作物学报 ›› 2023, Vol. 49 ›› Issue (5): 1432-1444.doi: 10.3724/SP.J.1006.2023.24143
• 研究简报 • 上一篇
ZHANG Xiao-Hong(), PENG Qiong, YAN Zheng()
摘要:
为了获得甘薯耐盐转录组序列信息, 挖掘差异表达基因及其相关代谢途径, 本文以盐胁迫处理0 d、3 d和6 d的耐盐甘薯品种‘榕薯819’以及不耐盐甘薯品种‘榕薯910’的叶片为材料, 借助高通量测序技术进行转录组测序分析。结果表明, 2个品种共获得157,252条Unigenes, 平均组装长度为576 bp。其中有83,264条Unigenes在七大数据库中得到注释, 占总数的52.95%。NR注释分类结果显示, 在牵牛花(Ipomoea nil)中比对到同源序列的Unigenes最多, 共43,620条, 占总数的57.05%。Unigenes在KOG数据库中的注释主要富集在普通功能预测(8752个)、信号转导机制(5067个)以及翻译后修饰、蛋白转换、分子伴侣(4471个)中。差异表达分析显示, 在‘榕薯819’中, 盐处理3 d和6 d的样品差异表达基因数分别为323个和3752个, 共参与了33个GO功能分类项和302条KEGG代谢通路。在‘榕薯910’中, 差异表达基因数则分别为5554个和7395个, 共参与了50个GO功能分类项, 涉及了329条KEGG代谢通路。以部分差异表达基因的转录组数据为基础, 进行了表达量热图绘制。结果显示, 注释到淀粉和蔗糖代谢途径的7个差异表达β-葡萄糖苷酶基因均表现为在耐盐品种中上调, 在不耐盐品种中下调; 注释到Ca2+信号途径的7个类钙调素基因中, 有2个在耐盐品种中特异上调, 5个在不耐盐品种中特异下调。差异表达转录因子表达量热图显示, IbERF1仅在耐盐品种中特异表达, IbNAC3、IbNAC11、IbERF3和IbERF4仅在不耐盐品种中特异表达, 而IbNAC29在耐盐品种中下调表达, 在不耐盐品种中上调表达。综上分析, 甘薯耐盐转录组获得的Unigenes数量较大, 序列信息丰富, 盐胁迫下获得的差异表达基因及高丰度转录因子可能在甘薯抵御盐胁迫过程中发挥着重要作用。
[1] | 牛东玲, 王启基. 盐碱地治理研究进展. 土壤通报, 2002, 33: 449-455. |
Niu D L, Wang Q J. Research progress on saline-alkali field control. Chin J Soil Sci, 2002, 33: 449-455. (in Chinese with English abstract) | |
[2] | 王福琴. 甘薯对盐胁迫的生理响应及甜菜碱合成相关基因的克隆与表达. 山东大学硕士学位论文,山东济南, 2015. |
Wang F Q. Physiological Response to Salt Stress and Cloning, Expression of Betaine Biosynthesis Related Genes in Sweet Potato. MS Thesis of Shandong University, Jinan, Shandong, China, 2015. (in Chinese with English abstract) | |
[3] | 马箐, 于立峰, 孙宏丽, 唐琪, 王宝山, 杜希华. NaCl胁迫对不同甘薯品种体内离子分配的影响. 山东农业科学, 2012, 44(1): 43-46. |
Ma J, Yu L F, Sun H L, Tang Q, Wang B S, Du X H. Effect of NaCl stress on ion distribution in plants of different sweet potato varieties. Shandong Agric Sci, 2012, 44(1): 43-46. (in Chinese with English abstract) | |
[4] | 洪立洲, 邢锦城, 魏福友, 刘冲, 董静, 吴春. 滩涂地区不同种植密度下甘薯生长对盐渍土壤理化特性的影响. 湖南农业科学, 2018, (7): 52-55. |
Hong L Z, Xing J C, Wei F Y, Liu C, Dong J, Wu C. Effects of sweet potato growth on saline soil physicochemical properties under different planting densities in coastal beach. Hunan Agric Sci, 2018, (7): 52-55. (in Chinese with English abstract) | |
[5] | 王文婷, 侯夫云, 王庆美, 李爱贤, 郭钢, 张立明. 耐盐性甘薯品种的初步筛选. 山东农业科学, 2012, 44(11): 35-37. |
Wang W T, Hou F Y, Wang Q M, Li A X, Guo G, Zhang L M. Initial screening of sweet potato varieties with salt tolerance. Shandong Agric Sci, 2012, 44(11): 35-37 (in Chinese with English abstract). | |
[6] | 过晓明, 李强, 王欣, 马代夫. 盐胁迫对甘薯幼苗生理特性的影响. 江苏农业科学, 2011, 39(3): 107-109. |
Guo X M, Li Q, Wang X, Ma D F. Effects of salt stress on physiological characteristics of sweet potato seedlings. Jiangsu Agric Sci, 2011, 39(3): 107-109. (in Chinese) | |
[7] | 霍恺森, 成小威, 曹清河, 唐君, 朱国鹏, 陈艳丽. 甘薯近缘野生种马鞍藤对盐胁迫的生理生化响应特征. 江苏农业科学, 2019, 47(3): 94-98. |
Huo K S, Cheng X W, Cao Q H, Tang J, Zhu G P, Chen Y L. Physiological and biochemical responses of wild species of sweet potato [Ipomoea pes-caprae (L.) R. Brown] to salt stress. Jiangsu Agric Sci, 2019, 47(3): 94-98. (in Chinese) | |
[8] |
Wang L J, He S Z, Zhai H, Liu D G, Wang Y N, Liu Q C. Molecular cloning and functional characterization of a salt tolerance-associated gene IbNFU1 from sweet potato. J Integr Agric, 2013, 12: 27-35.
doi: 10.1016/S2095-3119(13)60202-6 |
[9] | 余静, 孟小庆, 娜菲莎·艾买提江, 李格, 张颖, 李淑清, 朱明库. 甘薯盐胁迫响应基因IbNAC14的克隆、生物信息学及表达模式分析. 四川农业大学学报, 2019, 37: 828-835. |
Yu J, Meng X Q, Amatjian N, Li G, Li G, Zhang Y, Li S Q, Zhu M K. Cloning, bioinformatics and expression analysis of salt-responsive IbNAC14 gene from sweet potato (Ipomoea batatas). J Sichuan Agric Univ, 2019, 37: 828-835. (in Chinese with English abstract) | |
[10] | 李格, 孟小庆, 李宗芸, 朱明库. 甘薯盐胁迫响应基因IbMYB3的表达特征及生物信息学分析. 植物学报, 2020, 55: 41-51. |
Li G, Meng X Q, Li Z Y, Zhu M K.Expression patterns and bioinformatic analyses of salt stress responsive gene IbMYB3 in Ipomoea batatas. Bull Bot, 2020, 55: 41-51. (in Chinese with English abstract) | |
[11] | 于聘飞, 王英, 葛芹玉. 高通量DNA测序技术及其应用进展. 南京晓庄学院学报, 2010, (3): 1-5. |
Yu P F, Wang Y, Ge Q Y. High-fluxed DNA sequencing technology and its application development. J Nanjing Xiaozhuang Univ, 2010, (3): 1-5. (in Chinese with English abstract) | |
[12] |
Martin J A, Wang Z. Next-generation transcriptome assembly. Nat Rev Genet, 2011, 12: 671-682.
doi: 10.1038/nrg3068 pmid: 21897427 |
[13] | 颜朗, 魏昌赫, 张义正. 甘薯‘徐薯18’转录组分析. 植物生理学报, 2017, 53: 772-780. |
Yan L, Wei C H, Zhang Y Z. Transcriptomic analyses in sweetpotato [Ipomoea batatas (L.) Lam. cv. ‘Xushu 18’]. Plant Physiol J, 2017, 53: 772-780. (in Chinese with English abstract)
doi: 10.1104/pp.53.5.772 |
|
[14] |
Wang Z Y, Fang B P, Chen J Y, Zhang X J, Luo Z X, Huang L F, Chen X L, Li Y J. De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweet potato (Ipomoea batatas). BMC Genomics, 2010, 11: 726.
doi: 10.1186/1471-2164-11-726 |
[15] | Tao X, Gu Y H, Wang H Y, Zheng W, Xiao L, Zhao C W, Zhang Y Z. Digital gene expression analysis based on integrated de novo transcriptome assembly of sweet potato [Ipomoea batatas (L.) Lam.]. PLoS One, 2012, 7: 36234. |
[16] | Tao X, Gu Y H, Jiang Y S, Zhang Y Z, Wang H Y. Transcriptome analysis to identify putative floral-specific genes and flowering regulatory-related genes of sweet potato. J Agric Chem Soc Jpn, 2013, 77: 2169-2174. |
[17] | Li R J, Zhai H, Kang C, Liu D G, He S Z, Liu Q C. De novo transcriptome sequencing of the orange-fleshed sweet potato and analysis of differentially expressed genes related to carotenoid biosynthesis. Int J Genomics, 2015, 2015: 843802. |
[18] |
Luo Y, Reid R, Freese D, Li C B, Watkins J, Shi H Z, Zhang H Y, Loraine A, Song B H. Salt tolerance response revealed by RNA-Seq in a diploid halophytic wild relative of sweet potato. Sci Rep, 2017, 7: 9624.
doi: 10.1038/s41598-017-09241-x pmid: 28852001 |
[19] |
Zhu H, Zhou Y Y, Zhai H, He S Z, Zhao N, Liu Q C. Transcriptome profiling reveals insights into the molecular mechanism of drought tolerance in sweet potato. J Integr Agric, 2019, 18: 9-23.
doi: 10.1016/S2095-3119(18)61934-3 |
[20] |
Arisha M H, Aboelnasr H, Ahmad M Q, Liu Y J, Tang W, Gao R F, Yan H, Kou M, Wang X, Zhang Y G, Li Q. Transcriptome sequencing and whole genome expression profiling of hexaploid sweet potato under salt stress. BMC Genomics, 2020, 21: 197.
doi: 10.1186/s12864-020-6524-1 |
[21] |
Grabherr M G, Haas B J, Yassour M, Levin J Z, Thompson D A, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q D, Chen Z H, Mauceli E, Hacohen N, Gnirke A, Rhind N, Palma F D, Birren B W, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol, 2011, 29: 644-652.
doi: 10.1038/nbt.1883 pmid: 21572440 |
[22] | Altschul S F, Madden T L, Zhang J, Zhang Z, Miller W, Lipman D J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997, 25: 3389-3402. |
[23] |
Xie C, Mao X, Huang J, Wu J, Dong S, Lei K, Ge G, Li C Y, Wei L. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res, 2011, 39: W316-W322.
doi: 10.1093/nar/gkr483 |
[24] |
Eddy S R. HMMER: profile HMMs for protein sequence analysis. Bioinformatics, 1998, 14: 755-763.
doi: 10.1093/bioinformatics/14.9.755 pmid: 9918945 |
[25] |
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol, 2010, 11: R106.
doi: 10.1186/gb-2010-11-10-r106 |
[26] |
Firon N, Labonte D, Villordon A, Kfir Y, Solis J, Lapis E, Perlman T S, Doron-Faigenboim A, Hetzroni A, Althan L. Transcriptional profiling of sweetpotato (Ipomoea batatas) roots indicates down-regulation of lignin biosynthesis and up-regulation of starch biosynthesis at an early stage of storage root formation. BMC Genomics, 2013, 14: 460-460.
doi: 10.1186/1471-2164-14-460 pmid: 23834507 |
[27] | 勾晓婉, 侯文倩, 平艳飞, 韩永华, 李宗芸. 甘薯及其野生近缘种的基因组测序研究进展. 江苏师范大学学报(自然科学版), 2020, 38(2): 52-54. |
Gou X W, Hou W Q, Ping Y F, Han Y H, Li Z Y. Research advance in genomic sequencing of sweetpotato and its wild relatives. J Jiangsu Norm Univ (Nat Sci Edn), 2020, 38(2): 52-54. (in Chinese with English abstract) | |
[28] |
张飞, 王艳秋, 朱凯, 张志鹏, 朱振兴, 卢峰, 邹剑秋. 不同耐盐性高粱在盐逆境下的比较转录组分析. 中国农业科学, 2019, 52: 4002-4015.
doi: 10.3864/j.issn.0578-1752.2019.22.006 |
Zhang F, Wang Y Q, Zhu K, Zhang Z P, Zhu Z X, Lu F, Zou J Q. Comparative transcriptome analysis of different salt tolerance sorghum (Sorghum bicolor L. Moench) under salt stress. Sci Agric Sin, 2019, 52: 4002-4015. (in Chinese with English abstract) | |
[29] | 来亚鹏, 刘刚, 王娟. 嗜热真菌β-葡萄糖苷酶基因克隆表达与调控的研究进展. 纤维素科学与技术, 2017, 25(2): 69-76. |
Lai Y P, Liu G, Wang J. Advances on gene cloning, expression and regulation of β-glucosidase from thermophilic fungi. J Cellul Sci Technol, 2017, 25(2): 69-76 (in Chinese with English abstract). | |
[30] | 谢欠影, 曹晟阳, 赵晨阳, 伊凯, 戴峰, 秦会发, 秦玉雪, 方蕾. 翅碱蓬响应高盐胁迫的分子机制研究. 大连海洋大学学报, 2019, 34(2): 160-167. |
Xie Q Y, Cao S Y, Zhao C Y, Yi K, Dai F, Qin H F, Qin Y X, Fang L. Study on the molecular mechanisms of Suaeda heteroptera in response to high salt stress. J Dalian Ocean Univ, 2019, 34(2): 160-167. (in Chinese with English abstract) | |
[31] | 杨秀, 许艳超, 杨芳芳, 蔡小彦, 侯宇清, 王玉红, 王星星, 王坤波, 刘方, 周忠丽. 棉花CML基因家族成员鉴定与功能分析. 棉花学报, 2019, 31: 307-318. |
Yang X, Xu Y C, Yang F F, Cai X Y, Hou Y Q, Wang Y H, Wang X X, Wang K B, Liu F, Zhou Z L. Identification and functional analysis of CML gene family in cotton. Cotton Sci, 2019, 31: 307-318. (in Chinese with English abstract) | |
[32] | Xu G Y, Rocha P, Wang M L, Xu M L, Cui Y C, Li L Y, Zhu Y X, Xia X J.A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta, 2011, 234: 47-59. |
[33] |
Liao Y, Zou H F, Wang H W, Zhang W K, Ma B, Zhang J S, Chen S Y. Soybean GmMYB76, GmMYB92, and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants. Cell Res, 2008, 18: 1047-1060.
doi: 10.1038/cr.2008.280 |
[34] |
Zhang G, Ming C, Li L, Xu Z S, Chen X P, Guo J M, Ma Y J. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot, 2009, 60: 3781-3796.
doi: 10.1093/jxb/erp214 |
[35] |
Seok H Y, Nguyen L V, Park H Y, Tarte V N, Ha J, Lee S Y, Moon Y H. Arabidopsis non-TZF gene AtC3H17 functions as a positive regulator in salt stress response. Biochem Biophys Res Commun, 2018, 498: 954-959.
doi: 10.1016/j.bbrc.2018.03.088 |
[36] | 蔡荣号, 李尉, 陈浩伟, 罗国伟, 戴浩然, 宋文雷, 伯晨. 异源表达玉米ZmWRKY114基因增强拟南芥对盐胁迫的敏感性. 安徽农业大学学报, 2019, 46(6): 145-152. |
Cai R H, Li W, Chen H W, Luo G W, Dai H R, Song W L, Bo C. The maize ZmWRKY114 gene negatively regulates salt stress tolerance in transgenic Arabidopsis. J Anhui Agric Univ, 2019, 46(6): 145-152. (in Chinese with English abstract) | |
[37] |
Liu Q L, Xu K D, Zhao L J, Pan Y Z, Jiang B B, Zhang H Q, Liu G L. Overexpression of a novel chrysanthemum NAC transcription factor gene enhances salt tolerance in tobacco. Biotechnol Lett, 2011, 33: 2073-2082.
doi: 10.1007/s10529-011-0659-8 |
[38] | 苏莹, 甄军波, 张曦, 王玉美, 华金平. 陆地棉转录因子基因GhC2H2的克隆与功能分析. 棉花学报, 2016, 28: 555-564. |
Su Y, Zhen J B, Zhang X, Wang Y M, Hua J P. Cloning and functional analysis of a transcription factor gene, GhC2H2, in upland cotton (Gossypium hirsutum L.). Cotton Sci, 2016, 28: 555-564. (in Chinese with English abstract) | |
[39] | Jiang H Y, Fan X F, Wen H F, Han C, Teng W J, Teng K, Yin S X. Functional characterization of Zoysia japonica ZjNAC3 gene in response to salt stress. Pratac Sci, 2021, 38: 1706-1714. |
[40] |
Wang L L, Hu Z L, Zhu M Q, Zhu Z G, Hu J T, Qanmber G, Chen G P. The abiotic stress-responsive nac transcription factor SlNAC11 is involved in drought and salt response in tomato (Solanum lycopersicum L.). Plant Cell Tissue Organ Cult, 2017, 129: 161-174.
doi: 10.1007/s11240-017-1167-x |
[41] |
Huang D B, Wang S G, Zhang B C, Shang-Guan K K, Shi Y Y, Zhang D M, Liu X L, Wu K, Xu Z P, Fu X D, Zhou Y H. A gibberellin-mediated DELLA-NAC signaling cascade regulates cellulose synthesis in rice. Plant Cell, 2015, 27: 1681-1696.
doi: 10.1105/tpc.15.00015 |
[42] | 康忱, 赵雪芳, 王鹏, 李亚栋, 田哲娟, 吴志明. 黄瓜纤维素合成酶CESA家族基因鉴定及非生物胁迫响应分析. 中国蔬菜, 2022, (3): 29-41. |
Kang C, Zhao X F, Wang P, Li Y D, Tian Z J, Wu Z M. Identification and abiotic stress response analysis of CESA family genes in cucumber (Cucumis sativus L.). China Veget, 2022, (3): 29-41. (in Chinese with English abstract) | |
[43] |
Han D G, Du M, Zhou Z Y, Wang S, Li T M, Han J X, Xu T L, Yang G H. An NAC transcription factor gene from Malus baccata, MbNAC29, increases cold and high salinity tolerance in Arabidopsis In Vitro Cell Dev Biol: Plant, 2020, 56: 588-599.
doi: 10.1007/s11627-020-10105-9 |
[44] | 覃利萍. 刚毛柽柳AP2ERF转录因子ThCRF1响应盐胁迫的调控机理研究. 新疆大学博士学位论文,新疆乌鲁木齐, 2018. |
Qin L P. Study on the Regulatory Mechanism of an AP2/ERF Transcription Factor, ThCRF1, in Response to Salt Stress in Tamarix hispida . PhD Dissertation of Xinjiang University, Urumqi, Xinjiang, China, 2018 (in Chinese with English abstract). | |
[45] |
Cheng M C, Liao P M, Kuo W W, Lin T P. The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress- responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol, 2013, 162: 1566-1582.
doi: 10.1104/pp.113.221911 |
[46] |
Ohta M, Matsui K, Hiratsu K, Shinshi H, Ohme-Takagi M. Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell, 2001, 13: 1959-1968.
doi: 10.1105/tpc.010127 pmid: 11487705 |
[47] |
Dong W, Ai X H, Xu F, Quan T Y, Liu S W, Xia G M. Isolation and characterization of a bread wheat salinity responsive ERF transcription factor. Gene, 2012, 511: 38-45.
doi: 10.1016/j.gene.2012.09.039 pmid: 23000066 |
[48] |
Fujimoto S Y, Ohta M, Usui A, Shinshi H, Ohme-Takagi M. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell, 2000, 12: 393-404.
doi: 10.1105/tpc.12.3.393 pmid: 10715325 |
[49] |
Yang Z, Tian L N, Latoszek-Green M, Brown D, Wu K Q. Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Mol Biol, 2005, 58: 585-596.
doi: 10.1007/s11103-005-7294-5 |
[1] | 梅玉琴, 刘意, 王崇, 雷剑, 朱国鹏, 杨新笋. 甘薯PHB基因家族的全基因组鉴定和表达分析[J]. 作物学报, 2023, 49(6): 1715-1725. |
[2] | 陈伊航, 唐朝臣, 张雄坚, 姚祝芳, 江炳志, 王章英. 基于表型性状和SSR分子标记构建甘薯核心种质[J]. 作物学报, 2023, 49(5): 1249-1261. |
[3] | 刘明, 范文静, 赵鹏, 靳容, 张强强, 朱晓亚, 王静, 李强. 甘薯耐低钾基因型苗期筛选及综合评价[J]. 作物学报, 2023, 49(4): 926-937. |
[4] | 吴世雨, 陈匡稷, 吕尊富, 徐锡明, 庞林江, 陆国权. 施氮量对甘薯块根膨大过程中淀粉含量及特性的影响[J]. 作物学报, 2023, 49(4): 1090-1101. |
[5] | 唐文强, 张文龙, 朱晓乔, 董必正, 李勇成, 杨楠, 张耀, 王云月, 韩光煜. 多样性混合间栽对水稻根际细菌群落结构与功能的影响[J]. 作物学报, 2023, 49(4): 1111-1121. |
[6] | 张文宣, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 利用CRISPR/Cas9技术突变BnaMPK6基因降低甘蓝型油菜的耐盐性[J]. 作物学报, 2023, 49(2): 321-331. |
[7] | 肖健, 韦星璇, 杨尚东, 卢文, 谭宏伟. 间作西瓜对甘蔗产量效益和根际土壤理化性质及微生态的影响[J]. 作物学报, 2023, 49(2): 526-538. |
[8] | 丁红, 张智猛, 徐扬, 张冠初, 郭庆, 秦斐斐, 戴良香. 氮素缓解花生干旱胁迫的生理和转录调控机制[J]. 作物学报, 2023, 49(1): 225-238. |
[9] | 吴旭莉, 吴正丹, 晚传芳, 杜叶, 高艳, 李賾萱, 王志前, 唐道彬, 王季春, 张凯. 甘薯糖转运蛋白IbSWEET15的功能研究[J]. 作物学报, 2023, 49(1): 129-139. |
[10] | 姚祝芳, 张雄坚, 杨义伶, 黄立飞, 陈新亮, 姚肖健, 罗忠霞, 陈景益, 王章英, 房伯平. 177份甘薯地方资源表型性状的遗传多样性分析[J]. 作物学报, 2022, 48(9): 2228-2241. |
[11] | 解黎明, 姜仲禹, 柳洪鹃, 韩俊杰, 刘本奎, 王晓陆, 史春余. 甘薯发根分枝期适宜土壤水分促进块根糖供应和块根形成的研究[J]. 作物学报, 2022, 48(8): 2080-2087. |
[12] | 郭家鑫, 鲁晓宇, 陶一凡, 郭慧娟, 闵伟. 棉花在盐碱胁迫下代谢产物及通路的分析[J]. 作物学报, 2022, 48(8): 2100-2114. |
[13] | 张天宇, 王越, 刘影, 周婷, 岳彩鹏, 黄进勇, 华营鹏. 油菜脯氨酸代谢基因家族的生物信息学分析与核心成员鉴定[J]. 作物学报, 2022, 48(8): 1977-1995. |
[14] | 陈璐, 周淑倩, 李永新, 陈刚, 陆国权, 杨虎清. 甘薯解偶联蛋白基因家族鉴定与表达分析[J]. 作物学报, 2022, 48(7): 1683-1696. |
[15] | 杨迎霞, 张冠, 王梦梦, 陆国清, 王倩, 陈锐. 基于高通量测序技术的转基因玉米GM11061分子特征研究[J]. 作物学报, 2022, 48(7): 1843-1850. |
|