作物学报 ›› 2023, Vol. 49 ›› Issue (2): 332-342.doi: 10.3724/SP.J.1006.2023.22015
陈赛华1(), 彭盛1, 尤仪雯1, 张路遥1, 王凯3, 薛明1,*(), 杨远柱3,*(), 万建民2
CHEN Sai-Hua1(), PENG Sheng1, YOU Yi-Wen1, ZHANG Lu-Yao1, WANG Kai3, XUE Ming1,*(), YANG Yuan-Zhu3,*(), WAN Jian-Min2
摘要:
湘陵628S是优质矮秆抗倒两系早稻不育系, 所配组合米质优, 且适宜轻简化、规模化和机械化种植, 目前已有40个“陵两优”系列品种通过国家或省级审定, 并大面积推广应用。测配中发现, 湘陵628S与绝大多数中晚稻亲本配组感光性强, 在长江流域不能正常抽穗, 限制了其育种应用。为了探究湘陵628S及不同杂交组合感光性差异的遗传机制, 本研究结合等位性测验与基因型分析, 对湘陵628S及恢复系的关键感光基因进行分析。结果发现, 湘陵628S携带有隐性等位基因e1和Se-1e, 显性等位基因Hd5k、E2、E3和EF-1t, 总体表现出弱感光性。恢复系携带的E1 (Ghd7)基因决定了不同组合的感光性强弱, 所携带的Se-1 (Hd1)和Hd5 (DTH8)基因与感光性没有直接相关性。据此, 我们开发了2个分子标记用于恢复系E1、Se-1等位基因型的分子鉴定, 以加快弱/不感光杂交组合的选育。本研究为湘陵628S及其他不育系在杂交育种上的利用提供了重要的理论和技术指导。
[1] | 万建民. 水稻籼粳交杂种优势利用研究. 杂交水稻, 2010, (增刊1): 3-6. |
Wan J M. Utilization of strong heterosis between indica and japonica varieties in rice. Hybrid Rice, 2010, (S1): 3-6. (in Chinese) | |
[2] | 符辰建, 秦鹏, 胡小淳, 杨远柱. 矮秆抗倒水稻温敏核不育系湘陵628S的选育. 杂交水稻, 2010, (增刊1): 177-181. |
Fu C J, Qin P, Hu X C, Yang Y Z. Breeding of lodging-resistant dwarf thermo-sensitive genic male sterile line Xiangling 628S in rice. Hybrid Rice, 2010, (S1): 177-181. (in Chinese) | |
[3] |
Yano M, Kojima S, Takahashi Y, Lin H, Sasaki T. Genetic control of flowering time in rice, a short-day plant. Plant Physiol, 2001, 127: 1425-1429.
pmid: 11743085 |
[4] | Saito H, Okumoto Y, Tsukiyama T, Xu C, Teraishi M, Tanisaka T. Allelic differentiation at the E1/Ghd7 locus has allowed expansion of rice cultivation area. Plants (Basel), 2019, 8: 550. |
[5] |
Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761-767.
doi: 10.1038/ng.143 |
[6] |
Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12: 2473-2484.
pmid: 11148291 |
[7] |
Gao H, Jin M N, Zheng X M, Chen J, Yuan D Y, Xin Y Y, Wang M Q, Huang D Y, Zhang Z, Zhou K N, Sheng P K, Ma J, Ma W W, Deng H F, Jiang L, Liu S J, Wang H Y, Wu C Y, Yuan L P, Wan J M. Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proc Natl Acad Sci USA, 2014, 111: 16337-16342.
doi: 10.1073/pnas.1418204111 |
[8] |
Yan W H, Liu H Y, Zhou X C, Li Q P, Zhang J, Lu L, Liu T M, Liu H J, Zhang C J, Zhang Z Y, Shen G J, Yao W, Chen H X, Yu S B, Xie W B, Xing Y Z. Natural variation in Ghd7.1 plays an important role in grain yield and adaptation in rice. Cell Res, 2013, 23: 969-971.
doi: 10.1038/cr.2013.43 |
[9] |
Yan W H, Wang P, Chen H X, Zhou H J, Li Q P, Wang C R, Ding Z H, Zhang Y S, Yu S B, Xing Y Z, Zhang Q F. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant, 2011, 4: 319-330.
doi: 10.1093/mp/ssq070 |
[10] |
Wei X J, Xu J F, Guo H N, Jiang L, Chen S H, Yu C Y, Zhou Z L, Hu P S, Zhai H Q, Wan J M. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol, 2010, 153: 1747-1758.
doi: 10.1104/pp.110.156943 |
[11] |
Bian X F, Liu X, Zhao Z G, Jiang L, Gao H, Zhang Y H, Zheng M, Chen L M, Liu S J, Zhai H Q, Wan J M. Heading date gene, dth3controlled late flowering in O. glaberrima Steud. by down-regulating Ehd1. Plant Cell Rep, 2011, 30: 2243-2254.
doi: 10.1007/s00299-011-1129-4 pmid: 21830130 |
[12] |
Zong W B, Ren D, Huang M H, Sun K L, Feng J L, Zhao J, Xiao D D, Xie W H, Liu S Q, Zhang H, Qiu R, Tang W J, Yang R Q, Chen H Y, Xie X R, Chen L T, Liu Y G, Guo J X. Strong photoperiod sensitivity is controlled by cooperation and competition among Hd1, Ghd7 and DTH8 in rice heading. New Phytol, 2021, 229: 1635-1649.
doi: 10.1111/nph.16946 |
[13] |
Fujino K, Yamanouchi U, Nonoue Y, Obara M, Yano M. Switching genetic effects of the flowering time gene Hd1 in LD conditions by Ghd7 and OsPRR37 in rice. Breed Sci, 2019, 69: 127-132.
doi: 10.1270/jsbbs.18060 |
[14] |
Zhang Z Y, Hu W, Shen G J, Liu H Y, Hu Y, Zhou X C, Liu T M, Xing Y Z. Alternative functions of Hd1 in repressing or promoting heading are determined by Ghd7 status under long-day conditions. Sci Rep, 2017, 7: 5388.
doi: 10.1038/s41598-017-05873-1 |
[15] |
Nemoto Y, Nonoue Y, Yano M, Izawa T. Hd1, a CONSTANS ortholog in rice, functions as an Ehd1 repressor through interaction with monocot-specific CCT-domain protein Ghd7. Plant J, 2016, 86: 221-233.
doi: 10.1111/tpj.13168 |
[16] |
Du A P, Tian W, Wei M H, Yan W, He H, Zhou D, Huang X, Li S G, Ou-Yang X H. The DTH8-Hd1 module mediates day-length- dependent regulation of rice flowering. Mol Plant, 2017, 10: 948-961.
doi: 10.1016/j.molp.2017.05.006 |
[17] |
Zhou X C, Nong C X, Wu B, Zhou T H, Zhang B, Liu X S, Gao G J, Mi J M, Zhang Q L, Liu H Y, Liu S S, Li Z X, He Y Q, Mou T M, Guo S B, Li S Q, Yang Y Z, Zhang Q F, Xing Y Z. Combinations of Ghd7, Ghd8, and Hd1 determine strong heterosis of commercial rice hybrids in diverse ecological regions. J Exp Bot, 2021, 72: 6963-6976.
doi: 10.1093/jxb/erab344 |
[18] | Zhang B, Liu H Y, Qi F X, Zhang Z Y, Li Q P, Han Z M, Xing Y Z. Genetic interactions among Ghd7, Ghd8, OsPRR37 and Hd1 contribute to large variation in heading date in rice. Rice (New York), 2019, 12(1): 48. |
[19] |
Zhang J, Zhou X C, Yan W H, Zhang Z Y, Lu L, Han Z M, Zhao H, Liu H Y, Song P, Hu Y, Shen G J, He Q, Guo S B, Gao G Q, Wang G W, Xing Y Z. Combinations of the Ghd7, Ghd8 and Hd1 genes largely define the ecogeographical adaptation and yield potential of cultivated rice. New Phytol, 2015, 208: 1056-1066.
doi: 10.1111/nph.13538 pmid: 26147403 |
[20] |
Wei X J, Jiang L, Xu J F, Lu G W, Wan J M. Genetic analyses of heading date of japonica rice cultivars from northern China. Field Crops Res, 2008, 107: 147-154.
doi: 10.1016/j.fcr.2008.01.008 |
[21] |
Zhou X C, Nong C X, Wu B, Zhou T H, Zhang B, Liu X S, Gao G J, Mi J M, Zhang Q L, Liu H Y, Liu S S, Li Z X, He Y Q, Mou T M, Guo S B, Li S Q, Yang Y Z, Zhang Q F, Xing Y Z. Combinations of Ghd7, Ghd8, and Hd1 determine strong heterosis of commercial rice hybrids in diverse ecological regions. J Exp Bot, 2021, 72: 6963-6976.
doi: 10.1093/jxb/erab344 |
[1] | 刘立军, 周沈琪, 刘昆, 张伟杨, 杨建昌. 水稻大穗形成及其调控的研究进展[J]. 作物学报, 2023, 49(3): 585-596. |
[2] | 丁敏, 段政勇, 王宇卓, 薛亚鹏, 王海岗, 陈凌, 王瑞云, 乔治军. 糜子GBSSI基因功能标记的开发与验证[J]. 作物学报, 2023, 49(3): 703-718. |
[3] | 朱晓彤, 叶亚峰, 郭均瑶, 杨惠杰, 王紫瑶, 詹玥, 吴跃进, 陶亮之, 马伯军, 陈析丰, 刘斌美. 水稻早衰基因ESL8的遗传与定位[J]. 作物学报, 2023, 49(3): 662-671. |
[4] | 许加波, 吴鹏昊, 黄博文, 陈占辉, 马月虹, 任姣姣. 利用F2:3家系来源单倍体定位玉米雄穗相关性状QTL及全基因组选择[J]. 作物学报, 2023, 49(3): 622-633. |
[5] | 王珍, 张晓莉, 刘淼, 姚梦楠, 孟晓静, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1超量表达及中油821的转录差异表达分析[J]. 作物学报, 2023, 49(3): 856-868. |
[6] | 齐燕妮, 李闻娟, 赵丽蓉, 李雯, 王利民, 谢亚萍, 赵玮, 党照, 张建平. 亚麻生氰糖苷合成关键酶CYP79基因家族的鉴定及表达分析[J]. 作物学报, 2023, 49(3): 687-702. |
[7] | 马雅杰, 鲍建喜, 高悦欣, 李雅楠, 秦文萱, 王彦博, 龙艳, 李金萍, 董振营, 万向元. 玉米株高和穗位高性状全基因组关联分析[J]. 作物学报, 2023, 49(3): 647-661. |
[8] | 方娅婷, 任涛, 张顺涛, 周橡棋, 赵剑, 廖世鹏, 丛日环, 鲁剑巍. 氮磷钾肥对旱地和水田油菜产量及养分利用的影响差异[J]. 作物学报, 2023, 49(3): 772-783. |
[9] | 邓照, 蒋环琪, 程丽沙, 刘睿, 黄敏, 李曼菲, 杜何为. 利用WGCNA鉴定玉米非生物胁迫相关基因共表达网络[J]. 作物学报, 2023, 49(3): 672-686. |
[10] | 李秋平, 张春龙, 杨 宏, 王拓, 李娟, 金寿林, 黄大军, 李丹丹, 文建成. 水稻半育突变体sfp10的生理特征分析及基因定位[J]. 作物学报, 2023, 49(3): 634-646. |
[11] | 杨俊芳, 王宙, 乔麟轶, 王亚, 赵宜婷, 张宏斌, 申登高, 王宏伟, 曹越. 基于高密度遗传图谱的蓖麻种子大小性状QTL定位[J]. 作物学报, 2023, 49(3): 719-730. |
[12] | 向思茜, 李儒香, 徐光益, 邓岢莉, 余金琎, 李苗苗, 杨正林, 凌英华, 桑贤春, 何光华, 赵芳明. 基于水稻长大粒染色体片段代换系Z66的粒型QTL的鉴定及其聚合分析[J]. 作物学报, 2023, 49(3): 731-743. |
[13] | 才晓溪, 胡冰霜, 沈阳, 王研, 陈悦, 孙明哲, 贾博为, 孙晓丽. GsERF6基因过表达对水稻耐盐碱性的影响[J]. 作物学报, 2023, 49(2): 561-569. |
[14] | 刘晓颖, 张驰, 王雪晴, 杨晨晓, 王光钰, 卞云迪, 方芳, 王颖, 王振英. 栽培小麦Brock中抗白粉病相关基因TaRPP13-1B的克隆及功能分析[J]. 作物学报, 2023, 49(2): 392-401. |
[15] | 杨硕, 武阳春, 刘鑫磊, 唐晓飞, 薛永国, 曹旦, 王婉, 刘亭萱, 祁航, 栾晓燕, 邱丽娟. 大豆蛋白含量主效位点qPRO-20-1的精细定位[J]. 作物学报, 2023, 49(2): 310-320. |
|