作物学报 ›› 2023, Vol. 49 ›› Issue (5): 1426-1431.doi: 10.3724/SP.J.1006.2023.22025
戴文慧1,2(), 朱琪1,2, 张小芳1,2, 吕沈阳1, 项显波3, 马涛1, 陈宇杰1, 朱世华1, 丁沃娜1,*()
DAI Wen-Hui1,2(), ZHU Qi1,2, ZHANG Xiao-Fang1,2, LYU Shen-Yang1, XIANG Xian-Bo3, MA Tao1, CHEN Yu-Jie1, ZHU Shi-Hua1, DING Wo-Na1,*()
摘要:
利用甲基磺酸乙酯(EMS)诱变籼稻Kasalath获得一个脆秆突变体bc21。表型分析发现, 该突变体的茎秆及叶片均易折断, 且该脆性表型在苗期开始表现, 至成熟期时最显著。茎秆机械强度分析表明, bc21茎秆的抗折力、拉伸力显著下降。树脂切片及扫描电镜观察发现, bc21茎秆的厚壁组织细胞空隙增多, 细胞壁明显变薄。茎秆细胞壁组分含量分析表明, 与野生型相比, bc21的纤维素含量降低36.60%, 半纤维素和木质素含量分别升高23.08%和26.06%。经遗传分析得出, bc21的脆性性状由隐性单基因控制。利用SSR标记和自行设计的STS标记将BC21基因定位于水稻第6号染色体STS标记STS2和STS3之间约52.9 kb的范围内, 该区间内没有已报道的水稻脆性相关基因, 表明BC21可能是1个新的水稻脆秆基因, 为进一步揭示水稻茎秆机械强度的调控机制提供了材料支撑。
[1] | 王庭杰. 水稻茎组织构建与木质素代谢对抗倒伏的影响. 河南师范大学硕士学位论文, 河南新乡, 2015. |
Wang T J. Effects of Stalk Tissue and Lignin Metabolism on the Lodging Resistance of Rice. MS Thesis of Henan Normal University, Xinxiang, Henan, China, 2015. (in Chinese with English abstract) | |
[2] |
Zhang R, Hu H Z, Wang Y M, Hu Z, Ren S F, Li J Y, He B Y, Wang Y T, Xia T, Chen P, Xie G S, Peng L C. A novel rice fragile culm 24 mutant encodes a UDP-glucose epimerase that affects cell wall properties and photosynthesis. J Exp Bot, 2020, 71: 2956-2969.
doi: 10.1093/jxb/eraa044 pmid: 32064495 |
[3] |
Kotake T, Aohara T, Hirano K, Sato A, Kaneko Y, Tsumuraya Y, Takatsuji H, Kawasaki S. Rice Brittle Culm 6 encodes a dominant negative form of CesA protein that perturbs cellulose synthesis in secondary cell walls. J Exp Bot, 2011, 62: 2053-2062.
doi: 10.1093/jxb/erq395 |
[4] | Song X Q, Liu L F, Jiang Y J, Zhang B C, Gao Y P, Liu X L, Lin Q S, Ling H Q, Zhou Y H. Disruption of secondary wall cellulose biosynthesis alters cadmium translocation and tolerance in rice plants. Mol Plant, 2013, 3: 768-780. |
[5] | 李晓静, 徐多多, 徐益敏, 翟开恩, 杨窑龙, 潘建伟, 饶玉春. 水稻纤维素合酶催化亚基的编码基因BC88的表达分析. 中国水稻科学, 2015, 29: 126-134. |
Li X J, Xu D D, Xu Y M, Cui K N, Yang Y L, Pan J W, Rao Y C. Expression of OsBC88, a rice cellulose synthase catalytic subunit gene. Chin J Rice Sci, 2015, 29: 126-134. (in Chinese with English abstract) | |
[6] |
Yan C J, Yan S, Zeng X H, Zhang Z Q, Gu M H. Fine mapping and isolation of Bc7(t), allelic to OsCesA4. J Genet Genom, 2007, 34: 1019-1027.
doi: 10.1016/S1673-8527(07)60115-5 |
[7] |
Zhang B C, Deng L W, Qian Q, Xiong G Y, Zeng D L, Li R, Guo L B, Li J Y, Zhou Y H. A missense mutation in the transmembrane domain of CESA4 affects protein abundance in the plasma membrane and results in abnormal cell wall biosynthesis in rice. Plant Mol Biol, 2009, 71: 509-524.
doi: 10.1007/s11103-009-9536-4 pmid: 19697141 |
[8] |
Li Y H, Qian Q, Zhou Y H, Yan M X, Sun L, Zhang M, Fu Z M, Wang Y H, Han B, Pang X M, Chen M S, Li J Y. BRITTLE CULM 1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants. Plant Cell, 2003, 15: 2020-2031.
doi: 10.1105/tpc.011775 |
[9] |
Hirano K, Kotake T, Kamihara K, Tsuna K, Aohara T, Kaneko Y, Takatsuji H, Tsumuraya Y, Kawasaki S. Rice BRITTLE CULM 3 (BC3) encodes a classical dynamin OsDRP2B essential for proper secondary cell wall synthesis. Planta, 2010, 232: 95-108.
doi: 10.1007/s00425-010-1145-6 pmid: 20369251 |
[10] |
Zhou Y H, Li S B, Qian Q, Zeng D L, Zhang M, Guo L B, Liu X L, Zhang B C, Deng L W, Liu X F, Luo G Z, Wang X J, Li J Y. BC10, a DUF266-containing and Golgi-located type II membrane protein, is required for cell-wall biosynthesis in rice (Oryza sativa L.). Plant J, 2009, 57: 446-462.
doi: 10.1111/tpj.2009.57.issue-3 |
[11] |
Zhang M, Zhang B C, Qian Q, Yu Y C, Li R, Zhang J W, Liu X L, Zeng D L, Li J Y, Zhou Y H. Brittle Culm 12, a dual-targeting kinesin-4 protein, controls cell-cycle progression and wall properties in rice. Plant J, 2010, 63: 312-328.
doi: 10.1111/tpj.2010.63.issue-2 |
[12] |
Zhang B C, Liu X L, Qian Q, Liu L F, Dong G J, Xiong G Y, Zeng D L, Zhou Y H. Golgi nucleotide sugar transporter modulates cell wall biosynthesis and plant growth in rice. Proc Natl Acad Sci USA, 2011, 108: 5110-5115.
doi: 10.1073/pnas.1016144108 pmid: 21383162 |
[13] |
Wu B, Zhang B C, Dai Y, Zhang L, Shang-Guan K K, Peng Y G, Zhou Y H, Zhu Z. Brittle Culm 15 encodes a membrane- associated chitinase-like protein required for cellulose biosynthesis in rice. Plant Physiol, 2012, 159: 1440-1452.
doi: 10.1104/pp.112.195529 |
[14] | 许作鹏. 水稻茎秆强度相关性状QTL分析及基因克隆. 扬州大学博士学位论文, 江苏扬州, 2017. |
Xu Z P. Mapping of QTLs and Cloning of Genes Related to the Culm Mechanical Strength in Rice (Oryza sativa L.). PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu, China, 2017. (in Chinese with English abstract) | |
[15] |
靳振明, 平宝哲, 沈浩珺, 杜淮清, 李瑞乾, 朱璐, 张大兵, 袁政. 水稻脆秆突变体bc-s1的表型分析和基因定位. 植物学报, 2016, 51: 167-174.
doi: 10.11983/CBB15048 |
Jin Z M, Ping B Z, Shen H J, Du H Q, Li R Q, Zhu L, Zhang D B, Yuan Z. Phenotypic analysis and gene mapping of rice brittle culm mutant bc-s1. Chin Bull Bot, 2016, 51: 167-174. (in Chinese with English abstract) | |
[16] | 王川丽, 王令强, 牟同敏. 水稻脆性突变体nbc(t)的主要特性和脆性基因的初步定位. 华中农业大学学报, 2012, 31(2): 159-164. |
Wang C L, Wang L Q, Mou T M. Main characteristics of rice brittle mutant nbc(t) and preliminary localization of brittle genes. J Huazhong Agric Univ, 2012, 31(2): 159-164. (in Chinese with English abstract) | |
[17] |
Li P, Liu Y R, Tan W Q, Chen J, Zhu M J, Lyu Y, Liu Y S, Yu S C, Zhang W J, Cai H W. Brittle Culm 1 encodes a COBRA-Like protein involved in secondary cell wall cellulose biosynthesis in sorghum. Plant Cell Physiol, 2019, 60: 788-801.
doi: 10.1093/pcp/pcy246 |
[18] |
Aohara T, Kotake T, Kaneko Y, Takatsuji H, Tsumuraya Y, Kawasaki S. Rice BRITTLE CULM 5(BRITTLE NODE) is involved in secondary cell wall formation in the sclerenchyma tissue of nodes. Plant Cell Physiol, 2009, 50: 1886-1897.
doi: 10.1093/pcp/pcp133 |
[19] |
Wang Y, Ren Y L, Chen S H, Xu Y, Zhou K N, Zhang L, Ming M, Wu F Q, Lin Q B, Wang J L, Guo X P, Zhang X, Lei C L, Cheng Z J, Wan J M. BRITTLE CULM16 (BRITTLE NODE) is required for the formation of secondary cell walls in rice nodes. J Integr Agric, 2017, 16: 1286-1293.
doi: 10.1016/S2095-3119(16)61536-8 |
[20] | De L G, Ferrari S, Giovannoni M, Mattei B, Cervone F. Cell wall traits that influence plant development, immunity, and bioconversion. Plant J, 2019, 97: 134-147. |
[21] |
Li F C, Zhang M L, Guo K, Hu Z, Zhang R, Feng Y Q, Yi X Y, Zou W H, Wang L Q, Wu C Y, Tian J S, Lu T G, Xie G S, Peng L C. High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants. Plant Biotechnol J, 2015, 13: 514-525.
doi: 10.1111/pbi.12276 pmid: 25418842 |
[22] | 赵小红, 白羿雄, 姚有华, 安立昆, 吴昆仑. 禾谷类作物茎秆特性与茎倒伏关系的研究. 植物生理学报, 2021, 57: 257-264. |
Zhao X H, Bai Y X, Yao Y H, An L K, Wu K L. Research progress on the relationship between stem characteristics and crop stem lodging. Plant Physiol J, 2021, 57: 257-264. (in Chinese with English abstract)
doi: 10.1104/pp.57.2.257 |
|
[23] |
姜鸿瑞, 叶亚峰, 何丹, 任艳, 杨阳, 谢建, 程维民, 陶亮之, 周利斌, 吴跃进, 刘斌美. 一个新的水稻脆秆突变体bc17的鉴定及基因定位. 作物学报, 2021, 47: 71-79.
doi: 10.3724/SP.J.1006.2021.02025 |
Jiang H R, Ye Y F, He D, Ren Y, Yang Y, Xie J, Cheng W M, Tao L Z, Zhou L B, Wu Y J, Liu B M. Identification and gene localization of a novel rice brittle culm mutant bc17. Acta Agron Sin, 2021, 47: 71-79. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.02025 |
|
[24] |
Ye Y F, Wang S X, Wu K, Ren Y, Jiang H R, Chen J F, Tao L Z, Fu X D, Liu B M, Wu Y J. A semi-dominant mutation in OsCESA9 improves salt tolerance and favors field straw decay traits by altering cell wall properties in rice. Rice, 2021, 14: 19.
doi: 10.1186/s12284-021-00457-0 pmid: 33595759 |
[25] |
Su Y J, Zhao G Q, Wei Z W, Yan C J, Liu S J. Mutation of cellulose synthase gene improves the nutritive value of rice straw. Asian-Aust J Anim Sci, 2012, 25: 800-805.
doi: 10.5713/ajas.2011.11409 |
[26] | 陆荷微, 刘斌美, 陶亮之, 叶亚峰, 吴振宇, 范爽, 吴跃进, 王钰. 水稻脆茎突变体的主要性状比较研究. 杂交水稻, 2017, 32(5): 51-55. |
Lu H W, Liu B M, Tao L Z, Ye Y F, Wu Z Y, Fan S, Wu Y J, Wang Y. Comparative studies of major characteristics of rice brittle culm mutants. Hybrid Rice, 2017, 32(5): 51-55. (in Chinese with English abstract) |
[1] | 林孝欣, 黄明江, 韦祎, 朱洪慧, 王子怡, 李忠成, 庄慧, 李彦羲, 李云峰, 陈锐. 水稻籽粒伸长突变体lgdp的鉴定与基因定位[J]. 作物学报, 2023, 49(6): 1699-1707. |
[2] | 田敏, 刘新春, 潘佳佳, 梁丽静, 董雷, 刘美池, 冯宗云. 大麦籽粒纤维素、半纤维素含量全基因组关联分析[J]. 作物学报, 2023, 49(6): 1726-1732. |
[3] | 丁杰荣, 马雅美, 潘发枝, 江立群, 黄文洁, 孙炳蕊, 张静, 吕树伟, 毛兴学, 于航, 李晨, 刘清. 泛素受体蛋白OsDSK2b负向调控水稻叶瘟和渗透胁迫抗性[J]. 作物学报, 2023, 49(6): 1466-1479. |
[4] | 何永明, 张芳. 生长素调控水稻颖花开放的效应研究[J]. 作物学报, 2023, 49(6): 1690-1698. |
[5] | 陶玥玥, 盛雪雯, 徐坚, 沈园, 王海候, 陆长婴, 沈明星. 长三角水稻-油菜周年两熟温光资源分配与利用特征[J]. 作物学报, 2023, 49(5): 1327-1338. |
[6] | 韦海敏, 陶伟科, 周燕, 闫飞宇, 李伟玮, 丁艳锋, 刘正辉, 李刚华. 硅素穗肥优化滨海盐碱地水稻矿质元素吸收分配提高耐盐性[J]. 作物学报, 2023, 49(5): 1339-1349. |
[7] | 唐文强, 张文龙, 朱晓乔, 董必正, 李勇成, 杨楠, 张耀, 王云月, 韩光煜. 多样性混合间栽对水稻根际细菌群落结构与功能的影响[J]. 作物学报, 2023, 49(4): 1111-1121. |
[8] | 张晨晖, 章岩, 李国辉, 杨子君, 查莹莹, 周驰燕, 许轲, 霍中洋, 戴其根, 郭保卫. 侧深施肥下水稻高产形成的根系形态及其生理变化特征[J]. 作物学报, 2023, 49(4): 1039-1051. |
[9] | 严昕, 项超, 刘荣, 李冠, 李孟伟, 李正丽, 宗绪晓, 杨涛. 基于BSA-seq技术对豌豆花色基因的精细定位[J]. 作物学报, 2023, 49(4): 1006-1015. |
[10] | 向思茜, 李儒香, 徐光益, 邓岢莉, 余金琎, 李苗苗, 杨正林, 凌英华, 桑贤春, 何光华, 赵芳明. 基于水稻长大粒染色体片段代换系Z66的粒型QTL的鉴定及其聚合分析[J]. 作物学报, 2023, 49(3): 731-743. |
[11] | 刘立军, 周沈琪, 刘昆, 张伟杨, 杨建昌. 水稻大穗形成及其调控的研究进展[J]. 作物学报, 2023, 49(3): 585-596. |
[12] | 朱晓彤, 叶亚峰, 郭均瑶, 杨惠杰, 王紫瑶, 詹玥, 吴跃进, 陶亮之, 马伯军, 陈析丰, 刘斌美. 水稻早衰基因ESL8的遗传与定位[J]. 作物学报, 2023, 49(3): 662-671. |
[13] | 杨晔, 孙琦, 邢欣欣, 张海涛, 赵志超, 程治军. 包穗突变体sui1-5鉴定及OsPSS1互作蛋白筛选[J]. 作物学报, 2023, 49(3): 597-607. |
[14] | 付景, 王亚, 杨文博, 王越涛, 李本银, 王付华, 王生轩, 白涛, 尹海庆. 干湿交替灌溉耦合施氮量对水稻籽粒灌浆生理和根系生理的影响[J]. 作物学报, 2023, 49(3): 808-820. |
[15] | 方娅婷, 任涛, 张顺涛, 周橡棋, 赵剑, 廖世鹏, 丛日环, 鲁剑巍. 氮磷钾肥对旱地和水田油菜产量及养分利用的影响差异[J]. 作物学报, 2023, 49(3): 772-783. |
|