欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (5): 1426-1431.doi: 10.3724/SP.J.1006.2023.22025

• 研究简报 • 上一篇    下一篇

一个水稻脆秆突变体bc21的鉴定和基因定位

戴文慧1,2(), 朱琪1,2, 张小芳1,2, 吕沈阳1, 项显波3, 马涛1, 陈宇杰1, 朱世华1, 丁沃娜1,*()   

  1. 1宁波大学科学技术学院, 浙江宁波 315212
    2宁波大学海洋学院, 浙江宁波 315211
    3平阳县市场监督管理局, 浙江温州 325400
  • 收稿日期:2022-04-27 接受日期:2022-07-22 出版日期:2023-05-12 网络出版日期:2022-08-12
  • 通讯作者: *丁沃娜, E-mail: dwn@zju.edu.cn
  • 作者简介:E-mail: daiwenhui1114@163.com
  • 基金资助:
    国家自然科学基金项目(32071981);宁波市自然科学基金重点项目(202003N4016)

Identification and gene mapping of brittle culm mutant bc21 in rice

DAI Wen-Hui1,2(), ZHU Qi1,2, ZHANG Xiao-Fang1,2, LYU Shen-Yang1, XIANG Xian-Bo3, MA Tao1, CHEN Yu-Jie1, ZHU Shi-Hua1, DING Wo-Na1,*()   

  1. 1College of Science and Technology, Ningbo University, Ningbo 315212, Zhejiang, China
    2School of Marine Science, Ningbo University, Ningbo 315211, Zhejiang, China
    3Pingyang Administration for Market Regulation, Wenzhou 325400, Zhejiang, China
  • Received:2022-04-27 Accepted:2022-07-22 Published:2023-05-12 Published online:2022-08-12
  • Contact: *E-mail: dwn@zju.edu.cn
  • Supported by:
    National Natural Science Foundation of China(32071981);Key Project of Ningbo Natural Science Foundation(202003N4016)

摘要:

利用甲基磺酸乙酯(EMS)诱变籼稻Kasalath获得一个脆秆突变体bc21。表型分析发现, 该突变体的茎秆及叶片均易折断, 且该脆性表型在苗期开始表现, 至成熟期时最显著。茎秆机械强度分析表明, bc21茎秆的抗折力、拉伸力显著下降。树脂切片及扫描电镜观察发现, bc21茎秆的厚壁组织细胞空隙增多, 细胞壁明显变薄。茎秆细胞壁组分含量分析表明, 与野生型相比, bc21的纤维素含量降低36.60%, 半纤维素和木质素含量分别升高23.08%和26.06%。经遗传分析得出, bc21的脆性性状由隐性单基因控制。利用SSR标记和自行设计的STS标记将BC21基因定位于水稻第6号染色体STS标记STS2和STS3之间约52.9 kb的范围内, 该区间内没有已报道的水稻脆性相关基因, 表明BC21可能是1个新的水稻脆秆基因, 为进一步揭示水稻茎秆机械强度的调控机制提供了材料支撑。

关键词: 水稻, 脆秆突变体, 细胞壁, 纤维素, 基因定位

Abstract:

A brittle culm mutant bc21 was obtained by mutagenesis of indica rice Kasalath with ethyl methanesulfonate (EMS). Phenotypic analysis revealed that the mutant displayed both brittle culm and leaf phenotypes, which began to manifest at seedling stage and were most pronounced at mature stage. The mechanical strength analysis showed that the breaking resistance and tensile force of bc21 stems decreased significantly. Resin sections and scanning electron microscope observation showed that the sclerenchyma cells of bc21 culms had increased voids and thinner cell walls. Compared with the wild type, the cell wall component of stems revealed that the cellulose content of bc21 decreased by 36.60%, and the hemicellulose and lignin contents increased by 23.08% and 26.06%, respectively. Genetic analysis indicated that the brittle trait of bc21 was controlled by a single recessive gene. Using SSR markers and self-designed STS markers, BC21 was located in a 52.9 kb region between the markers STS2 and STS3 on chromosome 6, and there was no previously reported rice brittleness-related gene within this region, indicating that BC21 might be a new brittle culm gene in rice. This study will provide material support for further dissection of the regulation mechanism of mechanical strength of rice stems.

Key words: rice, brittle culm mutant, cell wall, cellulose, gene mapping

图1

成熟期野生型与突变体bc21茎秆及叶片的折断表型 A: 茎秆折断表型; B: 叶片折断表型。"

图2

野生型与突变体bc21茎秆第2节间抗折力(A)与拉伸力(B)分析 *表示显著差异(P < 0.05); **表示极显著差异(P < 0.01)。"

图3

野生型与突变体bc21的茎秆横截面观察 A: 野生型茎秆横切面树脂切片观察; B: bc21茎秆横切面树脂切片观察; C: 野生型茎秆横切面扫描电镜观察; D: bc21茎秆横切面扫描电镜观察; 标尺: 100 μm (A和B)、20 μm (C和D)。"

图4

野生型与突变体bc21茎秆纤维素、半纤维素和木质素含量 *表示显著差异(P < 0.05)。"

表1

用于定位的SSR及STS标记"

标记
Marker name
正向引物
Forward primer (5'-3')
反向引物
Reverse primer (5'-3')
RM6734 TGAGCAGTCTGCAGATGACC GCTTGGACTTGGAGTCTTGG
STS1 ACCAGGCTGAATGTATAGAT TTAGGCACATAAACCAAG
STS2 AAAATTGTAGTGGGTTGGT TACAGAGAAAAAGATTGAAGC
STS3 CAGTGATTCGTTTGAAAT CCCTGTTGTTTGTATGAC
RM253 TCCTTCAAGAGTGCAAAACC GCATTGTCATGTCGAAGCC

图5

BC21基因在6号染色体上的精细定位"

表2

定位区间内基因及其推测功能"

基因名称Gene name 推测功能Putative function
LOC_Os06g09570 核仁GTP结合蛋白1 Nucleolar GTP-binding protein 1
LOC_Os06g09580 转座子蛋白 Transposon protein, putative
LOC_Os06g09600 表达蛋白 Expressed protein
LOC_Os06g09610 过氧化物还原酶 Peroxiredoxin
LOC_Os06g09620 表达蛋白 Expressed protein
LOC_Os06g09630 3-氧化酰基合酶 3-oxoacyl-synthase
LOC_Os06g09640 反转录转座子蛋白 Retrotransposon protein
LOC_Os06g09650 反转录转座子蛋白 Retrotransposon protein
[1] 王庭杰. 水稻茎组织构建与木质素代谢对抗倒伏的影响. 河南师范大学硕士学位论文, 河南新乡, 2015.
Wang T J. Effects of Stalk Tissue and Lignin Metabolism on the Lodging Resistance of Rice. MS Thesis of Henan Normal University, Xinxiang, Henan, China, 2015. (in Chinese with English abstract)
[2] Zhang R, Hu H Z, Wang Y M, Hu Z, Ren S F, Li J Y, He B Y, Wang Y T, Xia T, Chen P, Xie G S, Peng L C. A novel rice fragile culm 24 mutant encodes a UDP-glucose epimerase that affects cell wall properties and photosynthesis. J Exp Bot, 2020, 71: 2956-2969.
doi: 10.1093/jxb/eraa044 pmid: 32064495
[3] Kotake T, Aohara T, Hirano K, Sato A, Kaneko Y, Tsumuraya Y, Takatsuji H, Kawasaki S. Rice Brittle Culm 6 encodes a dominant negative form of CesA protein that perturbs cellulose synthesis in secondary cell walls. J Exp Bot, 2011, 62: 2053-2062.
doi: 10.1093/jxb/erq395
[4] Song X Q, Liu L F, Jiang Y J, Zhang B C, Gao Y P, Liu X L, Lin Q S, Ling H Q, Zhou Y H. Disruption of secondary wall cellulose biosynthesis alters cadmium translocation and tolerance in rice plants. Mol Plant, 2013, 3: 768-780.
[5] 李晓静, 徐多多, 徐益敏, 翟开恩, 杨窑龙, 潘建伟, 饶玉春. 水稻纤维素合酶催化亚基的编码基因BC88的表达分析. 中国水稻科学, 2015, 29: 126-134.
Li X J, Xu D D, Xu Y M, Cui K N, Yang Y L, Pan J W, Rao Y C. Expression of OsBC88, a rice cellulose synthase catalytic subunit gene. Chin J Rice Sci, 2015, 29: 126-134. (in Chinese with English abstract)
[6] Yan C J, Yan S, Zeng X H, Zhang Z Q, Gu M H. Fine mapping and isolation of Bc7(t), allelic to OsCesA4. J Genet Genom, 2007, 34: 1019-1027.
doi: 10.1016/S1673-8527(07)60115-5
[7] Zhang B C, Deng L W, Qian Q, Xiong G Y, Zeng D L, Li R, Guo L B, Li J Y, Zhou Y H. A missense mutation in the transmembrane domain of CESA4 affects protein abundance in the plasma membrane and results in abnormal cell wall biosynthesis in rice. Plant Mol Biol, 2009, 71: 509-524.
doi: 10.1007/s11103-009-9536-4 pmid: 19697141
[8] Li Y H, Qian Q, Zhou Y H, Yan M X, Sun L, Zhang M, Fu Z M, Wang Y H, Han B, Pang X M, Chen M S, Li J Y. BRITTLE CULM 1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants. Plant Cell, 2003, 15: 2020-2031.
doi: 10.1105/tpc.011775
[9] Hirano K, Kotake T, Kamihara K, Tsuna K, Aohara T, Kaneko Y, Takatsuji H, Tsumuraya Y, Kawasaki S. Rice BRITTLE CULM 3 (BC3) encodes a classical dynamin OsDRP2B essential for proper secondary cell wall synthesis. Planta, 2010, 232: 95-108.
doi: 10.1007/s00425-010-1145-6 pmid: 20369251
[10] Zhou Y H, Li S B, Qian Q, Zeng D L, Zhang M, Guo L B, Liu X L, Zhang B C, Deng L W, Liu X F, Luo G Z, Wang X J, Li J Y. BC10, a DUF266-containing and Golgi-located type II membrane protein, is required for cell-wall biosynthesis in rice (Oryza sativa L.). Plant J, 2009, 57: 446-462.
doi: 10.1111/tpj.2009.57.issue-3
[11] Zhang M, Zhang B C, Qian Q, Yu Y C, Li R, Zhang J W, Liu X L, Zeng D L, Li J Y, Zhou Y H. Brittle Culm 12, a dual-targeting kinesin-4 protein, controls cell-cycle progression and wall properties in rice. Plant J, 2010, 63: 312-328.
doi: 10.1111/tpj.2010.63.issue-2
[12] Zhang B C, Liu X L, Qian Q, Liu L F, Dong G J, Xiong G Y, Zeng D L, Zhou Y H. Golgi nucleotide sugar transporter modulates cell wall biosynthesis and plant growth in rice. Proc Natl Acad Sci USA, 2011, 108: 5110-5115.
doi: 10.1073/pnas.1016144108 pmid: 21383162
[13] Wu B, Zhang B C, Dai Y, Zhang L, Shang-Guan K K, Peng Y G, Zhou Y H, Zhu Z. Brittle Culm 15 encodes a membrane- associated chitinase-like protein required for cellulose biosynthesis in rice. Plant Physiol, 2012, 159: 1440-1452.
doi: 10.1104/pp.112.195529
[14] 许作鹏. 水稻茎秆强度相关性状QTL分析及基因克隆. 扬州大学博士学位论文, 江苏扬州, 2017.
Xu Z P. Mapping of QTLs and Cloning of Genes Related to the Culm Mechanical Strength in Rice (Oryza sativa L.). PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu, China, 2017. (in Chinese with English abstract)
[15] 靳振明, 平宝哲, 沈浩珺, 杜淮清, 李瑞乾, 朱璐, 张大兵, 袁政. 水稻脆秆突变体bc-s1的表型分析和基因定位. 植物学报, 2016, 51: 167-174.
doi: 10.11983/CBB15048
Jin Z M, Ping B Z, Shen H J, Du H Q, Li R Q, Zhu L, Zhang D B, Yuan Z. Phenotypic analysis and gene mapping of rice brittle culm mutant bc-s1. Chin Bull Bot, 2016, 51: 167-174. (in Chinese with English abstract)
[16] 王川丽, 王令强, 牟同敏. 水稻脆性突变体nbc(t)的主要特性和脆性基因的初步定位. 华中农业大学学报, 2012, 31(2): 159-164.
Wang C L, Wang L Q, Mou T M. Main characteristics of rice brittle mutant nbc(t) and preliminary localization of brittle genes. J Huazhong Agric Univ, 2012, 31(2): 159-164. (in Chinese with English abstract)
[17] Li P, Liu Y R, Tan W Q, Chen J, Zhu M J, Lyu Y, Liu Y S, Yu S C, Zhang W J, Cai H W. Brittle Culm 1 encodes a COBRA-Like protein involved in secondary cell wall cellulose biosynthesis in sorghum. Plant Cell Physiol, 2019, 60: 788-801.
doi: 10.1093/pcp/pcy246
[18] Aohara T, Kotake T, Kaneko Y, Takatsuji H, Tsumuraya Y, Kawasaki S. Rice BRITTLE CULM 5(BRITTLE NODE) is involved in secondary cell wall formation in the sclerenchyma tissue of nodes. Plant Cell Physiol, 2009, 50: 1886-1897.
doi: 10.1093/pcp/pcp133
[19] Wang Y, Ren Y L, Chen S H, Xu Y, Zhou K N, Zhang L, Ming M, Wu F Q, Lin Q B, Wang J L, Guo X P, Zhang X, Lei C L, Cheng Z J, Wan J M. BRITTLE CULM16 (BRITTLE NODE) is required for the formation of secondary cell walls in rice nodes. J Integr Agric, 2017, 16: 1286-1293.
doi: 10.1016/S2095-3119(16)61536-8
[20] De L G, Ferrari S, Giovannoni M, Mattei B, Cervone F. Cell wall traits that influence plant development, immunity, and bioconversion. Plant J, 2019, 97: 134-147.
[21] Li F C, Zhang M L, Guo K, Hu Z, Zhang R, Feng Y Q, Yi X Y, Zou W H, Wang L Q, Wu C Y, Tian J S, Lu T G, Xie G S, Peng L C. High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants. Plant Biotechnol J, 2015, 13: 514-525.
doi: 10.1111/pbi.12276 pmid: 25418842
[22] 赵小红, 白羿雄, 姚有华, 安立昆, 吴昆仑. 禾谷类作物茎秆特性与茎倒伏关系的研究. 植物生理学报, 2021, 57: 257-264.
Zhao X H, Bai Y X, Yao Y H, An L K, Wu K L. Research progress on the relationship between stem characteristics and crop stem lodging. Plant Physiol J, 2021, 57: 257-264. (in Chinese with English abstract)
doi: 10.1104/pp.57.2.257
[23] 姜鸿瑞, 叶亚峰, 何丹, 任艳, 杨阳, 谢建, 程维民, 陶亮之, 周利斌, 吴跃进, 刘斌美. 一个新的水稻脆秆突变体bc17的鉴定及基因定位. 作物学报, 2021, 47: 71-79.
doi: 10.3724/SP.J.1006.2021.02025
Jiang H R, Ye Y F, He D, Ren Y, Yang Y, Xie J, Cheng W M, Tao L Z, Zhou L B, Wu Y J, Liu B M. Identification and gene localization of a novel rice brittle culm mutant bc17. Acta Agron Sin, 2021, 47: 71-79. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.02025
[24] Ye Y F, Wang S X, Wu K, Ren Y, Jiang H R, Chen J F, Tao L Z, Fu X D, Liu B M, Wu Y J. A semi-dominant mutation in OsCESA9 improves salt tolerance and favors field straw decay traits by altering cell wall properties in rice. Rice, 2021, 14: 19.
doi: 10.1186/s12284-021-00457-0 pmid: 33595759
[25] Su Y J, Zhao G Q, Wei Z W, Yan C J, Liu S J. Mutation of cellulose synthase gene improves the nutritive value of rice straw. Asian-Aust J Anim Sci, 2012, 25: 800-805.
doi: 10.5713/ajas.2011.11409
[26] 陆荷微, 刘斌美, 陶亮之, 叶亚峰, 吴振宇, 范爽, 吴跃进, 王钰. 水稻脆茎突变体的主要性状比较研究. 杂交水稻, 2017, 32(5): 51-55.
Lu H W, Liu B M, Tao L Z, Ye Y F, Wu Z Y, Fan S, Wu Y J, Wang Y. Comparative studies of major characteristics of rice brittle culm mutants. Hybrid Rice, 2017, 32(5): 51-55. (in Chinese with English abstract)
[1] 林孝欣, 黄明江, 韦祎, 朱洪慧, 王子怡, 李忠成, 庄慧, 李彦羲, 李云峰, 陈锐. 水稻籽粒伸长突变体lgdp的鉴定与基因定位[J]. 作物学报, 2023, 49(6): 1699-1707.
[2] 田敏, 刘新春, 潘佳佳, 梁丽静, 董雷, 刘美池, 冯宗云. 大麦籽粒纤维素、半纤维素含量全基因组关联分析[J]. 作物学报, 2023, 49(6): 1726-1732.
[3] 丁杰荣, 马雅美, 潘发枝, 江立群, 黄文洁, 孙炳蕊, 张静, 吕树伟, 毛兴学, 于航, 李晨, 刘清. 泛素受体蛋白OsDSK2b负向调控水稻叶瘟和渗透胁迫抗性[J]. 作物学报, 2023, 49(6): 1466-1479.
[4] 何永明, 张芳. 生长素调控水稻颖花开放的效应研究[J]. 作物学报, 2023, 49(6): 1690-1698.
[5] 陶玥玥, 盛雪雯, 徐坚, 沈园, 王海候, 陆长婴, 沈明星. 长三角水稻-油菜周年两熟温光资源分配与利用特征[J]. 作物学报, 2023, 49(5): 1327-1338.
[6] 韦海敏, 陶伟科, 周燕, 闫飞宇, 李伟玮, 丁艳锋, 刘正辉, 李刚华. 硅素穗肥优化滨海盐碱地水稻矿质元素吸收分配提高耐盐性[J]. 作物学报, 2023, 49(5): 1339-1349.
[7] 唐文强, 张文龙, 朱晓乔, 董必正, 李勇成, 杨楠, 张耀, 王云月, 韩光煜. 多样性混合间栽对水稻根际细菌群落结构与功能的影响[J]. 作物学报, 2023, 49(4): 1111-1121.
[8] 张晨晖, 章岩, 李国辉, 杨子君, 查莹莹, 周驰燕, 许轲, 霍中洋, 戴其根, 郭保卫. 侧深施肥下水稻高产形成的根系形态及其生理变化特征[J]. 作物学报, 2023, 49(4): 1039-1051.
[9] 严昕, 项超, 刘荣, 李冠, 李孟伟, 李正丽, 宗绪晓, 杨涛. 基于BSA-seq技术对豌豆花色基因的精细定位[J]. 作物学报, 2023, 49(4): 1006-1015.
[10] 向思茜, 李儒香, 徐光益, 邓岢莉, 余金琎, 李苗苗, 杨正林, 凌英华, 桑贤春, 何光华, 赵芳明. 基于水稻长大粒染色体片段代换系Z66的粒型QTL的鉴定及其聚合分析[J]. 作物学报, 2023, 49(3): 731-743.
[11] 刘立军, 周沈琪, 刘昆, 张伟杨, 杨建昌. 水稻大穗形成及其调控的研究进展[J]. 作物学报, 2023, 49(3): 585-596.
[12] 朱晓彤, 叶亚峰, 郭均瑶, 杨惠杰, 王紫瑶, 詹玥, 吴跃进, 陶亮之, 马伯军, 陈析丰, 刘斌美. 水稻早衰基因ESL8的遗传与定位[J]. 作物学报, 2023, 49(3): 662-671.
[13] 杨晔, 孙琦, 邢欣欣, 张海涛, 赵志超, 程治军. 包穗突变体sui1-5鉴定及OsPSS1互作蛋白筛选[J]. 作物学报, 2023, 49(3): 597-607.
[14] 付景, 王亚, 杨文博, 王越涛, 李本银, 王付华, 王生轩, 白涛, 尹海庆. 干湿交替灌溉耦合施氮量对水稻籽粒灌浆生理和根系生理的影响[J]. 作物学报, 2023, 49(3): 808-820.
[15] 方娅婷, 任涛, 张顺涛, 周橡棋, 赵剑, 廖世鹏, 丛日环, 鲁剑巍. 氮磷钾肥对旱地和水田油菜产量及养分利用的影响差异[J]. 作物学报, 2023, 49(3): 772-783.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .