欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (2): 332-342.doi: 10.3724/SP.J.1006.2023.22015

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻不育系湘陵628S不同组合感光性差异的遗传解析

陈赛华1(), 彭盛1, 尤仪雯1, 张路遥1, 王凯3, 薛明1,*(), 杨远柱3,*(), 万建民2   

  1. 1江苏省作物基因组学和分子育种重点实验室 / 植物功能基因组学教育部重点实验室 / 江苏省作物遗传生理重点实验室, 扬州大学农学院, 江苏扬州 225009
    2南京农业大学 / 作物遗传与种质创新国家重点实验室 / 江苏省植物基因工程技术研究中心, 江苏南京 210095
    3袁隆平农业高科技股份有限公司 / 农业农村部南方水稻品种创制重点实验室 / 抗病虫水稻育种湖南省工程实验室, 湖南长沙 410128
  • 收稿日期:2022-03-12 接受日期:2022-05-05 出版日期:2022-05-13 网络出版日期:2022-05-13
  • 通讯作者: 薛明,杨远柱
  • 作者简介:E-mail: chensaihua@yzu.edu.cn
  • 基金资助:
    江苏省农业自主创新基金项目(基于qTT12的水稻耐高温种质资源创制)(CX(21)3100);湖南省科技创新计划项目(2021NK1001)

Genetic analysis of photosensitivity divergence among hybrids derived from rice sterile line Xiangling 628S

CHEN Sai-Hua1(), PENG Sheng1, YOU Yi-Wen1, ZHANG Lu-Yao1, WANG Kai3, XUE Ming1,*(), YANG Yuan-Zhu3,*(), WAN Jian-Min2   

  1. 1Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China
    2State Key Laboratory for Crop Genetics and Germplasm Enhancement / Jiangsu Plant Gene Engineering Research Center / Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
    3Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs / Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding / Yuan Longping High-Tech Agriculture Co., Ltd., Changsha 410128, Hunan, China
  • Received:2022-03-12 Accepted:2022-05-05 Published:2022-05-13 Published online:2022-05-13
  • Contact: XUE Ming,YANG Yuan-Zhu
  • Supported by:
    Jiangsu Agricultural Science and Technology Innovation Fund “Development of Rice Germplasms with Heat-tolerance Based on qTT12(CX(21)3100);Science and Technology Innovation Program of Hunan Province(2021NK1001)

摘要:

湘陵628S是优质矮秆抗倒两系早稻不育系, 所配组合米质优, 且适宜轻简化、规模化和机械化种植, 目前已有40个“陵两优”系列品种通过国家或省级审定, 并大面积推广应用。测配中发现, 湘陵628S与绝大多数中晚稻亲本配组感光性强, 在长江流域不能正常抽穗, 限制了其育种应用。为了探究湘陵628S及不同杂交组合感光性差异的遗传机制, 本研究结合等位性测验与基因型分析, 对湘陵628S及恢复系的关键感光基因进行分析。结果发现, 湘陵628S携带有隐性等位基因e1Se-1e, 显性等位基因Hd5k、E2E3EF-1t, 总体表现出弱感光性。恢复系携带的E1 (Ghd7)基因决定了不同组合的感光性强弱, 所携带的Se-1 (Hd1)和Hd5 (DTH8)基因与感光性没有直接相关性。据此, 我们开发了2个分子标记用于恢复系E1Se-1等位基因型的分子鉴定, 以加快弱/不感光杂交组合的选育。本研究为湘陵628S及其他不育系在杂交育种上的利用提供了重要的理论和技术指导。

关键词: 水稻, 不育系, 感光性, 基因, 分子标记

Abstract:

Xiangling 628S is a high quality thermosensitive male sterile line of two-line hybrid rice, whose hybrids have high-quality rice and is suit for light-cultivation, large-scale, and mechanized planting, and 40 new hybrid rice varieties have been approved and widely used. However, its hybrids had strong photosensitivity when it crossed with a large majority of mid-late cultivars, and headed late or even not heading under long-day (LD) conditions, which limited its application in the Yangtze River area. To explore the genetic mechanism of photosensitivity divergence among different hybrids, several key photosensitive loci in Xiangling 628S and its restorer lines were analyzed by allelism tests combined with sequence analysis. The results showed that Xiangling 628S had recessive e1e1, Se-1eSe-1e and dominant Hd5kHd5k, E2E2, E3E3, and EF-1tEF-1t, showing weak photosensitivity. The photosensitivity divergence in different hybrids was closely correlated with E1 (Ghd7) locus in restorer lines, but not with Se-1 (Hd1) and Hd5 (DTH8). Finally, we developed two functional molecular markers for genetic identification of E1 and Se-1 loci in restorer lines, which would speed up the selection of weak/non-sensitive hybrids of Xiangling 628S. Our study provides important theoretical guidance and technical supports for the utilization of Xiangling 628S in breeding, as well as hybrid breeding with other sterile lines.

Key words: rice, sterile line, photosensitive, genes, molecular marker

表1

试验采用的7对测验系材料的基因型"

待测位点
Locus
测验系名称
Test line name
基因型*
Genotype*
测验系名称
Test line name
基因型
Genotype
E1 EG0 e1e1e2e2e3e3Se-1nSe-1nEf-1Ef-1 EG1 E1E1e2e2e3e3Se-1nSe-1nEf-1Ef-1
E2 EG0 e1e1e2e2e3e3Se-1nSe-1nEf-1Ef-1 EG2 e1e1E2E2e3e3Se-1nSe-1nEf-1Ef-1
E3 EG0 e1e1e2e2e3e3Se-1nSe-1nEf-1Ef-1 EG3 e1e1e2e2E3E3Se-1nSe-1nEf-1Ef-1
Se-1 ER E1E1Se-1eSe-1eEf-1Ef-1 LR E1E1Se-1uSe-1uEf-1Ef-1
Hd1 Nip E1E1Se-1nSe-1nEf-1Ef-1Hd5Hd5 NIL (hd1) E1E1Se-1eSe-1eEf-1Ef-1Hd5Hd5
Hd5 Nip E1E1Se-1nSe-1nEf-1Ef-1Hd5Hd5 NIL (Hd5) E1E1Se-1nSe-1nEf-1Ef-1Hd5kHd5k
Ef-1 T65m e1e1Se-1eSe-1eef-1ef-1 T65Ebm e1e1Se-1eSe-1eEf-1Ef-1

表2

本研究采用的引物序列"

类别
Primer type
引物名称
Primer name
正向序列
Forward sequence (5'-3')
反向序列
Reverse sequence (5'-3')
用于鉴定Ghd7的缺失
For identification of Ghd7 deletion
M1 GAGACCGATTAAGGTTGAA CTGTTGGTCGCAGTCTATG
M2 CCGCCGTCGTTGCCGAAGAA ATGGGACCAGCAGCCGGAGAAG
M3 ATGCAAATCACATCCCACA CTTCATTTCTGCTGCCTAT
M4 TTGTCCAAGCTCAAGCCTAC CGAGAAGCAAATCCGGTAC
M5 AATGGAGCCAGATTGTTCT CTTCTGTTCCGTTCACCTTT
M6 ACAGCAGGGTATTAAGGTA TAGGCAAAGAGCTATTTCG
用于基因的克隆与测序For gene cloning and sequencing Ghd7-exon1 CACAAGCATTTCACAACCCTA AGGCAGCAGAAATGAAGAGT
Ghd7-exon2 TTGCTTATGCGTACATCTGG AGTGGTATATACGCACTGTAATTA
Hd1-FLcDNA AGAGAGGACAAACACAATAGC TGTCTAGAACTACTCCCACTG
DTH8-FLcDNA GCTAGTGTTGTTAGCTTCAC TAAACAGCATCAGCATCAACA
用于分子标记
For molecuar markers
E1D CACAAGCATTTCACAACCCTA AGTGGTATATACGCACTGTAATTA
SeI TGCAGGTGCACTCCGCGAA GAGTCCACCTCCTCGTCCTTG

表3

部分“陵两优”早稻组合(已审定)和强感光组合"

杂交组合
Combinations
恢复系
Restorer lines
长江中下游早稻审定情况
Approved situation in Yangtze River
感光性
Photosensitivity
陵两优32 Lingliangyou 32 HY032 国审稻2014004 State certified 2014004
湘审稻2012006 Hunan certified 2012006
弱Weak
陵两优21 Lingliangyou 21 H421 湘审稻2010007 Hunan certified 2012007 弱Weak
陵两优211 Lingliangyou 211 H211 国审稻2010003 State certified 2010003 弱Weak
陵两优02 Lingliangyou 02 ZR02 无 No 弱Weak
陵两优1063 Lingliangyou 1063 华恢1063 Huahui 1063 赣审稻2013010 Jiangxi certified 2013010 弱Weak
陵两优564 Lingliangyou 564 华恢564 Huahui 564 湘审稻2009052 Hunan certified 2009052 弱Weak
陵两优472 Lingliangyou 472 蜀恢527 Shuhui 527 无 No 强Strong
陵两优711 Lingliangyou 711 恩恢58 Enhui 58 无 No 强Strong
陵两优838 Lingliangyou 838 辐恢838 Fuhui 838 无 No 强Strong
陵两优182 Lingliangyou 182 R182 无 No 强Strong
陵两优207 Lingliangyou 207 先恢207 Xianhui 207 无 No 强Strong
陵两优1377 Lingliangyou 1377 R1377 无 No 强Strong

图1

湘陵628S的感光性表现及等位性测验结果 A: 湘陵628S在自然长、短日照下的抽穗期; B~H: 不同测验系及其与湘陵628S杂交F1的抽穗期。横坐标代表不同测验系材料及其与湘陵628S杂交的F1, 其中测验系名称同表1, 纵坐标代表抽穗期。S表示湘陵628S, S/测验系表示湘陵628S与测验系的F1材料。**表示成对测验系之间或成对F1之间存在极显著差异, P < 0.01。"

表4

测验系及其与湘陵628S的杂交F1抽穗期和基因型测定结果"

测定位点
Tested locus
测验系(杂交F1)
Test lines
(hybrid F1)
抽穗期
Heading date
(mean±SD, d)
延迟抽穗
Delayed heading
(d)
P
P-value
测验系(湘陵628S)基因型*
Genotypes of test lines
(Xiangling 628S) *
E1 EG0 71.25±0.71 20.42±2.78 5.64E-12 e1e1
EG1 91.67±2.07 E1E1
S/EG0 83.63±1.69 32.50±3.05 3.35E-16 e1e1
S/EG1 116.13±1.36
E2 EG0 71.25±0.71 4.75±1.51 4.43E-10 e2e2
EG2 76.00±0.80 E2E2
S/EG0 83.63±1.69 -1.63±4.30 0.18 E2E2
S/EG2 82.00±2.61
E3 EG0 71.25±0.71 14.25±1.47 1.17E-17 e3e3
EG3 85.50±0.76 E3E3
S/EG0 83.63±1.41 -0.34±3.91 0.76 E3E3
S/EG3 83.29±2.50
Se-1 ER 80.25±1.28 22.45±2.62 9.51E-17 Se-1eSe-1e
LR 102.70±1.34 Se-1uSe-1u
S/ER 97.13±2.47 13.37±3.05 1.08E-06 Se-1eSe-1e or Se-1nSe-1n
S/LR 110.50±0.58
Hd1 NIL (hd1) 79.00±1.05 6.60±3.06 3.21E-08 Se-1eSe-1e
Nip 85.60±2.01 Se-1nSe-1n
S/NIL (hd1) 102.56±2.01 8.77±3.54 4.44E-05 Se-1eSe-1e
S/Nip 111.33±1.53
Hd5 Nip 85.60±2.01 11.00±3.08 9.73E-12 Hd5Hd5
NIL (Hd5) 96.60±1.07 Hd5kHd5k
S/Nip 111.33±1.53 0.67±3.81 0.67 Hd5kHd5k
S/NIL (Hd5) 112.00±2.28
Ef-1 T65Ebm 75.75±0.96 22.05±2.83 4.50E-11 Ef-1Ef-1
T65m 97.80±1.87 ef-1ef-1
S/T65Ebm 81.20±0.92 7.30±3.09 1.25E-08 Ef-1tEf-1t
S/T65m 88.50±2.17
结果Result Xiangling 628S 81.75±2.20 e1e1Se-1eSe-1eE2E2E3E3Hd5kHd5kEf-1Ef-1

图2

不同“陵两优”组合亲本Ghd7的测定 A: Ghd7基因的结构示意图。白色框为非翻译区, 灰色框为外显子区(外显子1为1~444 bp、外显子2为2090~2419 bp), 横线为基因上、下游区和内含子区。M1~M6代表用于扩增片段的标记位置。B: Ghd7基因不同单倍型, 参考基因组为日本晴, 其中突出碱基为差异碱基, 最下方标注差异碱基引起的氨基酸变化。恢复系材料同表3, 其中蜀恢527、恩恢58、辐恢838、R182和先恢207均为Hap1; R1377为Hap2。C: M1~M6标记的扩增产物电泳检测结果。"

图3

不同“陵两优”组合亲本Hd1和DTH8的测定 A: Hd1基因的结构与单倍型分析; B: DTH8基因的结构与单倍型分析; 白色框为非翻译区, 灰色框为外显子区(Hd1的外显子1为1~828 bp、外显子2为829~1188 bp; DTH8含1个1~894 bp的外显子), 折线为内含子区。数字代表对应于日本晴cDNA的位置。AA为相比于日本晴产生的氨基酸变化。Frame shift表示引起移码突变。蓝色和橙色分别标注不同单倍型与日本晴相同和不同之处。当基因型被分成不同单倍型时, 强感光组合中的父本采用粗体进行突出表示。"

图4

功能分子标记的开发与鉴定 A: E1D标记用于鉴定E1 (Ghd7)基因的缺失, M表示DNA ladder; B: SeI标记用于鉴定Se-1 (Hd1)基因存在的36 bp插入。图中Zhu 1S为Xiangling 628S的不育供体株, 恢复系材料同表3。"

[1] 万建民. 水稻籼粳交杂种优势利用研究. 杂交水稻, 2010, (增刊1): 3-6.
Wan J M. Utilization of strong heterosis between indica and japonica varieties in rice. Hybrid Rice, 2010, (S1): 3-6. (in Chinese)
[2] 符辰建, 秦鹏, 胡小淳, 杨远柱. 矮秆抗倒水稻温敏核不育系湘陵628S的选育. 杂交水稻, 2010, (增刊1): 177-181.
Fu C J, Qin P, Hu X C, Yang Y Z. Breeding of lodging-resistant dwarf thermo-sensitive genic male sterile line Xiangling 628S in rice. Hybrid Rice, 2010, (S1): 177-181. (in Chinese)
[3] Yano M, Kojima S, Takahashi Y, Lin H, Sasaki T. Genetic control of flowering time in rice, a short-day plant. Plant Physiol, 2001, 127: 1425-1429.
pmid: 11743085
[4] Saito H, Okumoto Y, Tsukiyama T, Xu C, Teraishi M, Tanisaka T. Allelic differentiation at the E1/Ghd7 locus has allowed expansion of rice cultivation area. Plants (Basel), 2019, 8: 550.
[5] Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761-767.
doi: 10.1038/ng.143
[6] Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12: 2473-2484.
pmid: 11148291
[7] Gao H, Jin M N, Zheng X M, Chen J, Yuan D Y, Xin Y Y, Wang M Q, Huang D Y, Zhang Z, Zhou K N, Sheng P K, Ma J, Ma W W, Deng H F, Jiang L, Liu S J, Wang H Y, Wu C Y, Yuan L P, Wan J M. Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proc Natl Acad Sci USA, 2014, 111: 16337-16342.
doi: 10.1073/pnas.1418204111
[8] Yan W H, Liu H Y, Zhou X C, Li Q P, Zhang J, Lu L, Liu T M, Liu H J, Zhang C J, Zhang Z Y, Shen G J, Yao W, Chen H X, Yu S B, Xie W B, Xing Y Z. Natural variation in Ghd7.1 plays an important role in grain yield and adaptation in rice. Cell Res, 2013, 23: 969-971.
doi: 10.1038/cr.2013.43
[9] Yan W H, Wang P, Chen H X, Zhou H J, Li Q P, Wang C R, Ding Z H, Zhang Y S, Yu S B, Xing Y Z, Zhang Q F. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant, 2011, 4: 319-330.
doi: 10.1093/mp/ssq070
[10] Wei X J, Xu J F, Guo H N, Jiang L, Chen S H, Yu C Y, Zhou Z L, Hu P S, Zhai H Q, Wan J M. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol, 2010, 153: 1747-1758.
doi: 10.1104/pp.110.156943
[11] Bian X F, Liu X, Zhao Z G, Jiang L, Gao H, Zhang Y H, Zheng M, Chen L M, Liu S J, Zhai H Q, Wan J M. Heading date gene, dth3controlled late flowering in O. glaberrima Steud. by down-regulating Ehd1. Plant Cell Rep, 2011, 30: 2243-2254.
doi: 10.1007/s00299-011-1129-4 pmid: 21830130
[12] Zong W B, Ren D, Huang M H, Sun K L, Feng J L, Zhao J, Xiao D D, Xie W H, Liu S Q, Zhang H, Qiu R, Tang W J, Yang R Q, Chen H Y, Xie X R, Chen L T, Liu Y G, Guo J X. Strong photoperiod sensitivity is controlled by cooperation and competition among Hd1, Ghd7 and DTH8 in rice heading. New Phytol, 2021, 229: 1635-1649.
doi: 10.1111/nph.16946
[13] Fujino K, Yamanouchi U, Nonoue Y, Obara M, Yano M. Switching genetic effects of the flowering time gene Hd1 in LD conditions by Ghd7 and OsPRR37 in rice. Breed Sci, 2019, 69: 127-132.
doi: 10.1270/jsbbs.18060
[14] Zhang Z Y, Hu W, Shen G J, Liu H Y, Hu Y, Zhou X C, Liu T M, Xing Y Z. Alternative functions of Hd1 in repressing or promoting heading are determined by Ghd7 status under long-day conditions. Sci Rep, 2017, 7: 5388.
doi: 10.1038/s41598-017-05873-1
[15] Nemoto Y, Nonoue Y, Yano M, Izawa T. Hd1, a CONSTANS ortholog in rice, functions as an Ehd1 repressor through interaction with monocot-specific CCT-domain protein Ghd7. Plant J, 2016, 86: 221-233.
doi: 10.1111/tpj.13168
[16] Du A P, Tian W, Wei M H, Yan W, He H, Zhou D, Huang X, Li S G, Ou-Yang X H. The DTH8-Hd1 module mediates day-length- dependent regulation of rice flowering. Mol Plant, 2017, 10: 948-961.
doi: 10.1016/j.molp.2017.05.006
[17] Zhou X C, Nong C X, Wu B, Zhou T H, Zhang B, Liu X S, Gao G J, Mi J M, Zhang Q L, Liu H Y, Liu S S, Li Z X, He Y Q, Mou T M, Guo S B, Li S Q, Yang Y Z, Zhang Q F, Xing Y Z. Combinations of Ghd7, Ghd8, and Hd1 determine strong heterosis of commercial rice hybrids in diverse ecological regions. J Exp Bot, 2021, 72: 6963-6976.
doi: 10.1093/jxb/erab344
[18] Zhang B, Liu H Y, Qi F X, Zhang Z Y, Li Q P, Han Z M, Xing Y Z. Genetic interactions among Ghd7, Ghd8, OsPRR37 and Hd1 contribute to large variation in heading date in rice. Rice (New York), 2019, 12(1): 48.
[19] Zhang J, Zhou X C, Yan W H, Zhang Z Y, Lu L, Han Z M, Zhao H, Liu H Y, Song P, Hu Y, Shen G J, He Q, Guo S B, Gao G Q, Wang G W, Xing Y Z. Combinations of the Ghd7, Ghd8 and Hd1 genes largely define the ecogeographical adaptation and yield potential of cultivated rice. New Phytol, 2015, 208: 1056-1066.
doi: 10.1111/nph.13538 pmid: 26147403
[20] Wei X J, Jiang L, Xu J F, Lu G W, Wan J M. Genetic analyses of heading date of japonica rice cultivars from northern China. Field Crops Res, 2008, 107: 147-154.
doi: 10.1016/j.fcr.2008.01.008
[21] Zhou X C, Nong C X, Wu B, Zhou T H, Zhang B, Liu X S, Gao G J, Mi J M, Zhang Q L, Liu H Y, Liu S S, Li Z X, He Y Q, Mou T M, Guo S B, Li S Q, Yang Y Z, Zhang Q F, Xing Y Z. Combinations of Ghd7, Ghd8, and Hd1 determine strong heterosis of commercial rice hybrids in diverse ecological regions. J Exp Bot, 2021, 72: 6963-6976.
doi: 10.1093/jxb/erab344
[1] 刘立军, 周沈琪, 刘昆, 张伟杨, 杨建昌. 水稻大穗形成及其调控的研究进展[J]. 作物学报, 2023, 49(3): 585-596.
[2] 丁敏, 段政勇, 王宇卓, 薛亚鹏, 王海岗, 陈凌, 王瑞云, 乔治军. 糜子GBSSI基因功能标记的开发与验证[J]. 作物学报, 2023, 49(3): 703-718.
[3] 朱晓彤, 叶亚峰, 郭均瑶, 杨惠杰, 王紫瑶, 詹玥, 吴跃进, 陶亮之, 马伯军, 陈析丰, 刘斌美. 水稻早衰基因ESL8的遗传与定位[J]. 作物学报, 2023, 49(3): 662-671.
[4] 许加波, 吴鹏昊, 黄博文, 陈占辉, 马月虹, 任姣姣. 利用F2:3家系来源单倍体定位玉米雄穗相关性状QTL及全基因组选择[J]. 作物学报, 2023, 49(3): 622-633.
[5] 王珍, 张晓莉, 刘淼, 姚梦楠, 孟晓静, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1超量表达及中油821的转录差异表达分析[J]. 作物学报, 2023, 49(3): 856-868.
[6] 齐燕妮, 李闻娟, 赵丽蓉, 李雯, 王利民, 谢亚萍, 赵玮, 党照, 张建平. 亚麻生氰糖苷合成关键酶CYP79基因家族的鉴定及表达分析[J]. 作物学报, 2023, 49(3): 687-702.
[7] 马雅杰, 鲍建喜, 高悦欣, 李雅楠, 秦文萱, 王彦博, 龙艳, 李金萍, 董振营, 万向元. 玉米株高和穗位高性状全基因组关联分析[J]. 作物学报, 2023, 49(3): 647-661.
[8] 方娅婷, 任涛, 张顺涛, 周橡棋, 赵剑, 廖世鹏, 丛日环, 鲁剑巍. 氮磷钾肥对旱地和水田油菜产量及养分利用的影响差异[J]. 作物学报, 2023, 49(3): 772-783.
[9] 邓照, 蒋环琪, 程丽沙, 刘睿, 黄敏, 李曼菲, 杜何为. 利用WGCNA鉴定玉米非生物胁迫相关基因共表达网络[J]. 作物学报, 2023, 49(3): 672-686.
[10] 李秋平, 张春龙, 杨 宏, 王拓, 李娟, 金寿林, 黄大军, 李丹丹, 文建成. 水稻半育突变体sfp10的生理特征分析及基因定位[J]. 作物学报, 2023, 49(3): 634-646.
[11] 杨俊芳, 王宙, 乔麟轶, 王亚, 赵宜婷, 张宏斌, 申登高, 王宏伟, 曹越. 基于高密度遗传图谱的蓖麻种子大小性状QTL定位[J]. 作物学报, 2023, 49(3): 719-730.
[12] 向思茜, 李儒香, 徐光益, 邓岢莉, 余金琎, 李苗苗, 杨正林, 凌英华, 桑贤春, 何光华, 赵芳明. 基于水稻长大粒染色体片段代换系Z66的粒型QTL的鉴定及其聚合分析[J]. 作物学报, 2023, 49(3): 731-743.
[13] 才晓溪, 胡冰霜, 沈阳, 王研, 陈悦, 孙明哲, 贾博为, 孙晓丽. GsERF6基因过表达对水稻耐盐碱性的影响[J]. 作物学报, 2023, 49(2): 561-569.
[14] 刘晓颖, 张驰, 王雪晴, 杨晨晓, 王光钰, 卞云迪, 方芳, 王颖, 王振英. 栽培小麦Brock中抗白粉病相关基因TaRPP13-1B的克隆及功能分析[J]. 作物学报, 2023, 49(2): 392-401.
[15] 杨硕, 武阳春, 刘鑫磊, 唐晓飞, 薛永国, 曹旦, 王婉, 刘亭萱, 祁航, 栾晓燕, 邱丽娟. 大豆蛋白含量主效位点qPRO-20-1的精细定位[J]. 作物学报, 2023, 49(2): 310-320.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!