作物学报 ›› 2023, Vol. 49 ›› Issue (4): 1016-1027.doi: 10.3724/SP.J.1006.2023.24037
柏成成**(), 姚小尧**(), 王雨璐, 王赛玉, 李金莹, 蒋有为, 靳舒荣, 陈春杰, 刘渔, 魏星玥, 徐新福, 李加纳, 倪郁*()
BAI Cheng-Cheng**(), YAO Xiao-Yao**(), WANG Yu-Lu, WANG Sai-Yu, LI Jin-Ying, JIANG You-Wei, JIN Shu-Rong, CHEN Chun-Jie, LIU Yu, WEI Xing-Yue, XU Xin-Fu, LI Jia-Na, NI Yu*()
摘要:
长链烷烃是甘蓝型油菜角质层蜡质的优势组分, 在阻止植株的非气孔性水分散失中起主要作用。BnCER1-2催化甘蓝型油菜长链烷烃的生物合成, 但BnCER1-2是否通过与其他蛋白互作调控长链烷烃合成还不清楚。前期通过甘蓝型油菜蜡质差异材料转录组筛选获得4个长链烷烃合成相关基因BnCER3.a10、BnCER3.c02、BnCYTB5B.c09、BnCER1-L2.a05。本研究克隆了这4个基因的编码序列, 序列分析表明BnCER3.a10/c02和BnCER1-L2.a05前体蛋白具有典型的脂肪酸羟化酶与WAX2 C末端结构域, 而BnCYTB5B.c09具有Cyt_B5蛋白家族保守结构域。亚细胞定位结果表明, BnCER3.a10/c02、BnCYTB5B.c09和BnCER1-L2.a05均定位于细胞内质网, 与BnCER1-2共定位。双分子荧光互补(bimolecular fluorescent complementation, BiFC)与萤火素酶互补试验(luciferase complementation assay, LCA)检测结果表明, BnCER3.a10、BnCYTB5B.c09、BnCER1-L2.a05与BnCER1-2蛋白存在相互作用, 而BnCER3.c02与BnCER1-2蛋白不互作。实时荧光定量PCR结果显示, 与BnCER1-2的表达模式一致, BnCER3.a10和BnCYTB5B.c09主要在甘蓝型油菜茎/叶中表达, 并受干旱胁迫诱导显著上调。BnCER3.a10在NaCl与低温胁迫下表达量显著减少, 其中BnCER3.a10受MeJA、ACC诱导显著下调, BnCYTB5B.c09表达受ABA诱导上调。BnCER1-L2.a05在花中的表达量最高, 在茎和叶片中的表达量最低, 在干旱、低温及NaCl胁迫下转录水平均显著下降, 其中SA诱导BnCER1-L2.a05表达上调, 而MeJA诱导其表达下调。蜡质差异材料荧光定量PCR结果证实, BnCER3.a10与BnCYTB5B.c09在高蜡(烷)油菜中的表达量显著高于低蜡(烷)油菜, 而BnCER1-L2.a05则呈相反变化。综合分析认为, BnCER3.a10和BnCYTB5B.c09可能通过与BnCER1-2互作而促进甘蓝型油菜长链烷烃的生物合成, BnCER1-L2.a05可能通过与BnCER1-2互作负调控长链烷烃的合成。
[1] | Ahmadi M, Bahrani M J. Yield and yield components of rapeseed as influenced by water stress at different growth stages and nitrogen levels. Am-Eur J Agric Environ Sci, 2009, 5: 755-761. |
[2] | Iizumi T, Ramankutty N. How do weather and climate influence cropping area and intensity? Glob Food Secur Agric Policy, 2015, 4: 46-50. |
[3] |
Schreiber L, Skrabs M, Hartmann K D, Diamantopoulos P, Simanova E, Santrucek J. Effect of humidity on cuticular water permeability of isolated cuticular membranes and leaf disks. Planta, 2001, 214: 274-282.
pmid: 11800392 |
[4] | Riederer M, Schreiber L. Protecting against water loss: analysis of the barrier properties of plant cuticles. J Exp Bot, 2001, 52: 205-208. |
[5] |
Ficke A, Gadoury D M, Godfrey D, Dry I B. Host barriers and responses to Uncinula necator in developing grape berries. Phytopathology, 2004, 94: 438-445.
doi: 10.1094/PHYTO.2004.94.5.438 pmid: 18943761 |
[6] |
Eigenbrode S D, Rayor L, Chow J, Latty P. Effects of wax bloom variation in Brassica oleracea on foraging by avespid wasp. Entomol Exp Appl, 2000, 97: 161-166.
doi: 10.1046/j.1570-7458.2000.00726.x |
[7] |
Krauss P, Markstädter C, Riederer M. Attenuation of UV radiation by plant cuticles from woody species. Plant Cell Environ, 1997, 20: 1079-1085.
doi: 10.1111/j.1365-3040.1997.tb00684.x |
[8] |
Ni Y, Xia R E, Li J N. Changes of epicuticular wax induced by enhanced UV-B radiation impact on gas exchange in Brassica napus. Acta Physiol Plant, 2014, 36: 2481-2490.
doi: 10.1007/s11738-014-1621-x |
[9] | Kunst L, Samuels A L. Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res, 2003, 42: 5180. |
[10] |
Barthhlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surface. Planta, 1997, 202: 18.
doi: 10.1007/s004250050098 |
[11] | 王婧, 刘泓利, 宋超, 倪郁. 甘蓝型油菜叶表皮蜡质组分及结构与菌核病抗性关系. 植物生理学报, 2012, 48: 958-964. |
Wang J, Liu H L, Song C, Ni Y. Relationship between Brassica napus epicuticular wax composition and structure and resistance to Sclerotinia sclerotiorum. Plant Physiol J, 2012, 48: 958-964. (in Chinese with English abstract) | |
[12] |
Wang Y M, Jin S R, Xu Y, Li S, Zhang S J, Yuan Z, Li J N, Ni Y. Overexpression of BnKCS1-1, BnKCS1-2, and BnCER1-2 promotes cuticular wax production and increases drought tolerance in Brassica napus. Crop J, 2020, 8: 26-37.
doi: 10.1016/j.cj.2019.04.006 |
[13] |
Bernard A, Domergue F, Pascal S, Jetter R, Renne C, Faure J D, Haslam R P, Napier J A, Lessire R, Joubès J. Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex. Plant Cell, 2012, 24: 3106-3118.
doi: 10.1105/tpc.112.099796 |
[14] |
Pascal S, Bernard A, Deslous P, Gronnier J, Fournier-Goss A, Domergue F, Rowland O, Joubès J, Notes A. Arabidopsis CER1-LIKE1 functions in a cuticular very-long-chain alkane- forming complex. Plant Physiol, 2019, 179: 415-432.
doi: 10.1104/pp.18.01075 |
[15] |
Jin S R, Zhang S J, Liu Y H, Jiang Y W, Wang Y M, Li J N, Ni Y. A combination of genome-wide association study and transcriptome analysis in leaf epidermis identifies candidate genes involved in cuticular wax biosynthesis in Brassica napus. BMC Plant Biol, 2020, 20: 458.
doi: 10.1186/s12870-020-02675-y |
[16] |
Bourdenx B, Bernard A, Domergue F, Pascal S, Léger A, Roby D, Pervent M, Vile D, Haslam R P, Napier J A, Lessire R, Joubès J. Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiol, 2011, 156: 29-45.
doi: 10.1104/pp.111.172320 pmid: 21386033 |
[17] | 蒋有为. 甘蓝型油菜BnCER1-2.c09顺式作用元件及其反式作用因子研究. 西南大学硕士学位论文, 重庆, 2021. |
Jiang Y W. Studies on the cis-acting Elements and Trans-acting Factors of BnCER1-2.c09 in Brassica napus. MS Thesis of Southwest University, Chongqing, China, 2021. (in Chinese with English abstract) | |
[18] |
Aarts M, Keijzer C J, Stiekema W J, Pereira A. Molecular characterization of the CER1 gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell, 1995, 7: 2115-2127.
doi: 10.1105/tpc.7.12.2115 pmid: 8718622 |
[19] |
Kosma D K, Bourdenx B, Bernard A, Parsons E P, Lü S, Joubès J, Jenks M A. The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiol, 2009, 151: 1918-1929.
doi: 10.1104/pp.109.141911 |
[20] |
Hu C D, Chinenov Y, Kerppola T K. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell, 2002, 9: 789-798.
doi: 10.1016/S1097-2765(02)00496-3 |
[21] |
Zhou Z Y, Bi G Z, Zhou J M. Luciferase complementation assay for protein-protein interactions in plants. Curr Protoc Plant Biol, 2018, 3: 42-50.
doi: 10.1002/cppb.20066 pmid: 30040251 |
[1] | 杨太桦, 杨福权, 郜耿东, 殷帅, 金庆东, 徐林珊, 蒯婕, 汪波, 徐正华, 葛贤宏, 王晶, 周广生. 初步探究LncRNA在甘蓝型油菜生态型分化中的作用[J]. 作物学报, 2023, 49(5): 1197-1210. |
[2] | 张盈川, 吴晓明玉, 陶保龙, 陈丽, 鲁海琴, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-miR43-FBXL调控模块参与甘蓝型油菜铝胁迫的功能分析[J]. 作物学报, 2023, 49(5): 1211-1221. |
[3] | 陈慧, 肖清, 汪华栋, 文静, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 易斌. 甘蓝型油菜SUMO蛋白家族成员鉴定及Bna.SUMO1.C08基因的功能研究[J]. 作物学报, 2023, 49(4): 917-925. |
[4] | 陈晓汉, 王丽琴, 汪华栋, 肖清, 陶保龙, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. BnABCI8影响甘蓝型油菜叶绿体发育[J]. 作物学报, 2023, 49(4): 893-905. |
[5] | 王珍, 张晓莉, 刘淼, 姚梦楠, 孟晓静, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1超量表达及中油821的转录差异表达分析[J]. 作物学报, 2023, 49(3): 856-868. |
[6] | 张文宣, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 利用CRISPR/Cas9技术突变BnaMPK6基因降低甘蓝型油菜的耐盐性[J]. 作物学报, 2023, 49(2): 321-331. |
[7] | 张超, 杨博, 张立源, 肖忠春, 刘景森, 马晋齐, 卢坤, 李加纳. 基于QTL定位和全基因组关联分析挖掘甘蓝型油菜收获指数相关位点[J]. 作物学报, 2022, 48(9): 2180-2195. |
[8] | 张天宇, 王越, 刘影, 周婷, 岳彩鹏, 黄进勇, 华营鹏. 油菜脯氨酸代谢基因家族的生物信息学分析与核心成员鉴定[J]. 作物学报, 2022, 48(8): 1977-1995. |
[9] | 李胜婷, 徐远芳, 常玮, 刘亚俊, 谷嫄, 朱红, 李加纳, 卢坤. Bna.C02SWEET15通过光周期途径正向调控油菜开花时间[J]. 作物学报, 2022, 48(8): 1938-1947. |
[10] | 戴丽诗, 常玮, 张赛, 钱明超, 黎小东, 张凯, 李加纳, 曲存民, 卢坤. Bna-novel-miR36421调节拟南芥株型和花器官发育的功能验证[J]. 作物学报, 2022, 48(7): 1635-1644. |
[11] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[12] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[13] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[14] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[15] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
|