欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (5): 1372-1385.doi: 10.3724/SP.J.1006.2023.24133

• 耕作栽培·生理生化 • 上一篇    下一篇

低氮胁迫下外源色氨酸对高粱幼苗根系伸长的调控作用

李邦(), 刘春娟(), 郭俊杰, 武宇昕, 邓志成, 张敏, 崔彤, 刘畅, 周宇飞()   

  1. 沈阳农业大学农学院, 辽宁沈阳 110866
  • 收稿日期:2022-06-01 接受日期:2022-09-05 出版日期:2023-05-12 网络出版日期:2022-09-22
  • 通讯作者: *周宇飞, E-mail: zhouyufei@syau.edu.cn
  • 作者简介:李邦, E-mail: 3281908550@qq.com;
    刘春娟, E-mail: liuchunjuan@syau.edu.cn第一联系人:**同等贡献
  • 基金资助:
    财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-06-14.5-A17);辽宁省教育厅一般项目(LSNFW202006)

Effects of exogenous tryptophan on root elongation of sorghum seedlings under low nitrogen stress

LI Bang(), LIU Chun-Juan(), GUO Jun-Jie, WU Yu-Xin, DENG Zhi-Cheng, ZHANG Min, CUI Tong, LIU Chang, ZHOU Yu-Fei()   

  1. College of Agronomy, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
  • Received:2022-06-01 Accepted:2022-09-05 Published:2023-05-12 Published online:2022-09-22
  • Contact: *E-mail: zhouyufei@syau.edu.cn
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-06-14.5-A17);General Research Project of Education Department of Liaoning Province of China(LSNFW202006)

摘要:

低氮胁迫促进高粱根系伸长, 但其具体的生理机制仍不清晰。为解析高粱根系在低氮胁迫下伸长的生理机制, 本试验选用高粱耐低氮自交系(398B)和氮敏感自交系(CS-3541)为材料, 研究低氮胁迫下高粱根系伸长的物质和能量代谢基础。结果表明, 与正常氮相比, 低氮胁迫显著促进了398B和CS-3541根长及根尖细胞长度, 398B表现出更长的根长; 低氮胁迫后1、5和10 d, 398B和CS-3541根系中内源色氨酸含量显著增加; 应用RNA-seq技术对2个高粱自交系低氮胁迫后根系样品进行差异表达基因鉴定, 结果发现色氨酸代谢途径的有关基因参与了低氮下高粱根系的伸长。进一步利用外源色氨酸处理发现, 外源色氨酸通过增加生长素含量, 激活了质膜H+-ATPase的活性, 促进质膜酸化, 提高了能量代谢相关酶活性及ATP含量, 从而诱导了根系的能量代谢, 促进了低氮胁迫下高粱根系的伸长。而且, 外源色氨酸对低氮胁迫下398B的作用效果更好。综上所述, 低氮胁迫处理激活了内源色氨酸在高粱根系伸长中的关键作用, 依赖色氨酸途径合成的生长素及协同提高的能量代谢是促进低氮下高粱根系伸长的生理机制。

关键词: 高粱, 低氮, 外源色氨酸, 生长素, 能量代谢, 根伸长

Abstract:

The physiological mechanism of root elongation in sorghum under low nitrogen stress remains unclear. Here, two sorghum inbred lines, 398B (low nitrogen tolerance) and CS-3541 (low nitrogen sensitivity), were used as experimental materials, to clarify the physiological mechanism of root elongation of sorghum seedlings under low nitrogen stress. The results showed that, compared with normal nitrogen stress, low nitrogen stress significantly increased root length and root tip cell length of 398B and CS-3541, and 398B had longer root length. The endogenous tryptophan content in roots of 398B and CS-3541 increased significantly at 1, 5, and 10 days after low nitrogen stress. Tryptophan was involved in root elongation of sorghum under low nitrogen conditions through the auxin synthesis pathway by RNA-seq, and the relative expression level of genes in the auxin synthesis pathway of root in 398B was significantly higher than that in CS-3541. Furthermore, the root lengths of 398B and CS-3541 were significantly increased by 50 mg L-1 exogenous tryptophan treatment under low nitrogen conditions. Exogenous tryptophan activated the activity of H+-ATPase in plasma membrane by increasing the content of auxin, promoted the acidification of plasma membrane, and improved the activity of enzymes related to energy metabolism and ATP content, and thus inducing energy metabolism of root system. Exogenous tryptophan had a better effect on 398B under low nitrogen stress. In conclusion, low nitrogen stress activated the key role of endogenous tryptophan in sorghum root elongation, and auxin depended on tryptophan pathway and synergistic enhancement of energy metabolism were the physiological mechanism promoting root elongation of sorghum seedlings under low nitrogen stress.

Key words: sorghum, low nitrogen, exogenous tryptophan, auxin, energy metabolism, root elongation

表1

试验所用基因引物序列"

基因 Gene name PCR引物 Primer sequences (5°-3°)
YUCCA10 F: GATGGATGTGAGGAGCAAAG; R: TGAACGGGTCTCTGAAGAT
YUCCA9 F: CATCATCCGTGAGAACCTTG; R: ATGATGGCCATGCAGAAC
TAA F: AGAGCATCCGTCTCTTCTC; R: TGGTGAGGTTGAGGTTGT

图1

低氮胁迫下高粱幼苗根系的表型(A)及根长(B) 不同小写字母表示0.05概率水平差异显著。NN: 正常氮处理; LN: 低氮处理。"

图2

低氮胁迫下高粱幼苗的根尖细胞形态(A)和长度(B) 不同小写字母表示在0.05概率水平差异显著。NN: 正常氮处理; LN: 低氮处理。"

图3

低氮胁迫对幼苗根系色氨酸含量的影响 I为低氮处理后1 d; II为低氮处理后5 d; III为低氮处理后10 d。不同小写字母表示在0.05概率水平差异显著。NN: 正常氮处理; LN: 低氮处理。"

图4

色氨酸代谢通路图"

图5

低氮胁迫对高粱幼苗根系生长素合成相关基因表达量的影响 不同小写字母表示在0.05概率水平差异显著。NN: 正常氮处理; LN: 低氮处理。"

图6

低氮胁迫下外源色氨酸对高粱幼苗根系生长的影响 NN: 正常氮处理; LN: 低氮处理。"

图7

低氮胁迫下外源色氨酸对幼苗根系生长素含量的影响 I为低氮处理后1 d; II为低氮处理后5 d; III为低氮处理后10 d。C、S和B分别表示不同自交系、不同氮水平处理和外源色氨酸处理。*、**和***分别表示在0.05、0.01和0.001概率水平差异显著, ns表示差异不显著。不同小写字母表示0.05概率水平差异显著。NN: 正常氮处理; LN: 低氮处理; NN-T: 正常氮喷施色氨酸处理; LN-T: 低氮喷施色氨酸处理。"

图8

低氮胁迫下外源色氨酸对幼苗根系中质膜H+-ATPase活性的影响 I为低氮处理后1 d; II为低氮处理后5 d; III为低氮处理后10 d。C、S和B分别表示不同自交系、不同氮水平处理和外源色氨酸处理。*、**和***分别表示在0.05、0.01和0.001概率水平差异显著, ns表示差异不显著。不同小写字母表示0.05概率水平差异显著。NN: 正常氮处理; LN: 低氮处理; NN-T: 正常氮喷施色氨酸处理; LN-T: 低氮喷施色氨酸处理。"

图9

低氮胁迫下外源色氨酸对幼苗根系质外体pH的影响 I为低氮处理后1 d; II为低氮处理后5 d; III为低氮处理后10 d。C、S和B分别表示不同自交系、不同氮水平处理和外源色氨酸处理。*、**和***分别表示在0.05、0.01和0.001概率水平差异显著, ns表示差异不显著。不同小写字母表示0.05概率水平差异显著。NN: 正常氮处理; LN: 低氮处理; NN-T: 正常氮喷施色氨酸处理; LN-T: 低氮喷施色氨酸处理。"

图10

低氮胁迫下外源色氨酸对幼苗根系ATP含量的影响 I为低氮处理后1 d; II为低氮处理后5 d; III为低氮处理后10 d。C、S和B分别表示不同自交系、不同氮水平处理和外源色氨酸处理。*、**和***分别表示在0.05、0.01和0.001概率水平差异显著, ns表示差异不显著。不同小写字母表示0.05概率水平差异显著。NN: 正常氮处理; LN: 低氮处理; NN-T: 正常氮喷施色氨酸处理; LN-T: 低氮喷施色氨酸处理。"

图11

低氮胁迫下外源色氨酸对幼苗根系6-磷酸葡萄糖脱氢酶活性的影响 I为低氮处理后1 d; II为低氮处理后5 d; III为低氮处理后10 d。C、S和B分别表示不同自交系、不同氮水平处理和外源色氨酸处理。*、**和***分别表示在0.05、0.01和0.001概率水平差异显著, ns表示差异不显著。不同小写字母表示0.05概率水平差异显著。NN: 正常氮处理; LN: 低氮处理; NN-T: 正常氮喷施色氨酸处理; LN-T: 低氮喷施色氨酸处理。"

图12

低氮胁迫下外源色氨酸对幼苗根系丙酮酸激酶活性的影响 I为低氮处理后1 d; II为低氮处理后5 d; III为低氮处理后10 d。C、S和B分别表示不同自交系、不同氮水平处理和外源色氨酸处理。*、**和***分别表示在0.05、0.01和0.001概率水平差异显著, ns表示差异不显著。不同小写字母表示0.05概率水平差异显著。NN: 正常氮处理; LN: 低氮处理; NN-T: 正常氮喷施色氨酸处理; LN-T: 低氮喷施色氨酸处理。"

图13

低氮胁迫下外源色氨酸对幼苗根系柠檬酸合酶活性的影响 I为低氮处理后1 d; II为低氮处理后5 d; III为低氮处理后10 d。C、S和B分别表示不同自交系、不同氮水平处理和外源色氨酸处理。*、**和***分别表示在0.05、0.01和0.001概率水平差异显著, ns表示差异不显著。不同小写字母表示0.05概率水平差异显著。NN: 正常氮处理; LN: 低氮处理; NN-T: 正常氮喷施色氨酸处理; LN-T: 低氮喷施色氨酸处理。"

图14

低氮胁迫下外源色氨酸对幼苗根系α-酮戊二酸脱氢酶活性的影响 I为低氮处理后1 d; II为低氮处理后5 d; III为低氮处理后10 d。C、S和B分别表示不同自交系、不同氮水平处理和外源色氨酸处理。*、**和***分别表示在0.05、0.01和0.001概率水平差异显著, ns表示差异不显著。不同小写字母表示0.05概率水平差异显著。NN: 正常氮处理; LN: 低氮处理; NN-T: 正常氮喷施色氨酸处理; LN-T: 低氮喷施色氨酸处理。"

图15

低氮胁迫下外源色氨酸对高粱幼苗根系伸长的作用模式"

[1] 刘晨阳, 张蕙杰, 辛翔飞. 中国高粱产业发展特征及趋势分析. 中国农业科技导报, 2020, 22(10): 1-9.
doi: 10.13304/j.nykjdb.2019.0706
Liu C Y, Zhang H J, Xin X F. Analysis of the development characteristics and trends of sorghum industry in China. J Agric Sci Technol, 2020, 22(10): 1-9. (in Chinese with English abstract)
[2] 邹剑秋. 高粱育种与栽培技术研究新进展. 中国农业科学, 2020, 53: 2769-2773.
doi: 10.3864/j.issn.0578-1752.2020.14.001
Zou J Q. New research progress on sorghum breeding and cultivation techniques. Sci Agric Sin, 2020, 53: 2769-2773. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2020.14.001
[3] 张彦, 王劲松, 董二伟, 武爱莲, 王媛, 焦晓燕. 中晚熟区主要高粱品种耐瘠性综合评价. 中国农业科学, 2021, 54: 4954-4968.
doi: 10.3864/j.issn.0578-1752.2021.23.003
Zhang Y, Wang J S, Dong E W, Wu A L, Wang Y, Jiao X Y. Comprehensive evaluation of low-fertility tolerance of different sorghum cultivars in middle-late-maturing area. Sci Agric Sin, 2021, 54: 4954-4968. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2021.23.003
[4] 刘鹏, 武爱莲, 王劲松, 南江宽, 董二伟, 焦晓燕, 平俊爱, 白文斌. 不同基因型高粱的氮效率及对低氮胁迫的生理响应. 中国农业科学, 2018, 51: 3074-3083.
doi: 10.3864/j.issn.0578-1752.2018.16.004
Liu P, Wu A L, Wang J S, Nan J K, Dong E W, Jiao X Y, Ping J A, Bai W B. Nitrogen use efficiency and physiological responses of different sorghum genotypes influenced by nitrogen deficiency. Sci Agric Sin, 2018, 51: 3074-3083 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.16.004
[5] 李邦, 姜冰, 邢艺凡, 陈小飞, 周宇飞. 高粱幼苗根系对低氮胁迫的响应. 见: 中国作物学会主编. 第十九届中国作物学会学术年会论文摘要集. 武汉: 中国作物学会, 2020. p 315.
Li B, Jiang B, Xing Y F, Chen X F, Zhou Y F. Response of sorghum seedling root to low nitrogen stress. In: Crop Science Society of China, eds. Abstracts of the 19th Annual Conference of Crop Science Society of China. Wuhan: Crop Science Society of China, 2020. p 315. (in Chinese with English abstract)
[6] Rasmussen A, Hosseini S A, Hajirezaei M R, Druege U, Geelen D. Adventitious rooting declines with the vegetative to reproductive switch and involves a changed auxin homeostasis. J Exp Bot, 2015, 66: 1437-1452.
doi: 10.1093/jxb/eru499 pmid: 25540438
[7] Gaudin A C M, McClymont S A, Holmes B M, Lyons E, Raizada M N. Novel temporal, fine-scale and growth variation phenotypes in roots of adult-stage maize (Zea mays L.) in response to low nitrogen stress. Plant Cell Environ, 2011, 34: 2122-2137.
doi: 10.1111/pce.2011.34.issue-12
[8] Lynch J P. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot, 2013, 112: 356-366.
[9] 谢呈辉, 马海曌, 许宏伟, 徐郗阳, 阮国兵, 郭峥岩, 宁永培, 冯永忠, 杨改河, 任广鑫. 施氮量对宁夏引黄灌区麦后复种糜子生长、产量及氮素利用的影响. 作物学报, 2022, 48: 463-477.
doi: 10.3724/SP.J.1006.2022.14010
Xie C H, Ma H Z, Xu H W, Xu X Y, Ruan G B, Guo Z Y, Ning Y P, Feng Y Z, Yang G H, Ren G X. Effects of nitrogen rate on growth, grain yield, and nitrogen utilization of multiple cropping proso millet after spring-wheat in Irrigation Area of Ningxia. Acta Agron Sin, 2022, 48: 463-477. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.14010
[10] Mi G, Chen Y L. Ideotype root system architecture for maize to achieve high yield and resource use efficiency in intensive cropping systems. Adv Agron, 2016, 139: 73-97.
[11] Postma J A, Dathe A, Lynch J P. The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability. Plant Physiol, 2014, 166: 590-602.
doi: 10.1104/pp.113.233916 pmid: 24850860
[12] Linkohr B I, Williamson L C, Fitter A H, Leyser H M. Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J, 2002, 29: 5684-5701.
[13] Gruber B D, Giehl R F, Friedel S, Wirén N. Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol, 2013, 163: 452-463.
doi: 10.1016/j.jplph.2005.04.032
[14] El-Bassiouny H M S. Physiological responses of wheat to salinity alleviation by nicotinamide and tryptophan. Int J Agric Biol, 2005, 7: 653-659.
[15] Abbas S H, Sohail M, Saleem M. Effect of L-tryptophan on plant weight and pod weight in chickpea under rainfed conditions. Sci Technol Dev, 2013, 163: 161-179.
[16] Hassan T U, Bano A. The stimulatory effects of L-tryptophan and plant growth promoting rhizobacteria (PGPR) on soil health and physiology of wheat. J Soil Sci Plant Nutr, 2015, 15: 190-201.
[17] Pollmann S, Düchting P, Weiler E W. Tryptophan-dependent indole-3-acetic acid biosynthesis by ‘IAA-synthase’ proceeds via indole-3-acetamide. Phytochemistry, 2009, 70: 523-531.
doi: 10.1016/j.phytochem.2009.01.021 pmid: 19268331
[18] Mano Y H, Nemoto K C. The pathway of auxin biosynthesis in plants. J Exp Bot, 2012, 63: 2853-2872.
doi: 10.1093/jxb/ers091 pmid: 22447967
[19] Zhou Z Y, Zhang C G, Wu L, Zhang C G, Chai J, Wang M, Jha A, Jia P F, Cui S J, Yang M, Chen R J, Guo G Q. Functional characterization of the CKRC1/TAA1 gene and dissection of hormonal actions in the Arabidopsis root. Plant J, 2011, 66: 516-527.
doi: 10.1111/j.1365-313X.2011.04509.x
[20] Won C, Shen X, Mashiguchi K, Zheng Z, Dai X, Cheng Y, Kasahara H, Kamiya Y, Chory J, Zhao Y. Conversion of tryptophan to indole-3-acetic acid by tryptophsn sminotrnsferases of Arabidopsis and YUCCAs in Arabidopsis. Proc Natl Acad Sci USA, 2011, 108: 18518-18523.
doi: 10.1073/pnas.1108436108
[21] Mashiguchi K S, Tanaka K, Sakai T Y, Sugawara S K, Kawaide H, Natsume M, Hanada A, Yaeno T, Shirasu K, Yao H, McSteen P, Zhao Y, Hayashi K, Kamiya Y J, Kasahara H K. The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci USA, 2011, 108: 234-241.
doi: 10.1073/pnas.1102710108 pmid: 21670293
[22] Ma W Y, Li J J, Qu B Y, He X, Zhao X Q, Li B, Fu X D, Tong Y P. Auxin biosynthetic gene TAR2 is involved in low nitrogen-mediated reprogramming of root architecture in Arabidopsis . Plant J, 2014, 78: 70-79.
doi: 10.1111/tpj.2014.78.issue-1
[23] Yamamoto Y, Kamiya N, Morinaka Y, Matsuoka M, Sazuka T. Auxin biosynthesis by the YUCCA genes in rice. Plant Physiol, 2007, 143: 1362-1371.
doi: 10.1104/pp.106.091561 pmid: 17220367
[24] Zhang T T, Kang H, Fu L L, Sun W J, Gao W S, You C X, Wang X F, Hao Y J. NIN-like protein 7 promotes nitrate-mediated lateral root development by activating transcription of TRYPTOPHAN AMINOTRANSFERASE RELATED 2. Plant Sci, 2021, 303: 110771.
doi: 10.1016/j.plantsci.2020.110771
[25] Bakry B A, Ibrahim F M, Maha M S. Effect of banana peel extract or tryptophan on growth, yield and some biochemical aspects of quinoa plants under water deficit. Int J Pharmtech Res, 2016, 9: 276-287.
[26] Janus F, Jesper T P, Anja T F, Michael P. Plasma membrane H+-ATPase regulation in the center of plant physiology. Mol Plant, 2016, 9: 323-337.
doi: 10.1016/j.molp.2015.11.002
[27] Jing Y, Cui D, Bao F, Hu Z, Qin Z, Hu Y. Tryptophan deficiency affects organ growth by retarding cell expansion in Arabidopsis. Plant J, 2008, 57: 511-521.
doi: 10.1111/tpj.2009.57.issue-3
[28] Yu P H, Jiang N, Fu W M, Zheng G G, Li G Y, Feng B H, Chen T T, Ma J Y, Li H B, Tao L X, Fu G F. ATP hydrolysis determines cold tolerance by regulating available energy for glutathione synthesis in rice seedling plants. Rice, 2020, 13: 23-39.
doi: 10.1186/s12284-020-00383-7 pmid: 32274603
[29] 赵欣, 白伟. 杜仲叶片干旱胁迫响应相关差异蛋白的筛选与鉴定. 植物研究, 2018, 38: 1422-1432.
Zhao X, Bai W. Screening and identification of the proteins related to drought response in leaves of Eucommia ulmoides. Bull Bot Res, 2018, 38: 1422-1432. (in Chinese with English abstract)
[30] Zhang Y, Han Q, Guo Q, Zhang S. Physiological and proteomic analysis reveals the different responses of Cunninghamia lanceolata seedlings to nitrogen and phosphorus additions. J Proteomics, 2016, 146: 109-121.
doi: 10.1016/j.jprot.2016.07.001
[31] 刘国英. 供氮水平调控番茄低温耐性的机理研究. 西北农林科技大学博士学位论文, 陕西杨凌, 2018.
Liu G Y. Study on the Mechanism of Nitrogen Levels Regulate Tomato Tolerance to Low Temperature. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2018. (in Chinese with English abstract)
[32] 江立庚, 曹卫星. 水稻高效利用氮素的生理机制及有效途径. 中国水稻科学, 2002, 16(3): 64-67.
Jiang L G, Cao W X. Physiological mechanism and approach for efficient nitrogen utilization in rice. Chin J Rice Sci, 2002, 16(3): 64-67. (in Chinese with English abstract)
[33] Konishi N, Ishiyama K, Matsuoka K, Maru I, Hayakawa T, Yamaya T, Kojima S. NADH-dependent glutamate synthase plays a crucial role in assimilating ammonium in the Arabidopsis root. Physiol Planta, 2014, 152: 138-151.
doi: 10.1111/ppl.12177
[34] 黎旺姐. 不同生长温度和施氮量对烟草叶片中游离氨基酸含量及其代谢的效应. 云南师范大学博士学位论文, 云南昆明, 2016.
Li W J. Effects of Different Growth Temperature and Nitrogen Fertilization on Amino Acid Content and Its Metabolism in Tobacco Leaves. PhD Dissertation of Yunnan Normal University, Kunming, Yunnan, China, 2016. (in Chinese with English abstract)
[35] Subudhi P K, Garcia R S, Coronejo S, Tapia R. Comparative transcriptomics of rice genotypes with contrasting responses to nitrogen stress reveals genes influencing nitrogen uptake through the regulation of root architecture. Int J Mol Sci, 2020, 21: 5795-5818.
doi: 10.3390/ijms21165795
[36] 张楚, 张永清, 路之娟, 刘丽琴. 苗期耐低氮基因型苦荞的筛选及其评价指标. 作物学报, 2017, 43: 1205-1215.
doi: 10.3724/SP.J.1006.2017.01205
Zhang C, Zhang Y Q, Lu Z J, Liu L Q. Screening Fagopyrum tararicum genotypes tolerant to low nitrogen stress at seedling stage and its evaluating indices. Acta Agron Sin, 2017, 43: 1205-1215. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.01205
[37] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价. 作物学报, 2022, 48: 1488-1501.
doi: 10.3724/SP.J.1006.2022.14087
Qin L, Han P P, Chang H B, Gu C M, Huang W, Li Y S, Liao X S, Xie L H, Liao X. Screening of rapeseed germplasms with low nitrogen tolerance and the evaluation of its potential application as green manure. Acta Agron Sin, 2022, 48: 1488-1501. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.14087
[38] Tian Q, Chen F, Liu J, Zhang F, Mi G. Inhibition of maize root growth by high nitrate supply is correlated with reduced IAA levels in roots. J Plant Physiol, 2008, 165: 942-951.
doi: 10.1016/j.jplph.2007.02.011
[39] Gao K, Chen F J, Yuan L X, Mi G H. Cell production and expansion in the primary root of maize in response to low-nitrogen stress. J Integr Agric, 2014, 13: 2508-2517.
doi: 10.1016/S2095-3119(13)60523-7
[40] Zahir Z A, Yasin H M, Naveed M, Anjum M A, Khalid M. L-tryptophan application enhances the effectiveness of Rhizobium inoculation for improving growth and yield of mungbean (Vigna radiata (L.) Wilczek). Pak J Bot, 2010, 42: 1771-1780.
[41] 蒋佳, 朱星宇, 李晶. 外源色氨酸对油菜幼苗色氨酸下游代谢网络及生长发育的影响. 西北植物学报, 2020, 40: 1549-1557.
Jiang J, Zhu X Y, Li J. Effect of exogenous tryptophan on the downstream metabolic network of tryptophan and growth in rapa seedlings. Acta Bot Boreali-Occident Sin, 2020, 40: 1549-1557. (in Chinese with English abstract)
[42] Nathan D T, John J R, Jerry D C. The shifting paradigms of auxin biosynthesis. Trends Plant Sci, 2014, 19: 44-51.
doi: 10.1016/j.tplants.2013.09.012
[43] Cosgrove D J. Loosening of plant cell walls by expansions. Nature, 2000, 407: 321-326.
doi: 10.1038/35030000
[44] Tivendale N D, Millar A H. How is auxin linked with cellular energy pathways to promote growth. New Phytol, 2022, 233: 2397-2404.
doi: 10.1111/nph.17946 pmid: 34984715
[45] Liu C K, Tu B J, Wang X, Li Y S, Zhang Q Y, Liu X B. Transcript profile in vegetable soybean roots reveals potential gene patterns regulating K uptake efficiency. Agronomy (Basel), 2020, 10: 1796-1818.
doi: 10.3390/agronomy10111796
[46] 洪丽芳, 苏帆, 付利波, 梁颖, 瞿兴, 田育天, 刘武定. 生长素在烤烟钾素库源关系改变时对根系呼吸作用生理指标的影响. 中国农业科学, 2003, 36: 1604-1608.
Hong L F, Su F, Fu L B, Liang Y, Qu X, Tian Y T, Liu W D. Effects of auxin on the indexes to root respiratory metabolism when the relationship of sink and source was changed. Sci Agric Sin, 2003, 36: 1604-1608. (in Chinese with English abstract)
[47] Mustafa A, Imran M, Ashraf M, Mahmood K. Perspectives of using L-tryptophan for improving productivity of agricultural crops: a review. Pedosphere, 2018, 28: 16-34.
doi: 10.1016/S1002-0160(18)60002-5
[48] Tretter L, Adam V V. Alpha-ketoglutarate dehydrogenase: a target and generator of oxidative stress. Philos Trans R Soc Lond B Biol Sci, 2005, 360: 2335-2345.
doi: 10.1098/rstb.2005.1764
[49] Woo J E, Seong H J, Lee S Y, Jang Y S. Metabolic engineering of Escherichia coli for the production of hyaluronic acid from glucose and galactose. Front Bioeng Biotechnol, 2019, 7: 351.
doi: 10.3389/fbioe.2019.00351
[1] 何永明, 张芳. 生长素调控水稻颖花开放的效应研究[J]. 作物学报, 2023, 49(6): 1690-1698.
[2] 王劲松, 白歌, 张艳慧, 申甜雨, 董二伟, 焦晓燕. 长期不同施肥处理对高粱花后叶片衰老、抗氧化酶活性及产量的影响[J]. 作物学报, 2023, 49(3): 845-855.
[3] 陈冰嬬, 于淼, 葛占宇, 李洪奎, 黄炎, 李海青, 石贵山, 谢利, 徐宁, 闫峰, 高士杰, 周紫阳, 王鼐. 春播早熟区高粱杂种优势群及杂种优势模式分析[J]. 作物学报, 2023, 49(2): 343-353.
[4] 梁政, 柯美玉, 陈志威, 陈栩, 高震. 大豆GmPIN2家族基因调控根系发育功能初探[J]. 作物学报, 2023, 49(1): 24-35.
[5] 祝令晓, 宋世佳, 李浩然, 孙红春, 张永江, 白志英, 张科, 李安昌, 刘连涛, 李存东. 基于耐低氮综合指数的棉花苗期耐低氮品种筛选[J]. 作物学报, 2022, 48(7): 1800-1812.
[6] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[7] 王倩, 刘少雄, 柴晓娇, 李海, 张芬, 陆平, 王瑞云, 刘敏轩. 中国不同省(市、自治区)糯高粱籽粒酚类物质含量差异分析[J]. 作物学报, 2022, 48(10): 2505-2516.
[8] 吴雅薇, 蒲玮, 赵波, 魏桂, 孔凡磊, 袁继超. 不同耐低氮性玉米品种的花后碳氮积累与转运特征[J]. 作物学报, 2021, 47(5): 915-928.
[9] 王媛, 王劲松, 董二伟, 武爱莲, 焦晓燕. 长期施用不同剂量氮肥对高粱产量、氮素利用特性和土壤硝态氮含量的影响[J]. 作物学报, 2021, 47(2): 342-350.
[10] 董二伟, 王劲松, 武爱莲, 王媛, 王立革, 韩雄, 郭珺, 焦晓燕. 行距和密度对高粱籽粒灌浆、淀粉及氮磷钾累积特征的影响[J]. 作物学报, 2021, 47(12): 2459-2470.
[11] 陈淼, 谢赛, 王超智, 李焱龙, 张献龙, 闵玲. 棉花GhPIF4调控高温下花药败育机制初探[J]. 作物学报, 2020, 46(9): 1368-1379.
[12] 张瑞栋,肖梦颖,徐晓雪,姜冰,邢艺凡,陈小飞,李邦,艾雪莹,周宇飞,黄瑞冬. 高粱种子对萌发温度的响应分析与耐低温萌发能力鉴定[J]. 作物学报, 2020, 46(6): 889-901.
[13] 宝力格,陆平,史梦莎,许月,刘敏轩. 中国高粱地方种质芽期苗期耐盐性筛选及鉴定[J]. 作物学报, 2020, 46(5): 734-744.
[14] 肖燕, 姚珺玥, 刘冬, 宋海星, 张振华. 甘蓝型油菜响应低氮胁迫的表达谱分析[J]. 作物学报, 2020, 46(10): 1526-1538.
[15] 王玉奎,张贺翠,白晓璟,廉小平,施松梅,刘倩莹,左同鸿,朱利泉. 甘蓝BoPINs家族基因的特征和表达分析[J]. 作物学报, 2019, 45(8): 1270-1278.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .