校基本科研业务费专项基金(2662020ZKPY020);国家重点研发计划项目(2020BBB061)

Genome editing of BnaMPK6 gene by CRISPR/Cas9 for loss of salt tolerance in Brassica napus L.

ZHANG Wen-Xuan(), LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi()   

  1. National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University / National Engineering Research Center of Rapeseed / Hongshan Laboratory, Wuhan 430070, Hubei, China
  • Received:2022-01-10 Accepted:2022-06-07 Published:2022-07-08 Published online:2022-07-08
  • Contact: MA Chao-Zhi
  • Supported by:
    Fundamental Research Funds for the Central Universities(2662020ZKPY020);National Key Research and Development Program of China(2020BBB061)

摘要:

甘蓝型油菜是我国一种重要的油料作物。MPK6是一种丝裂原活化蛋白激酶, MAPK级联途径可以被各种胁迫激活, 进而调节植物对胁迫的响应, 在植物响应非生物胁迫过程中发挥着重要的作用, 但在甘蓝型油菜盐胁迫响应过程中的功能还尚不清楚。基因结构和蛋白序列分析表明, MAPK6在十字花科芸薹属植物种间分化相对保守, 基因结构相似, 蛋白之间均有相同的STKc_TEY_MAPK结构域, 与胁迫和生长发育相关。为探究其功能, 本研究利用CRISPR/Cas9技术对BnaMPK6基因进行编辑, 通过农杆菌介导的方法将BnaMPK6基因转入到甘蓝型油菜中, 获得了BnaMPK6基因4个同源拷贝同时突变的材料: cr-bnampk6-13-1cr-bnampk6-49-1cr-bnampk6突变体表现出明显的盐敏感性: 在100 mmol L-1和150 mmol L-1浓度的NaCl溶液处理下, 功能缺失突变体长势明显缓慢, 并且株高和鲜重显著低于野生型植株, 但根长无明显差异。此外, 在盐胁迫下, 功能缺失突变体体内的活性氧和丙二醛含量的积累显著高于野生型对照, 脯氨酸含量也明显高于野生型植株。本研究结果表明, BnaMPK6基因在盐水胁迫下正向调控植株的生长和发育, 影响甘蓝型油菜的耐盐性。本研究不仅为BnaMPK6基因调控甘蓝型油菜盐胁迫的研究提供了理论基础, 而且为甘蓝型油菜耐盐性遗传改良提供了一定的技术支持。

关键词: 甘蓝型油菜, BnaMPK6, CRISPR/Cas9, 盐胁迫

Abstract:

Brassica napus L. is an important oil crop. MPK6 (Mitogen-Activated Protein Kinases 6) is activated by various stresses to control plant stress tolerance, which is the key gene in response to abiotic stresses. However, the function of MAPK6 in B. napus stress tolerance is still unclear. Gene structure and protein sequence analysis showed that MPK6gene structures were similar, and all proteins had the same STKc_TEY_MAPK domain in Brassica. To explore the potential role of BnaMPK6, the BnaMPK6 mutants were generated by CRISPR/Cas9 genome editing technology. Two quadruple mutants, cr-bnampk6-13-1 and cr-bnampk6-49-1, were obtained. cr-bnampk6 mutant lines were hypersensitive to salt treatment (100 mmol L-1 and 150 mmol L-1), the growth of the mutant was strongly inhibited after salt treatment, and the plant height and fresh weight were significantly lower than those of wild-type plants, but there was no significant difference in root length. In addition, reactive oxygen species (ROS), malondialdehyde (MDA), and free proline were more accumulated in cr-bnampk6 mutant lines. In conclusion, these results revealed that BnaMPK6 gene positively regulated salt tolerance in B. napus, providing theoretical and technical supports for genetic improvement of salt tolerance in Brassica napus.

Key words: Brassica napus L., BnaMPK6, CRISPR/Cas9, salt stress

表1

qRT-PCR引物序列"

基因名称
Gene name
引物名称
Primer name
序列
Sequence (5'-3')
BnaC03T0189300WE BnaMPK6.C03-F GCCGGGGAAAGAGAATATTC
BnaMPK6.C03-R ATCGGAGGGTTATACTTAGCGGT
BnaA03T0226400WE BnaMPK6.A03-F CGACACTTAGCCATGGAGGGATGT
BnaMPK6.A03-R ATCGGAGGGCTATACTTGGCG
BnaC04T0043400WE BnaMPK6.C04-F GGGGTAGAGAATATTCCGGC
BnaMPK6.C04-R AACAGACGATGCCATAAGCGCCT
BnaA05T0030700WE BnaMPK6.A05-F CCGAGAGTGACTTTATGACTGA
BnaMPK6.A05-R CTTTGCGTTTTCGTTCAAGAAC
BnaActin7 actinQ7F GCTGACCGTATGAGCAAAG
actinQ7R AAGATGGATGGACCCGAC

表2

高通量测序引物序列"

基因名称
Gene name
引物名称
Primer name
序列
Sequence (5'-3')
BnaC03T0189300WE sgRNA1-C3-F ggagtgagtacggtgtgcACTGCGGCGATAGATGTTTGG
sgRNA1-C3-R gagttggatgctggatggACAGCATCAAATAGAGCTTCAAAGGT
BnaA03T0226400WE sgRNA1-A3-F ggagtgagtacggtgtgcACTGCGGCGATAGATGTTTGG
sgRNA1-A3-R gagttggatgctggatggCAGCAAAATACGAGTCTTTGTTGGT
BnaC04T0043400WE sgRNA2-C4-F ggagtgagtacggtgtgcGCTTGAGTTCTTGAACGAAAACGC
sgRNA2-C4-R gagttggatgctggatggTCAAACGTCAGCATCTTCTCGATAAG
BnaA05T0030700WE sgRNA2-A5-F ggagtgagtacggtgtgcGCTTGAGTTCTTGAACGAAAACGC
sgRNA2-A5-R gagttggatgctggatggTCAAACGTCAGCATCTTCTCGATAAG

图1

拟南芥、甘蓝型油菜、白菜型油菜和甘蓝MPK6基因的系统进化树及基因结构"

图2

拟南芥、甘蓝型油菜、白菜型油菜和甘蓝MPK6的蛋白序列和保守结构域"

图3

BnaMPK6基因表达模式分析 A: BnaMPK6在4个不同组织的表达模式; B、C: BnaMPK6在不同的盐水处理时间下的表达模式。数据计算采取2-ΔΔCt法, 每个数据3个重复, Actin的相对表达量设定为200。以0 h处理为对照, 使用t检验进行显著性分析, 星号(*)代表P < 0.05时显著性情况。"

图4

cr-bnampk6突变体编辑情况 A: BnaMPK6基因结构可视化和靶点位置; B: cr-bnampk6单株T1代BnaMPK6基因靶点突变情况; C: cr-bnampk6株系T0代和T1代部分基因编辑类型统计。蓝色代表变异; 红色和绿色代表靶点序列。d#: 缺失#个碱基; i#: 插入#个碱基; wt: 野生型。"

表3

不同浓度NaCl溶液处理后cr-bnampk6表型分析"

处理
Treatment
表型
Phenotype
野生型
WT
13-1 49-1
0 mmol L-1 NaCl 株高 Stem length (cm) 21.307±0.488 a 22.145±0.485 a 20.925±0.641 a
根长 Root length (cm) 30.547±1.649 a 27.855±0.805 a 29.300±1.199 a
鲜重 Fresh weight (g) 6.925±0.141 a 7.014±0.197 a 6.629±0.178 a
100 mmol L-1 NaCl 株高 Stem length (cm) 16.190±0.569 a 13.610±0.549 b 11.620±0.53 c
根长 Root length (cm) 24.428±1.018 a 25.155±0.683 a 26.700±0.837 a
鲜重 Fresh weight (g) 4.425±0.095 a 2.302±0.101 b 2.476±0.077 b
150 mmol L-1 NaCl 株高 Stem length (cm) 12.013±0.649 a 7.300±0.399 b 7.685±0.301 b
根长 Root length (cm) 22.265±0.646 a 21.630±0.578 a 21.905±0.668 a
鲜重 Fresh weight (g) 2.928±0.149 a 1.511±0.067 b 1.317±0.065 b

图5

不同浓度NaCl溶液处理后BnaMPK6基因耐盐性分析 A: WT和cr-bnampk6植株盐胁迫下的表型; B: WT和cr-bnampk6植株在盐胁迫下根长分析; C: WT和cr-bnampk6植株在盐胁迫下鲜重分析; D: WT和cr-bnampk6植株在盐胁迫下株高分析。以WT为对照, 使用t检验进行显著性分析, 星号(*)代表P < 0.05时显著性情况。"

图6

不同浓度NaCl溶液处理后cr-bnampk6植株的活性氧和脯氨酸含量分析 A: NBT染色分析cr-bnampk6植株活性氧含量; B: cr-bnampk6植株丙二醛含量分析; C: cr-bnampk6植株脯氨酸含量分析。ROS: 活性氧; MDA: 丙二醛; Pro: 脯氨酸。以WT为对照, 使用t检验进行显著性分析, 星号(*)代表P < 0.05时显著性情况。"

[1] 李豪, 邹伟. 微生物在油菜秸秆资源化中的应用研究进展. 中国饲料, 2018, (23): 72-76.
Li H, Zou W. Progress on the applied research of microorganisms in the utilization of rape straw in China. China Feed, 2018, (23): 72-76. (in Chinese with English abstract)
[2] 李利霞, 陈碧云, 闫贵欣, 高桂珍, 许鲲, 谢婷, 张付贵, 伍晓明. 中国油菜种质资源研究利用策略与进展. 植物遗传资源学报, 2020, 21: 1-19.
Li L X, Chen B Y, Yan G X, Gao G Z, Xu K, Xie T, Zhang F G, Wu X M. Proposed strategies and current progress of research and utilization of oilseed rape germplasm in China. J Plant Genet Resour, 2020, 21: 1-19. (in Chinese with English abstract)
[3] Tyagi S, Kumar R, Kumar V, Won S Y, Shukla P. Engineering disease resistant plants through CRISPR-Cas9 technology. GM Crops Food, 2021, 12: 125-144.
doi: 10.1080/21645698.2020.1831729 pmid: 33079628
[4] 单奇伟, 高彩霞. 植物基因组编辑及衍生技术最新研究进展. 遗传, 2015, 37: 953-973.
Shan Q W, Gao C X. Research progress of genome editing and derivative technologies in plants. Hereditas, 2015, 37: 953-973. (in Chinese with English abstract)
[5] 刘耀光, 李构思, 张雅玲, 陈乐天. CRISPR/Cas9植物基因组编辑技术研究进展. 华南农业大学学报, 2019, 40(5): 38-49.
Liu Y G, Li G S, Zhang Y L, Chen L T. Current advances on CRISPR/Cas9 genome editing technologies in plants. J South China Agric Univ, 2019, 40(5): 38-49. (in Chinese with English abstract)
[6] Mao Y, Zhang H, Xu N, Zhang B, Gou F, Zhu J K. Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol Plant, 2013, 6: 2008-2011.
doi: 10.1093/mp/sst121 pmid: 23963532
[7] Xie K, Yang Y. RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant, 2013, 6: 1975-1983.
doi: 10.1093/mp/sst119 pmid: 23956122
[8] Liang Z, Zhang K, Chen K, Gao C. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics, 2014, 41: 63-68.
doi: 10.1016/j.jgg.2013.12.001 pmid: 24576457
[9] Braatz J, Harloff H J, Mascher M, Steinb N, Himmelbach A, Jung C. CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape (Brassica napus). Plant Physiol, 2017, 174: 935-942.
doi: 10.1104/pp.17.00426
[10] Fedoroff N V, Battisti D S, Beachy R N, Cooper P J, Fischhoff D A, Hodges C N, Knauf V C, Lobell D, Mazur B J, Molden D, Reynolds M P, Ronald P C, Rosegrant M W, Sanchez P A, Vonshak A, Zhu J K. Radically rethinking agriculture for the 21st century. Science, 2010, 327: 833-834.
doi: 10.1126/science.1186834 pmid: 20150494
[11] Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002, 53: 247-273.
doi: 10.1146/annurev.arplant.53.091401.143329
[12] Zhu J K. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol, 2000, 124: 941-948.
doi: 10.1104/pp.124.3.941 pmid: 11080272
[13] Qiu Q S, Guo Y, Dietrich M A, Schumaker K S, Zhu J K. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA, 2002, 99: 8436-8441.
doi: 10.1073/pnas.122224699
[14] Zhu J K. Regulation of ion homeostasis under salt stress. Curr Opini Plant Biol, 2003, 6: 441-445.
[15] Quan R, Lin H, Mendoza I, Zhang Y, Cao W, Yang Y, Shang M, Chen S, Pardo J M, Guo Y. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell, 2007, 19: 1415-1431.
doi: 10.1105/tpc.106.042291
[16] Yu L, Nie J, Cao C, Jin Y, Yan M, Wang F, Liu J, Xiao Y, Liang Y, Zhang W. Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol, 2010, 188: 762-773.
doi: 10.1111/j.1469-8137.2010.03422.x pmid: 20796215
[17] Jiang C, Zhang X, Liu H, Xu J R. Mitogen-activated protein kinase signaling in plant pathogenic fungi. PLoS Pathog, 2018, 14: e1006875.
doi: 10.1371/journal.ppat.1006875
[18] Asai T, Tena G, Plotnikova J, Willmann M R, Chiu W L, Gomez-Gomez L, Boller T, Ausubel F M, Sheen J. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature, 2002, 415: 977-983.
doi: 10.1038/415977a
[19] Kovtun Y, Chiu W L, Tena G, Sheen J. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA, 2000, 97: 2940-2945.
doi: 10.1073/pnas.97.6.2940
[20] Ichimura K, Casais C, Peck S C, Shinozaki K, Shirasu K. MEKK1 is required for MPK4 activation and regulates tissue- specific and temperature-dependent cell death in Arabidopsis. J Biol Chem, 2006, 281: 36969-36976.
doi: 10.1074/jbc.M605319200 pmid: 17023433
[21] Yoo S D, Cho Y H, Tena G, Xiong Y, Sheen J. Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature, 2008, 451: 789-795.
doi: 10.1038/nature06543
[22] Ouaked F, Rozhon W, Lecourieux D, Hirt H A. MAPK pathway mediates ET signaling in plants. EMBO J, 2003, 22: 1282-1288.
pmid: 12628921
[23] Xu J, Li Y, Wang Y, Liu H, Lei L, Yang H, Liu G, Ren D. Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. J Biol Chem, 2008, 283: 26996-27006.
doi: 10.1074/jbc.M801392200 pmid: 18693252
[24] Wang H, Ngwenyama N, Liu Y, Walker J C, Zhang S. Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell, 2007, 19: 63-73.
doi: 10.1105/tpc.106.048298 pmid: 17259259
[25] Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K. Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J, 2000, 24: 655-665.
pmid: 11123804
[26] Doyle J J. Isolation of plant DNA from fresh tissue. Focus, 1990, 12: 13-15.
doi: 10.1103/PhysRevFocus.12.13
[27] Cardoza V, Stewart C N. Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants. Plant Cell Rep, 2003, 21: 599-604.
pmid: 12789436
[28] Liu Q, Wang C, Jiao X, Zhang H, Song L, Li Y, Gao C, Wang K. Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems. Sci China: Life Sci, 2019, 62: 1-7.
[29] 王学奎, 黄见良. 植物生理生化实验原理和技术(第3版). 北京: 高等教育出版社, 2015. pp 1-324.
Wang X K, Huang J L. Principles and Techniques of Plant Physiological and Biochemical Experiments, 3rd edn. Beijing: Higher Education Press, 2015. pp 1-324. (in Chinese)
[30] Li C H, Wang G, Zhao J L, Zhang L Q, Ai L F, Han Y F, Sun D Y, Zhang S W, Sun Y. The receptor-like kinase SIT1 mediates salt sensitivity by activating MAPK3/6 and regulating ethylene homeostasis in rice. Plant Cell, 2014, 26: 2538-2553.
doi: 10.1105/tpc.114.125187
[31] Ding Y, Li H, Zhang X, Xie Q, Gong Z, Yang S. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Dev Cell, 2015, 32: 278-289.
doi: 10.1016/j.devcel.2014.12.023 pmid: 25669882
[32] Liu C, Mao B, Yuan D, Chu C, Duan M. Salt tolerance in rice: physiological responses and molecular mechanisms. Crop J, 2021, 10: 13-25.
doi: 10.1016/j.cj.2021.02.010
[33] 靳容, 刘明, 赵鹏, 张强强, 张爱君, 唐忠厚. 甘薯丝裂原活化蛋白激酶MPK6对低温胁迫的响应. 中国农业科学, 2021, 54: 4265-4273.
Jin R, Liu M, Zhao P, Zhang Q Q, Zhang A J, Tang Z H. IbMKP6, a mitogen-activated protein kinase, confers low temperature tolerance in sweetpotato. Sci Agric Sin, 2021, 54: 4265-4273. (in Chinese with English abstract)
[34] Gonzalez Besteiro M A, Bartels S, Albert A, Ulm R. Arabidopntsis MAP kinase phosphatase 1 and its target MAP kinases 3 and 6 antagonistically determine UV-B stress tolerance, in dependent of the UVR8 photoreceptor pathway. Plant J, 2011, 68: 727-737.
doi: 10.1111/j.1365-313X.2011.04725.x
[35] Takahashi F, Yoshida R, Ichimura K, Mizoguchi T, Seo S, Yonezawa M, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K. The mitogen-activated protein kinase cascade MKK3-MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. Plant Cell, 2007, 19: 805-818.
pmid: 17369371
[36] Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ, 2010, 33: 453-467.
doi: 10.1111/j.1365-3040.2009.02041.x
[37] Kaye Y, Golani Y, Singer Y, Leshem Y, Cohen G, Ercetin M, Gillaspy G, Levine A. Inositol polyphosphate 5-phosphatase 7 regulates the production of reactive oxygen species and salt tolerance in Arabidopsis. Plant Physiol, 2011, 157: 229-241.
doi: 10.1104/pp.111.176883
[38] Zhang Z, Liu H, Sun C, Ma Q, Bu H, Chong K, Xu Y. A C2H2 zinc-finger protein OsZFP213 interacts with OsMAPK3 to enhance salt tolerance in rice. J Plant Physiol, 2018, 229: 100-110.
doi: 10.1016/j.jplph.2018.07.003
[1] 王珍, 张晓莉, 刘淼, 姚梦楠, 孟晓静, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1超量表达及中油821的转录差异表达分析[J]. 作物学报, 2023, 49(3): 856-868.
[2] 杨晓祎, 王慧慧, 张艳雯, 侯典云, 张红晓, 康国章, 胥华伟. 利用CRISPR/Cas9探究水稻OsPIN5c基因功能[J]. 作物学报, 2023, 49(2): 354-364.
[3] 张超, 杨博, 张立源, 肖忠春, 刘景森, 马晋齐, 卢坤, 李加纳. 基于QTL定位和全基因组关联分析挖掘甘蓝型油菜收获指数相关位点[J]. 作物学报, 2022, 48(9): 2180-2195.
[4] 李胜婷, 徐远芳, 常玮, 刘亚俊, 谷嫄, 朱红, 李加纳, 卢坤. Bna.C02SWEET15通过光周期途径正向调控油菜开花时间[J]. 作物学报, 2022, 48(8): 1938-1947.
[5] 郭家鑫, 鲁晓宇, 陶一凡, 郭慧娟, 闵伟. 棉花在盐碱胁迫下代谢产物及通路的分析[J]. 作物学报, 2022, 48(8): 2100-2114.
[6] 张天宇, 王越, 刘影, 周婷, 岳彩鹏, 黄进勇, 华营鹏. 油菜脯氨酸代谢基因家族的生物信息学分析与核心成员鉴定[J]. 作物学报, 2022, 48(8): 1977-1995.
[7] 戴丽诗, 常玮, 张赛, 钱明超, 黎小东, 张凯, 李加纳, 曲存民, 卢坤. Bna-novel-miR36421调节拟南芥株型和花器官发育的功能验证[J]. 作物学报, 2022, 48(7): 1635-1644.
[8] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[9] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[10] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[11] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[12] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[13] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[14] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[15] 悦曼芳, 张春, 郑登俞, 邹华文, 吴忠义. 玉米转录因子ZmbHLH91对非生物逆境胁迫的应答[J]. 作物学报, 2022, 48(12): 3004-3017.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!