欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (4): 1016-1027.doi: 10.3724/SP.J.1006.2023.24037

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝型油菜长链烷烃合成相关基因的克隆及其与BnCER1-2的互作

柏成成**(), 姚小尧**(), 王雨璐, 王赛玉, 李金莹, 蒋有为, 靳舒荣, 陈春杰, 刘渔, 魏星玥, 徐新福, 李加纳, 倪郁*()   

  1. 西南大学农学与生物科技学院/西南大学农业科学研究院, 重庆 400716
  • 收稿日期:2022-02-13 接受日期:2022-06-07 出版日期:2023-04-12 网络出版日期:2022-06-21
  • 通讯作者: *倪郁, E-mail: nmniyu@126.com
  • 作者简介:柏成成, E-mail: 1316502363@qq.com;
    姚小尧, E-mail: 823706108@qq.com
    **同等贡献
  • 基金资助:
    国家自然科学基金项目(32171938);国家自然科学基金项目(31771694);重庆市自然科学基金项目(cstc2021jcyj-msxmX0332);财政部和农村农业部国家现代农业产业技术体系建设专项(CARS-12)

Cloning of genes involved in cuticular very-long-chain alkane synthesis and its interaction with BnCER1-2 in Brassica napus

BAI Cheng-Cheng**(), YAO Xiao-Yao**(), WANG Yu-Lu, WANG Sai-Yu, LI Jin-Ying, JIANG You-Wei, JIN Shu-Rong, CHEN Chun-Jie, LIU Yu, WEI Xing-Yue, XU Xin-Fu, LI Jia-Na, NI Yu*()   

  1. College of Agronomy and Biotechnology/Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
  • Received:2022-02-13 Accepted:2022-06-07 Published:2023-04-12 Published online:2022-06-21
  • Contact: *E-mail: nmniyu@126.com
  • About author:**Contributed equally to this work
  • Supported by:
    National Natural Science Foundation of China(32171938);National Natural Science Foundation of China(31771694);Natural Science Foundation of Chongqing, China(cstc2021jcyj-msxmX0332);China Agriculture Research System of MOF and MARA(CARS-12)

摘要:

长链烷烃是甘蓝型油菜角质层蜡质的优势组分, 在阻止植株的非气孔性水分散失中起主要作用。BnCER1-2催化甘蓝型油菜长链烷烃的生物合成, 但BnCER1-2是否通过与其他蛋白互作调控长链烷烃合成还不清楚。前期通过甘蓝型油菜蜡质差异材料转录组筛选获得4个长链烷烃合成相关基因BnCER3.a10BnCER3.c02BnCYTB5B.c09BnCER1-L2.a05。本研究克隆了这4个基因的编码序列, 序列分析表明BnCER3.a10/c02和BnCER1-L2.a05前体蛋白具有典型的脂肪酸羟化酶与WAX2 C末端结构域, 而BnCYTB5B.c09具有Cyt_B5蛋白家族保守结构域。亚细胞定位结果表明, BnCER3.a10/c02、BnCYTB5B.c09和BnCER1-L2.a05均定位于细胞内质网, 与BnCER1-2共定位。双分子荧光互补(bimolecular fluorescent complementation, BiFC)与萤火素酶互补试验(luciferase complementation assay, LCA)检测结果表明, BnCER3.a10、BnCYTB5B.c09、BnCER1-L2.a05与BnCER1-2蛋白存在相互作用, 而BnCER3.c02与BnCER1-2蛋白不互作。实时荧光定量PCR结果显示, 与BnCER1-2的表达模式一致, BnCER3.a10BnCYTB5B.c09主要在甘蓝型油菜茎/叶中表达, 并受干旱胁迫诱导显著上调。BnCER3.a10在NaCl与低温胁迫下表达量显著减少, 其中BnCER3.a10受MeJA、ACC诱导显著下调, BnCYTB5B.c09表达受ABA诱导上调。BnCER1-L2.a05在花中的表达量最高, 在茎和叶片中的表达量最低, 在干旱、低温及NaCl胁迫下转录水平均显著下降, 其中SA诱导BnCER1-L2.a05表达上调, 而MeJA诱导其表达下调。蜡质差异材料荧光定量PCR结果证实, BnCER3.a10BnCYTB5B.c09在高蜡(烷)油菜中的表达量显著高于低蜡(烷)油菜, 而BnCER1-L2.a05则呈相反变化。综合分析认为, BnCER3.a10和BnCYTB5B.c09可能通过与BnCER1-2互作而促进甘蓝型油菜长链烷烃的生物合成, BnCER1-L2.a05可能通过与BnCER1-2互作负调控长链烷烃的合成。

关键词: 甘蓝型油菜, 角质层蜡质, 蛋白互作, 长链烷烃

Abstract:

Very-long-chain (VLC) alkanes are the main components of cuticular wax in Brassica napus, which play a key role in preventing non-stomatal water loss. BnCER1-2 is the core enzyme that catalyzes the synthesis of VLC alkanes in B. napus. However, it is unclear whether BnCER1-2 protein regulates VLC alkane synthesis by interacting with other proteins. Four genes potentially involved in VLC alkane synthesis, BnCER3.a10, BnCER3.c02, BnCYTB5B.c09, and BnCER1-L2.a05, were screened previously by the transcriptome in B. napus with differential wax load. In this study, their coding sequences were cloned from B. napus. A typical fatty acid hydroxylase domain and a wax2 C-terminal domain were detected in the predicted BnCER3.a10/c02 and BnCER1-L2.a05 proteins, while cyt_b5 protein family conserved domain was in the predicted BnCYTB5B.c09. Subcellular localization showed that BnCER3.a10/c02, BnCYTB5B.c09, and BnCER1-L2.a05 were all located in the endoplasmic reticulum, which were co-located with BnCER1-2. Bimolecular fluorescence complementary (BiFC) and luciferase complementation assay (LCA) revealed that BnCER3.a10, BnCYTB5B.c09, and BnCER1-L2.a05 interacted with BnCER1-2 protein, while BnCER3.c02 did not interact with BnCER1-2. The RT-qPCR indicated that BnCER3.a10 and BnCYTB5B.c09 were mainly expressed in the stems or leaves of B. napus, and the relative expression was significantly up-regulated under drought stress, which were consistent with the expression pattern of BnCER1-2. The relative expression levels of BnCER3.a10 decreased significantly under NaCl and low temperature stresses. Further, the relative expression level of BnCER3.a10 was significantly down-regulated by MeJA and ACC, while the relative expression level of BnCYTB5B.c09 was up-regulated by ABA. The highest relative expression of BnCER1-L2.a05 was in flowers and the lowest in stems and leaves, and its expression was significantly down-regulated under drought, cold, and NaCl stresses. Further, the relative expression level of BnCER1-L2.a05 was up-regulated by SA, while down-regulated by MeJA. The relative expression levels of BnCER3.a10 and BnCYTB5B.c09 in B. napus with high wax/alkane load were significantly higher than that with low wax/alkane load, while BnCER1-L2.a05 had the opposite change. Comprehensive analysis suggested that BnCER3.a10 and BnCYTB5B.c09 may promote the biosynthesis of VLC alkanes in B. napus by interacting with BnCER1-2, while BnCER1-L2.a05 may negatively regulate the synthesis of VLC alkanes by interacting with BnCER1-2.

Key words: Brassica napus, cuticular wax, protein interaction, very-long-chain alkanes

表1

BiFC重组载体构建引物"

引物名称
Primer name
引物序列
Primer sequence (5°-3°)
酶切位点
Restriction site
重组载体
Vector
FBnCER1-2 TCTGAGGAGGATCTTCCCGGGATGGCTACGAAACCAGGCATCC Sma I nYFP
RBnCER1-2 AGGGCATGCCTGCAGGTCGACTCAGGGGTATTGGAAGTGATGTGG Sal I
FBnCER3.a10 TCTAGGAGCTCGGTACCCGGGATGGTAGCTTTTTCAGCTTGGCCT Sma I cYFP
RBnCER3.a10 ATCGTATGGGTACATACTAGTTCTTGTGAGTGAAGAAACAGAGCGAA Spe I
FBnCER3.c02 TCTAGGAGCTCGGTACCCGGGATGGTTACTTTATCAGTCTGGCCTTGG Sma I cYFP
RBnCER3.c02 ATCGTATGGGTACATACTAGTATTAGTGAGTGAAGACACAGAGCTAAGGC Spe I
FBnCYTB5B.c09 TCTAGGAGCTCGGTACCCGGGATGGGCGGAGACGGCAAAGT Sma I cYFP
RBnCYTB5B.c09 ATCGTATGGGTACATACTAGTAGAAGAAGAAGGAGTCTTGGTGTAAGAACG Spe I
FBnCER1-L2.a05 TCTAGGAGCTCGGTACCCGGGATGGCGTCGAGACCAGGTTTTC Sma I cYFP
RBnCER1-L2.a05 ATCGTATGGGTACATACTAGTGTAACCATTGCTCAATCCTTTGGTCTC Spe I

表2

LCA重组载体构建引物"

引物名称
Primer name
引物序列
Primer sequence (5°-3°)
酶切位点
Restriction site
重组载体
Vector
FBnCER1Bi AACACGGGGGACGAGCTCGGTACCATGGCTACGAAACCAGGCAT Kpn I nLUC
RBnCER1Bi GGACGCGTACGAGATCTGGTCGACGGGGTATTGGAAGTGATGTGG Sal I
FBnCER3.a10Bi TACGCGTCCCGGGGCGGTACCATGGTAGCTTTTTCAGCTTGGCCT Kpn I cLUC
RBnCER3.a10Bi ACGAAAGCTCTGCAGGTCGACTCATCTTGTGAGTGAAGAAACAGAGCG Sal I
FBnCER3.c02Bi TACGCGTCCCGGGGCGGTACCATGGTTACTTTATCAGTCTGGCCTTGG Kpn I cLUC
RBnCER3.c02Bi ACGAAAGCTCTGCAGGTCGACATTAGTGAGTGAAGACACAGAGCTAAGGC Sal I
FBnCYTB5.c09Bi TACGCGTCCCGGGGCGGTACCATGGGCGGAGACGGCAAAGT Kpn I cLUC
RBnCYTB5.c09Bi ACGAAAGCTCTGCAGGTCGACTCAAGAAGAAGAAGGAGTCTTGGTGTA Sal I
FBnCER1-L2.a05Bi TACGCGTCCCGGGGCGGTACCATGGCGTCGAGACCAGGTTTTC Kpn I cLUC
RBnCER1-L2.a05Bi ACGAAAGCTCTGCAGGTCGACCTAGTAACCATTGCTCAATCCTTTGGTCT Sal I

表3

亚细胞定位引物"

引物名称
Primer name
引物序列
Primer sequence (5°-3°)
酶切位点
Restriction site
FBnCER3.a10S GCTGCGGCAGCGGCCGAATTCATGGTAGCTTTTTCAGCTTGGCCT EcoR I
RBnCER3.a10S TTATCTAGATCCGGTGGATCCTCATCTTGTGAGTGAAGAAACAGAGCG BamH I
FBnCER3.c02S GCTGCGGCAGCGGCCGAATTCATGGTTACTTTATCAGTCTGGCCTTGG EcoR I
RBnCER3.c02S TTATCTAGATCCGGTGGATCCTCAATTAGTGAGTGAAGACACAGAGCTA BamH I
FBnCYTB5.c09S GCTGCGGCAGCGGCCGAATTCATGGGCGGAGACGGCAAAGT EcoR I
RBnCYTB5.c09S TTATCTAGATCCGGTGGATCCTCAAGAAGAAGAAGGAGTCTTGGTGTAAGAA BamH I
FBnCER1-L2.a05S GCTGCGGCAGCGGCCGAATTCATGGCGTCGAGACCAGGTTTTC EcoR I
RBnCER1-L2.a05S TTATCTAGATCCGGTGGATCCCTAGTAACCATTGCTCAATCCTTTGGTC BamH I

表4

荧光定量PCR引物"

引物名称
Primer name
上游引物序列
Forward sequence (5°-3°)
引物名称
Primer name
下游引物序列
Reverse sequence (5°-3°)
扩增片段大小
Size (bp)
qFBnCER3.a10 AGATTCGGGTTCCAATACTT qRBnCER3.a10 TAACACCAATCTTATCAGCCCTA 94
qFBnCYTB5.c09 GGATTTCCTCATCAAGATCCTTCA qRBnCYTB5.c09 GGAGTCTTGGTGTAAGAACG 87
qFBnCER1-L2.a05 TGTCTTTGAGAGAAACCGC qRBnCER1-L2.a05 GTTGATAGATTCTTTACACTGCTG 135

图1

BnCER3.a10/c02、BnCYTB5B.c09和BnCER1-L2.a05蛋白的结构域分析 A: 脂肪酸羟化酶结构域; B: WAX2 C末端结构域; C: Cyt_B5蛋白家族保守结构域。参与氨基酸序列比对的有拟南芥(Arabidopsis thaliana) CER1 (AT1G02205)、CER1-L1 (AT1G02190)、CER1-L2 (AT2G37700)、CER3 (AT5G57800), 参与比对的CYTB5分别来自拟南芥(Arabidopsis thaliana) (AT5G48810)、甘蓝(Brassica oleracea) (XP_013609519.1)、埃塞俄比亚芥(Brassica carinata) (KAG2316461.1)、荠菜(Capsella rubella) (XP_006279708.1)、萝卜(Raphanus sativus) (XP_018457867.1)。"

图2

BnCER3.a10/c02、BnCYTB5B.c09、BnCER1-L2.a05与其他十字花科物种相关蛋白的系统进化树分析 参与系统进化树分析的氨基酸序列包括拟南芥AtCER1 (AT1G02205)、AtCER1-L1 (AT1G02190)、AtCER1-L2 (AT2G37700)、AtCER3 (AT5G57800)、AtCYTB5 (AT5G48810), 白菜BrCER1 (XP_009118866.2)、BrCER1-L2 (XP_009143457.1)、BrCER3 (XP_033137694.1)、 BrCYTB5B (XP_009151679.1), 甘蓝BoCER1 (QCO76034.1)、BoCER1-L2 (XP_013632332.1)、BoCER3 (XP_013621098.1)、BoCYTB5B"

图3

BnCER3.a10/c02、BnCYTB5B.c09和BnCER1-L2.a05在烟草叶片中的亚细胞定位 标尺为20 μm。"

图4

BiFC检测BnCER1-2与BnCER3.a10、BnCYTB5B.c09、BnCER1-L2.a05蛋白互作 pC1300-YN-OsHAL3 + pC2300-OsHAL3-YC为阳性对照, pC1300-YN-BnCER1-2 + pC2300-OsHAL3-YC、pC1300-YN-OsHAL3 + pC2300-BnCER3.a10-YC、pC1300-YN-OsHAL3 + pC2300-BnCYTB5B.c09-YC、pC1300-YN-OsHAL3 + pC2300-BnCER1-L2.a05-YC为阴性对照。标尺为20 μm。"

图5

LCA检测BnCER1-2与BnCER3.a10、BnCYTB5B.c09、BnCER1-L2.a05蛋白互作 A: BnCER3.a10与BnCER1-2互作检测; B: BnCYTB5B.c09与BnCER1-2互作检测; C: BnCER1-L2.a05与BnCER1-2互作检测; NLuc空载体与含目的基因的CLuc载体组合、CLuc空载体与含目的基因的NLuc载体组合以及均为空载体的CLuc/NLuc载体组合分别作为阴性对照。"

图6

甘蓝型油菜BnCER3.a10、BnCYTB5B.c09、BnCER1-L2.a05的表达模式 A: 组织器官特异性表达; B: 蜡质差异材料表达; C: 非生物胁迫和激素诱导表达。SA: 水杨酸; MeJA: 茉莉酸甲酯; ACC: 1-氨基环丙烷-1-羧酸; ABA: 脱落酸。*代表P < 0.05。"

[1] Ahmadi M, Bahrani M J. Yield and yield components of rapeseed as influenced by water stress at different growth stages and nitrogen levels. Am-Eur J Agric Environ Sci, 2009, 5: 755-761.
[2] Iizumi T, Ramankutty N. How do weather and climate influence cropping area and intensity? Glob Food Secur Agric Policy, 2015, 4: 46-50.
[3] Schreiber L, Skrabs M, Hartmann K D, Diamantopoulos P, Simanova E, Santrucek J. Effect of humidity on cuticular water permeability of isolated cuticular membranes and leaf disks. Planta, 2001, 214: 274-282.
pmid: 11800392
[4] Riederer M, Schreiber L. Protecting against water loss: analysis of the barrier properties of plant cuticles. J Exp Bot, 2001, 52: 205-208.
[5] Ficke A, Gadoury D M, Godfrey D, Dry I B. Host barriers and responses to Uncinula necator in developing grape berries. Phytopathology, 2004, 94: 438-445.
doi: 10.1094/PHYTO.2004.94.5.438 pmid: 18943761
[6] Eigenbrode S D, Rayor L, Chow J, Latty P. Effects of wax bloom variation in Brassica oleracea on foraging by avespid wasp. Entomol Exp Appl, 2000, 97: 161-166.
doi: 10.1046/j.1570-7458.2000.00726.x
[7] Krauss P, Markstädter C, Riederer M. Attenuation of UV radiation by plant cuticles from woody species. Plant Cell Environ, 1997, 20: 1079-1085.
doi: 10.1111/j.1365-3040.1997.tb00684.x
[8] Ni Y, Xia R E, Li J N. Changes of epicuticular wax induced by enhanced UV-B radiation impact on gas exchange in Brassica napus. Acta Physiol Plant, 2014, 36: 2481-2490.
doi: 10.1007/s11738-014-1621-x
[9] Kunst L, Samuels A L. Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res, 2003, 42: 5180.
[10] Barthhlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surface. Planta, 1997, 202: 18.
doi: 10.1007/s004250050098
[11] 王婧, 刘泓利, 宋超, 倪郁. 甘蓝型油菜叶表皮蜡质组分及结构与菌核病抗性关系. 植物生理学报, 2012, 48: 958-964.
Wang J, Liu H L, Song C, Ni Y. Relationship between Brassica napus epicuticular wax composition and structure and resistance to Sclerotinia sclerotiorum. Plant Physiol J, 2012, 48: 958-964. (in Chinese with English abstract)
[12] Wang Y M, Jin S R, Xu Y, Li S, Zhang S J, Yuan Z, Li J N, Ni Y. Overexpression of BnKCS1-1, BnKCS1-2, and BnCER1-2 promotes cuticular wax production and increases drought tolerance in Brassica napus. Crop J, 2020, 8: 26-37.
doi: 10.1016/j.cj.2019.04.006
[13] Bernard A, Domergue F, Pascal S, Jetter R, Renne C, Faure J D, Haslam R P, Napier J A, Lessire R, Joubès J. Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex. Plant Cell, 2012, 24: 3106-3118.
doi: 10.1105/tpc.112.099796
[14] Pascal S, Bernard A, Deslous P, Gronnier J, Fournier-Goss A, Domergue F, Rowland O, Joubès J, Notes A. Arabidopsis CER1-LIKE1 functions in a cuticular very-long-chain alkane- forming complex. Plant Physiol, 2019, 179: 415-432.
doi: 10.1104/pp.18.01075
[15] Jin S R, Zhang S J, Liu Y H, Jiang Y W, Wang Y M, Li J N, Ni Y. A combination of genome-wide association study and transcriptome analysis in leaf epidermis identifies candidate genes involved in cuticular wax biosynthesis in Brassica napus. BMC Plant Biol, 2020, 20: 458.
doi: 10.1186/s12870-020-02675-y
[16] Bourdenx B, Bernard A, Domergue F, Pascal S, Léger A, Roby D, Pervent M, Vile D, Haslam R P, Napier J A, Lessire R, Joubès J. Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiol, 2011, 156: 29-45.
doi: 10.1104/pp.111.172320 pmid: 21386033
[17] 蒋有为. 甘蓝型油菜BnCER1-2.c09顺式作用元件及其反式作用因子研究. 西南大学硕士学位论文, 重庆, 2021.
Jiang Y W. Studies on the cis-acting Elements and Trans-acting Factors of BnCER1-2.c09 in Brassica napus. MS Thesis of Southwest University, Chongqing, China, 2021. (in Chinese with English abstract)
[18] Aarts M, Keijzer C J, Stiekema W J, Pereira A. Molecular characterization of the CER1 gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell, 1995, 7: 2115-2127.
doi: 10.1105/tpc.7.12.2115 pmid: 8718622
[19] Kosma D K, Bourdenx B, Bernard A, Parsons E P, Lü S, Joubès J, Jenks M A. The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiol, 2009, 151: 1918-1929.
doi: 10.1104/pp.109.141911
[20] Hu C D, Chinenov Y, Kerppola T K. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell, 2002, 9: 789-798.
doi: 10.1016/S1097-2765(02)00496-3
[21] Zhou Z Y, Bi G Z, Zhou J M. Luciferase complementation assay for protein-protein interactions in plants. Curr Protoc Plant Biol, 2018, 3: 42-50.
doi: 10.1002/cppb.20066 pmid: 30040251
[1] 杨太桦, 杨福权, 郜耿东, 殷帅, 金庆东, 徐林珊, 蒯婕, 汪波, 徐正华, 葛贤宏, 王晶, 周广生. 初步探究LncRNA在甘蓝型油菜生态型分化中的作用[J]. 作物学报, 2023, 49(5): 1197-1210.
[2] 张盈川, 吴晓明玉, 陶保龙, 陈丽, 鲁海琴, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-miR43-FBXL调控模块参与甘蓝型油菜铝胁迫的功能分析[J]. 作物学报, 2023, 49(5): 1211-1221.
[3] 陈慧, 肖清, 汪华栋, 文静, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 易斌. 甘蓝型油菜SUMO蛋白家族成员鉴定及Bna.SUMO1.C08基因的功能研究[J]. 作物学报, 2023, 49(4): 917-925.
[4] 陈晓汉, 王丽琴, 汪华栋, 肖清, 陶保龙, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. BnABCI8影响甘蓝型油菜叶绿体发育[J]. 作物学报, 2023, 49(4): 893-905.
[5] 王珍, 张晓莉, 刘淼, 姚梦楠, 孟晓静, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1超量表达及中油821的转录差异表达分析[J]. 作物学报, 2023, 49(3): 856-868.
[6] 张文宣, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 利用CRISPR/Cas9技术突变BnaMPK6基因降低甘蓝型油菜的耐盐性[J]. 作物学报, 2023, 49(2): 321-331.
[7] 张超, 杨博, 张立源, 肖忠春, 刘景森, 马晋齐, 卢坤, 李加纳. 基于QTL定位和全基因组关联分析挖掘甘蓝型油菜收获指数相关位点[J]. 作物学报, 2022, 48(9): 2180-2195.
[8] 张天宇, 王越, 刘影, 周婷, 岳彩鹏, 黄进勇, 华营鹏. 油菜脯氨酸代谢基因家族的生物信息学分析与核心成员鉴定[J]. 作物学报, 2022, 48(8): 1977-1995.
[9] 李胜婷, 徐远芳, 常玮, 刘亚俊, 谷嫄, 朱红, 李加纳, 卢坤. Bna.C02SWEET15通过光周期途径正向调控油菜开花时间[J]. 作物学报, 2022, 48(8): 1938-1947.
[10] 戴丽诗, 常玮, 张赛, 钱明超, 黎小东, 张凯, 李加纳, 曲存民, 卢坤. Bna-novel-miR36421调节拟南芥株型和花器官发育的功能验证[J]. 作物学报, 2022, 48(7): 1635-1644.
[11] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[12] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[13] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[14] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[15] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .