欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (5): 1432-1444.doi: 10.3724/SP.J.1006.2023.24143

• 研究简报 • 上一篇    

盐胁迫下不同甘薯品种的转录组测序分析

张小红(), 彭琼, 鄢铮()   

  1. 福州市农业科学研究所, 福建福州 350018
  • 收稿日期:2022-06-16 接受日期:2022-10-11 出版日期:2023-05-12 网络出版日期:2022-10-17
  • 通讯作者: *鄢铮, E-mail: moosey@163.com
  • 作者简介:E-mail: ahjane@163.com
  • 基金资助:
    福建省科技厅引导性项目(2019N0037)

Transcriptome sequencing analysis of different sweet potato varieties under salt stress

ZHANG Xiao-Hong(), PENG Qiong, YAN Zheng()   

  1. Fuzhou Institute of Agricultural Sciences, Fuzhou 350018, Fujian, China
  • Received:2022-06-16 Accepted:2022-10-11 Published:2023-05-12 Published online:2022-10-17
  • Contact: *E-mail: moosey@163.com
  • Supported by:
    Guiding Project of Science and Technology Department of Fujian Province(2019N0037)

摘要:

为了获得甘薯耐盐转录组序列信息, 挖掘差异表达基因及其相关代谢途径, 本文以盐胁迫处理0 d、3 d和6 d的耐盐甘薯品种‘榕薯819’以及不耐盐甘薯品种‘榕薯910’的叶片为材料, 借助高通量测序技术进行转录组测序分析。结果表明, 2个品种共获得157,252条Unigenes, 平均组装长度为576 bp。其中有83,264条Unigenes在七大数据库中得到注释, 占总数的52.95%。NR注释分类结果显示, 在牵牛花(Ipomoea nil)中比对到同源序列的Unigenes最多, 共43,620条, 占总数的57.05%。Unigenes在KOG数据库中的注释主要富集在普通功能预测(8752个)、信号转导机制(5067个)以及翻译后修饰、蛋白转换、分子伴侣(4471个)中。差异表达分析显示, 在‘榕薯819’中, 盐处理3 d和6 d的样品差异表达基因数分别为323个和3752个, 共参与了33个GO功能分类项和302条KEGG代谢通路。在‘榕薯910’中, 差异表达基因数则分别为5554个和7395个, 共参与了50个GO功能分类项, 涉及了329条KEGG代谢通路。以部分差异表达基因的转录组数据为基础, 进行了表达量热图绘制。结果显示, 注释到淀粉和蔗糖代谢途径的7个差异表达β-葡萄糖苷酶基因均表现为在耐盐品种中上调, 在不耐盐品种中下调; 注释到Ca2+信号途径的7个类钙调素基因中, 有2个在耐盐品种中特异上调, 5个在不耐盐品种中特异下调。差异表达转录因子表达量热图显示, IbERF1仅在耐盐品种中特异表达, IbNAC3IbNAC11IbERF3IbERF4仅在不耐盐品种中特异表达, 而IbNAC29在耐盐品种中下调表达, 在不耐盐品种中上调表达。综上分析, 甘薯耐盐转录组获得的Unigenes数量较大, 序列信息丰富, 盐胁迫下获得的差异表达基因及高丰度转录因子可能在甘薯抵御盐胁迫过程中发挥着重要作用。

关键词: 甘薯, 盐胁迫, 转录组, 高通量测序

Abstract:

The objective of this study is to obtain the salt tolerant transcriptome sequence information of sweet potato, mine and identify the differentially expressed genes and their related metabolic pathways. Rongshu 819 (salt-tolerant variety) and Rongshu 910 (salt-sensitive variety) under salt treatment for 0, 3, and 6 days were conducted for the transcriptome by high-throughput sequencing. The results showed that a total of 157,252 Unigenes with an average length of 576 bp were obtained from the two varieties. The 83,264 Unigenes, accounting for 52.95% of the total Unigenes, were annotated in the 7 functional databases. NR annotation revealed that sweet potato Unigenes had the most homologous sequences in Ipomoea nil with a total of 43,620 accounting for 57.05%. The annotation of Unigenes in the KOG database is mainly concentrated in general functional prediction only (8752), signal transformation mechanisms (5067), and post translation modification, protein transformation, molecular chaperones (4471). The qRT-PCR indicated that, in Rongshu 819, the number of differentially expressed genes in 3 days and 6 days of salt treatment was 3752 and 807, respectively, which classified into 33 GO functional categories and 302 KEGG metabolic pathways. In Rongshu 910, the number of differentially expressed genes in 3 days and 6 days of salt treatment was 5554 and 7395, respectively, which classified into 50 GO functional categories and 329 KEGG metabolic pathways. The heat map was drawn based on the transcriptome data of partial differentially expressed genes. The result showed that 7 differentially expressed β-Glucosidase genes annotated into starch and sucrose metabolic pathway were up-regulated in salt-tolerant variety while down-regulated in salt-sensitive variety. Seven calmodulin-like genes annotated into Ca2+ signaling pathway were specifically expressed in two varieties, among which 2 were specifically up-regulated in salt-tolerant variety and 5 were specifically down-regulated in salt-sensitive variety. The expression heat map of differentially expressed transcription factors indicated that IbERF1 was only specifically expressed in salt-tolerant varieties, IbNAC3, IbNAC11, IbERF3, and IbERF4 were only specifically expressed in salt-sensitive varieties, while IbNAC29 was down-regulated in salt-tolerant varieties and up-regulated in salt-sensitive varieties. In conclusion, the number of Unigenes obtained from transcriptome of sweet potato under salt stress was large and the sequence information was rich. The differentially expressed genes and high abundance transcription factors may play an important role in sweet potato response to salt stress.

Key words: sweet potato, salt stress, transcriptome, high-throughput sequencing

表1

样品拼装结果统计"

项目 Item 单基因簇 Unigene 转录本 Transcript
序列总数 Total sequence number 157,252 211,688
所有序列长度之和 Total sequence length (bp) 90,649,057 160,878,660
平均长度 Average length (bp) 576 759
GC碱基的数量占比 Percent GC (%) 41.12 41.14
N50长度 N50 length (bp) 1064 1646
N90长度 N90 length (bp) 243 262

图1

组装所得转录本和Unigenes长度分布图"

表2

Unigene注释统计表"

注释数据库 Anno database 总计
Total
COG GO KEGG KOG Pfam Swissprot NR
注释的Unigene数(条)
Annotated number (Unigene)
20,446 32,635 44,445 42,285 38,863 53,196 76,583 83,264

图2

NR注释物种分类图"

图3

KOG功能注释分类图"

表3

差异表达基因数目统计表"

差异分组
DEG set
差异表达基因数量
DEG number
上调数量
Number of the up-regulated DEGs
下调数量
Number of the down-regulated DEGs
R1-1_R1-2_R1-3_vs_R2-1_R2-2_R2-3 323 206 117
R1-1_R1-2_R1-3_vs_R3-1_R3-2_R3-3 3752 1926 1826
T1-1_T1-2_T1-3_vs_T2-1_T2-2_T2-3 5554 2122 3432
T1-1_T1-2_T1-3_vs_T3-1_T3-2_T3-3 7395 3353 4042
R1-1_R1-2_R1-3_vs_T1-1_T1-2_T1-3 9352 5129 4223
R2-1_R2-2_R2-3_vs_T2-1_T2-2_T2-3 7538 3338 4200
R3-1_R3-2_R3-3_vs_T3-1_T3-2_T3-3 9903 4709 5194

图4

甘薯差异表达基因的GO富集分析 样品名称缩写同表3。1: 代谢过程; 2: 细胞过程; 3: 生物调节: 4: 定位; 5: 响应刺激; 6: 细胞成分组织或生物发生; 7; 信号; 8: 发展过程; 9: 多细胞生物过程; 10: 繁殖; 11: 生殖过程; 12: 解毒; 13: 多生物过程; 14: 生长; 15: 免疫系统过程; 16: 移动; 17: 细胞杀伤; 18: 节律过程; 19: 氮肥利用; 20: 细胞群增殖; 21: 色素沉着; 22: 碳利用; 23: 生物粘附; 24: 细胞; 25: 细胞部分; 26: 膜; 27: 细胞器; 28: 膜部分; 29: 细胞器部分; 30: 含蛋白质复合物; 31: 膜腔; 32: 胞外区; 33: 细胞连接; 34: 超分子络合物; 35: 病毒粒子; 36: 病毒粒子部分; 37: 细胞核; 38: 胞外区部分; 39: 催化活性; 40: 结合; 41: 转运活性; 42: 结构分子活性; 43: 转录调节活性; 44: 分子功能调节; 45: 翻译调节活性; 46: 抗氧化活性; 47: 分子转导活性; 48: 小分子传感器活性; 49: 营养贮存活性; 50: 分子载体活性; 51: 蛋白质标签; 52: 货物受体活性; 53: 蛋白质折叠伴侣; 54: 货物适配器活性。"

图5

甘薯差异表达基因的KEGG富集分析 样品名称缩写同表3。"

图6

甘薯部分差异表达基因表达量热图 样品名称缩写同表3。"

表4

差异表达转录因子数目统计表"

转录因子
Transcription factor
数量 Number
R1-1_R1-2_R1-3_vs_R2-1_R2-2_R2-3 R1-1_R1-2_R1-3_vs_R3-1_R3-2_R3-3 T1-1_T1-2_T1-3_vs_T2-1_
T2-2_T2-3
T1-1_T1-2_T1-3_vs_T3-1_
T3-2_T3-3
AP2/ERF 3 88 152 182
B3 5 63 114 131
bHLH 3 49 111 138
bZIP 3 39 51 76
C2C2 4 49 78 78
C2H2 6 75 96 126
C3H 14 97 128 166
GNAT 5 62 97 144
GRAS 6 32 73 92
HB 6 60 98 108
MYB 9 131 177 244
mTERF 12 55 79 99
NAC 12 69 117 133
SNF2 5 48 54 61
WRKY 8 38 113 149
其他 Other 65 675 1139 1376
总计 Total 166 1630 2677 3303

图7

甘薯部分差异表达转录因子表达量热图 样品名称缩写同表3。"

[1] 牛东玲, 王启基. 盐碱地治理研究进展. 土壤通报, 2002, 33: 449-455.
Niu D L, Wang Q J. Research progress on saline-alkali field control. Chin J Soil Sci, 2002, 33: 449-455. (in Chinese with English abstract)
[2] 王福琴. 甘薯对盐胁迫的生理响应及甜菜碱合成相关基因的克隆与表达. 山东大学硕士学位论文,山东济南, 2015.
Wang F Q. Physiological Response to Salt Stress and Cloning, Expression of Betaine Biosynthesis Related Genes in Sweet Potato. MS Thesis of Shandong University, Jinan, Shandong, China, 2015. (in Chinese with English abstract)
[3] 马箐, 于立峰, 孙宏丽, 唐琪, 王宝山, 杜希华. NaCl胁迫对不同甘薯品种体内离子分配的影响. 山东农业科学, 2012, 44(1): 43-46.
Ma J, Yu L F, Sun H L, Tang Q, Wang B S, Du X H. Effect of NaCl stress on ion distribution in plants of different sweet potato varieties. Shandong Agric Sci, 2012, 44(1): 43-46. (in Chinese with English abstract)
[4] 洪立洲, 邢锦城, 魏福友, 刘冲, 董静, 吴春. 滩涂地区不同种植密度下甘薯生长对盐渍土壤理化特性的影响. 湖南农业科学, 2018, (7): 52-55.
Hong L Z, Xing J C, Wei F Y, Liu C, Dong J, Wu C. Effects of sweet potato growth on saline soil physicochemical properties under different planting densities in coastal beach. Hunan Agric Sci, 2018, (7): 52-55. (in Chinese with English abstract)
[5] 王文婷, 侯夫云, 王庆美, 李爱贤, 郭钢, 张立明. 耐盐性甘薯品种的初步筛选. 山东农业科学, 2012, 44(11): 35-37.
Wang W T, Hou F Y, Wang Q M, Li A X, Guo G, Zhang L M. Initial screening of sweet potato varieties with salt tolerance. Shandong Agric Sci, 2012, 44(11): 35-37 (in Chinese with English abstract).
[6] 过晓明, 李强, 王欣, 马代夫. 盐胁迫对甘薯幼苗生理特性的影响. 江苏农业科学, 2011, 39(3): 107-109.
Guo X M, Li Q, Wang X, Ma D F. Effects of salt stress on physiological characteristics of sweet potato seedlings. Jiangsu Agric Sci, 2011, 39(3): 107-109. (in Chinese)
[7] 霍恺森, 成小威, 曹清河, 唐君, 朱国鹏, 陈艳丽. 甘薯近缘野生种马鞍藤对盐胁迫的生理生化响应特征. 江苏农业科学, 2019, 47(3): 94-98.
Huo K S, Cheng X W, Cao Q H, Tang J, Zhu G P, Chen Y L. Physiological and biochemical responses of wild species of sweet potato [Ipomoea pes-caprae (L.) R. Brown] to salt stress. Jiangsu Agric Sci, 2019, 47(3): 94-98. (in Chinese)
[8] Wang L J, He S Z, Zhai H, Liu D G, Wang Y N, Liu Q C. Molecular cloning and functional characterization of a salt tolerance-associated gene IbNFU1 from sweet potato. J Integr Agric, 2013, 12: 27-35.
doi: 10.1016/S2095-3119(13)60202-6
[9] 余静, 孟小庆, 娜菲莎·艾买提江, 李格, 张颖, 李淑清, 朱明库. 甘薯盐胁迫响应基因IbNAC14的克隆、生物信息学及表达模式分析. 四川农业大学学报, 2019, 37: 828-835.
Yu J, Meng X Q, Amatjian N, Li G, Li G, Zhang Y, Li S Q, Zhu M K. Cloning, bioinformatics and expression analysis of salt-responsive IbNAC14 gene from sweet potato (Ipomoea batatas). J Sichuan Agric Univ, 2019, 37: 828-835. (in Chinese with English abstract)
[10] 李格, 孟小庆, 李宗芸, 朱明库. 甘薯盐胁迫响应基因IbMYB3的表达特征及生物信息学分析. 植物学报, 2020, 55: 41-51.
Li G, Meng X Q, Li Z Y, Zhu M K.Expression patterns and bioinformatic analyses of salt stress responsive gene IbMYB3 in Ipomoea batatas. Bull Bot, 2020, 55: 41-51. (in Chinese with English abstract)
[11] 于聘飞, 王英, 葛芹玉. 高通量DNA测序技术及其应用进展. 南京晓庄学院学报, 2010, (3): 1-5.
Yu P F, Wang Y, Ge Q Y. High-fluxed DNA sequencing technology and its application development. J Nanjing Xiaozhuang Univ, 2010, (3): 1-5. (in Chinese with English abstract)
[12] Martin J A, Wang Z. Next-generation transcriptome assembly. Nat Rev Genet, 2011, 12: 671-682.
doi: 10.1038/nrg3068 pmid: 21897427
[13] 颜朗, 魏昌赫, 张义正. 甘薯‘徐薯18’转录组分析. 植物生理学报, 2017, 53: 772-780.
Yan L, Wei C H, Zhang Y Z. Transcriptomic analyses in sweetpotato [Ipomoea batatas (L.) Lam. cv. ‘Xushu 18’]. Plant Physiol J, 2017, 53: 772-780. (in Chinese with English abstract)
doi: 10.1104/pp.53.5.772
[14] Wang Z Y, Fang B P, Chen J Y, Zhang X J, Luo Z X, Huang L F, Chen X L, Li Y J. De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweet potato (Ipomoea batatas). BMC Genomics, 2010, 11: 726.
doi: 10.1186/1471-2164-11-726
[15] Tao X, Gu Y H, Wang H Y, Zheng W, Xiao L, Zhao C W, Zhang Y Z. Digital gene expression analysis based on integrated de novo transcriptome assembly of sweet potato [Ipomoea batatas (L.) Lam.]. PLoS One, 2012, 7: 36234.
[16] Tao X, Gu Y H, Jiang Y S, Zhang Y Z, Wang H Y. Transcriptome analysis to identify putative floral-specific genes and flowering regulatory-related genes of sweet potato. J Agric Chem Soc Jpn, 2013, 77: 2169-2174.
[17] Li R J, Zhai H, Kang C, Liu D G, He S Z, Liu Q C. De novo transcriptome sequencing of the orange-fleshed sweet potato and analysis of differentially expressed genes related to carotenoid biosynthesis. Int J Genomics, 2015, 2015: 843802.
[18] Luo Y, Reid R, Freese D, Li C B, Watkins J, Shi H Z, Zhang H Y, Loraine A, Song B H. Salt tolerance response revealed by RNA-Seq in a diploid halophytic wild relative of sweet potato. Sci Rep, 2017, 7: 9624.
doi: 10.1038/s41598-017-09241-x pmid: 28852001
[19] Zhu H, Zhou Y Y, Zhai H, He S Z, Zhao N, Liu Q C. Transcriptome profiling reveals insights into the molecular mechanism of drought tolerance in sweet potato. J Integr Agric, 2019, 18: 9-23.
doi: 10.1016/S2095-3119(18)61934-3
[20] Arisha M H, Aboelnasr H, Ahmad M Q, Liu Y J, Tang W, Gao R F, Yan H, Kou M, Wang X, Zhang Y G, Li Q. Transcriptome sequencing and whole genome expression profiling of hexaploid sweet potato under salt stress. BMC Genomics, 2020, 21: 197.
doi: 10.1186/s12864-020-6524-1
[21] Grabherr M G, Haas B J, Yassour M, Levin J Z, Thompson D A, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q D, Chen Z H, Mauceli E, Hacohen N, Gnirke A, Rhind N, Palma F D, Birren B W, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol, 2011, 29: 644-652.
doi: 10.1038/nbt.1883 pmid: 21572440
[22] Altschul S F, Madden T L, Zhang J, Zhang Z, Miller W, Lipman D J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997, 25: 3389-3402.
[23] Xie C, Mao X, Huang J, Wu J, Dong S, Lei K, Ge G, Li C Y, Wei L. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res, 2011, 39: W316-W322.
doi: 10.1093/nar/gkr483
[24] Eddy S R. HMMER: profile HMMs for protein sequence analysis. Bioinformatics, 1998, 14: 755-763.
doi: 10.1093/bioinformatics/14.9.755 pmid: 9918945
[25] Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol, 2010, 11: R106.
doi: 10.1186/gb-2010-11-10-r106
[26] Firon N, Labonte D, Villordon A, Kfir Y, Solis J, Lapis E, Perlman T S, Doron-Faigenboim A, Hetzroni A, Althan L. Transcriptional profiling of sweetpotato (Ipomoea batatas) roots indicates down-regulation of lignin biosynthesis and up-regulation of starch biosynthesis at an early stage of storage root formation. BMC Genomics, 2013, 14: 460-460.
doi: 10.1186/1471-2164-14-460 pmid: 23834507
[27] 勾晓婉, 侯文倩, 平艳飞, 韩永华, 李宗芸. 甘薯及其野生近缘种的基因组测序研究进展. 江苏师范大学学报(自然科学版), 2020, 38(2): 52-54.
Gou X W, Hou W Q, Ping Y F, Han Y H, Li Z Y. Research advance in genomic sequencing of sweetpotato and its wild relatives. J Jiangsu Norm Univ (Nat Sci Edn), 2020, 38(2): 52-54. (in Chinese with English abstract)
[28] 张飞, 王艳秋, 朱凯, 张志鹏, 朱振兴, 卢峰, 邹剑秋. 不同耐盐性高粱在盐逆境下的比较转录组分析. 中国农业科学, 2019, 52: 4002-4015.
doi: 10.3864/j.issn.0578-1752.2019.22.006
Zhang F, Wang Y Q, Zhu K, Zhang Z P, Zhu Z X, Lu F, Zou J Q. Comparative transcriptome analysis of different salt tolerance sorghum (Sorghum bicolor L. Moench) under salt stress. Sci Agric Sin, 2019, 52: 4002-4015. (in Chinese with English abstract)
[29] 来亚鹏, 刘刚, 王娟. 嗜热真菌β-葡萄糖苷酶基因克隆表达与调控的研究进展. 纤维素科学与技术, 2017, 25(2): 69-76.
Lai Y P, Liu G, Wang J. Advances on gene cloning, expression and regulation of β-glucosidase from thermophilic fungi. J Cellul Sci Technol, 2017, 25(2): 69-76 (in Chinese with English abstract).
[30] 谢欠影, 曹晟阳, 赵晨阳, 伊凯, 戴峰, 秦会发, 秦玉雪, 方蕾. 翅碱蓬响应高盐胁迫的分子机制研究. 大连海洋大学学报, 2019, 34(2): 160-167.
Xie Q Y, Cao S Y, Zhao C Y, Yi K, Dai F, Qin H F, Qin Y X, Fang L. Study on the molecular mechanisms of Suaeda heteroptera in response to high salt stress. J Dalian Ocean Univ, 2019, 34(2): 160-167. (in Chinese with English abstract)
[31] 杨秀, 许艳超, 杨芳芳, 蔡小彦, 侯宇清, 王玉红, 王星星, 王坤波, 刘方, 周忠丽. 棉花CML基因家族成员鉴定与功能分析. 棉花学报, 2019, 31: 307-318.
Yang X, Xu Y C, Yang F F, Cai X Y, Hou Y Q, Wang Y H, Wang X X, Wang K B, Liu F, Zhou Z L. Identification and functional analysis of CML gene family in cotton. Cotton Sci, 2019, 31: 307-318. (in Chinese with English abstract)
[32] Xu G Y, Rocha P, Wang M L, Xu M L, Cui Y C, Li L Y, Zhu Y X, Xia X J.A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta, 2011, 234: 47-59.
[33] Liao Y, Zou H F, Wang H W, Zhang W K, Ma B, Zhang J S, Chen S Y. Soybean GmMYB76, GmMYB92, and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants. Cell Res, 2008, 18: 1047-1060.
doi: 10.1038/cr.2008.280
[34] Zhang G, Ming C, Li L, Xu Z S, Chen X P, Guo J M, Ma Y J. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot, 2009, 60: 3781-3796.
doi: 10.1093/jxb/erp214
[35] Seok H Y, Nguyen L V, Park H Y, Tarte V N, Ha J, Lee S Y, Moon Y H. Arabidopsis non-TZF gene AtC3H17 functions as a positive regulator in salt stress response. Biochem Biophys Res Commun, 2018, 498: 954-959.
doi: 10.1016/j.bbrc.2018.03.088
[36] 蔡荣号, 李尉, 陈浩伟, 罗国伟, 戴浩然, 宋文雷, 伯晨. 异源表达玉米ZmWRKY114基因增强拟南芥对盐胁迫的敏感性. 安徽农业大学学报, 2019, 46(6): 145-152.
Cai R H, Li W, Chen H W, Luo G W, Dai H R, Song W L, Bo C. The maize ZmWRKY114 gene negatively regulates salt stress tolerance in transgenic Arabidopsis. J Anhui Agric Univ, 2019, 46(6): 145-152. (in Chinese with English abstract)
[37] Liu Q L, Xu K D, Zhao L J, Pan Y Z, Jiang B B, Zhang H Q, Liu G L. Overexpression of a novel chrysanthemum NAC transcription factor gene enhances salt tolerance in tobacco. Biotechnol Lett, 2011, 33: 2073-2082.
doi: 10.1007/s10529-011-0659-8
[38] 苏莹, 甄军波, 张曦, 王玉美, 华金平. 陆地棉转录因子基因GhC2H2的克隆与功能分析. 棉花学报, 2016, 28: 555-564.
Su Y, Zhen J B, Zhang X, Wang Y M, Hua J P. Cloning and functional analysis of a transcription factor gene, GhC2H2, in upland cotton (Gossypium hirsutum L.). Cotton Sci, 2016, 28: 555-564. (in Chinese with English abstract)
[39] Jiang H Y, Fan X F, Wen H F, Han C, Teng W J, Teng K, Yin S X. Functional characterization of Zoysia japonica ZjNAC3 gene in response to salt stress. Pratac Sci, 2021, 38: 1706-1714.
[40] Wang L L, Hu Z L, Zhu M Q, Zhu Z G, Hu J T, Qanmber G, Chen G P. The abiotic stress-responsive nac transcription factor SlNAC11 is involved in drought and salt response in tomato (Solanum lycopersicum L.). Plant Cell Tissue Organ Cult, 2017, 129: 161-174.
doi: 10.1007/s11240-017-1167-x
[41] Huang D B, Wang S G, Zhang B C, Shang-Guan K K, Shi Y Y, Zhang D M, Liu X L, Wu K, Xu Z P, Fu X D, Zhou Y H. A gibberellin-mediated DELLA-NAC signaling cascade regulates cellulose synthesis in rice. Plant Cell, 2015, 27: 1681-1696.
doi: 10.1105/tpc.15.00015
[42] 康忱, 赵雪芳, 王鹏, 李亚栋, 田哲娟, 吴志明. 黄瓜纤维素合成酶CESA家族基因鉴定及非生物胁迫响应分析. 中国蔬菜, 2022, (3): 29-41.
Kang C, Zhao X F, Wang P, Li Y D, Tian Z J, Wu Z M. Identification and abiotic stress response analysis of CESA family genes in cucumber (Cucumis sativus L.). China Veget, 2022, (3): 29-41. (in Chinese with English abstract)
[43] Han D G, Du M, Zhou Z Y, Wang S, Li T M, Han J X, Xu T L, Yang G H. An NAC transcription factor gene from Malus baccata, MbNAC29, increases cold and high salinity tolerance in Arabidopsis In Vitro Cell Dev Biol: Plant, 2020, 56: 588-599.
doi: 10.1007/s11627-020-10105-9
[44] 覃利萍. 刚毛柽柳AP2ERF转录因子ThCRF1响应盐胁迫的调控机理研究. 新疆大学博士学位论文,新疆乌鲁木齐, 2018.
Qin L P. Study on the Regulatory Mechanism of an AP2/ERF Transcription Factor, ThCRF1, in Response to Salt Stress in Tamarix hispida . PhD Dissertation of Xinjiang University, Urumqi, Xinjiang, China, 2018 (in Chinese with English abstract).
[45] Cheng M C, Liao P M, Kuo W W, Lin T P. The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress- responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol, 2013, 162: 1566-1582.
doi: 10.1104/pp.113.221911
[46] Ohta M, Matsui K, Hiratsu K, Shinshi H, Ohme-Takagi M. Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell, 2001, 13: 1959-1968.
doi: 10.1105/tpc.010127 pmid: 11487705
[47] Dong W, Ai X H, Xu F, Quan T Y, Liu S W, Xia G M. Isolation and characterization of a bread wheat salinity responsive ERF transcription factor. Gene, 2012, 511: 38-45.
doi: 10.1016/j.gene.2012.09.039 pmid: 23000066
[48] Fujimoto S Y, Ohta M, Usui A, Shinshi H, Ohme-Takagi M. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell, 2000, 12: 393-404.
doi: 10.1105/tpc.12.3.393 pmid: 10715325
[49] Yang Z, Tian L N, Latoszek-Green M, Brown D, Wu K Q. Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Mol Biol, 2005, 58: 585-596.
doi: 10.1007/s11103-005-7294-5
[1] 梅玉琴, 刘意, 王崇, 雷剑, 朱国鹏, 杨新笋. 甘薯PHB基因家族的全基因组鉴定和表达分析[J]. 作物学报, 2023, 49(6): 1715-1725.
[2] 陈伊航, 唐朝臣, 张雄坚, 姚祝芳, 江炳志, 王章英. 基于表型性状和SSR分子标记构建甘薯核心种质[J]. 作物学报, 2023, 49(5): 1249-1261.
[3] 刘明, 范文静, 赵鹏, 靳容, 张强强, 朱晓亚, 王静, 李强. 甘薯耐低钾基因型苗期筛选及综合评价[J]. 作物学报, 2023, 49(4): 926-937.
[4] 吴世雨, 陈匡稷, 吕尊富, 徐锡明, 庞林江, 陆国权. 施氮量对甘薯块根膨大过程中淀粉含量及特性的影响[J]. 作物学报, 2023, 49(4): 1090-1101.
[5] 唐文强, 张文龙, 朱晓乔, 董必正, 李勇成, 杨楠, 张耀, 王云月, 韩光煜. 多样性混合间栽对水稻根际细菌群落结构与功能的影响[J]. 作物学报, 2023, 49(4): 1111-1121.
[6] 张文宣, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 利用CRISPR/Cas9技术突变BnaMPK6基因降低甘蓝型油菜的耐盐性[J]. 作物学报, 2023, 49(2): 321-331.
[7] 肖健, 韦星璇, 杨尚东, 卢文, 谭宏伟. 间作西瓜对甘蔗产量效益和根际土壤理化性质及微生态的影响[J]. 作物学报, 2023, 49(2): 526-538.
[8] 丁红, 张智猛, 徐扬, 张冠初, 郭庆, 秦斐斐, 戴良香. 氮素缓解花生干旱胁迫的生理和转录调控机制[J]. 作物学报, 2023, 49(1): 225-238.
[9] 吴旭莉, 吴正丹, 晚传芳, 杜叶, 高艳, 李賾萱, 王志前, 唐道彬, 王季春, 张凯. 甘薯糖转运蛋白IbSWEET15的功能研究[J]. 作物学报, 2023, 49(1): 129-139.
[10] 姚祝芳, 张雄坚, 杨义伶, 黄立飞, 陈新亮, 姚肖健, 罗忠霞, 陈景益, 王章英, 房伯平. 177份甘薯地方资源表型性状的遗传多样性分析[J]. 作物学报, 2022, 48(9): 2228-2241.
[11] 解黎明, 姜仲禹, 柳洪鹃, 韩俊杰, 刘本奎, 王晓陆, 史春余. 甘薯发根分枝期适宜土壤水分促进块根糖供应和块根形成的研究[J]. 作物学报, 2022, 48(8): 2080-2087.
[12] 郭家鑫, 鲁晓宇, 陶一凡, 郭慧娟, 闵伟. 棉花在盐碱胁迫下代谢产物及通路的分析[J]. 作物学报, 2022, 48(8): 2100-2114.
[13] 张天宇, 王越, 刘影, 周婷, 岳彩鹏, 黄进勇, 华营鹏. 油菜脯氨酸代谢基因家族的生物信息学分析与核心成员鉴定[J]. 作物学报, 2022, 48(8): 1977-1995.
[14] 陈璐, 周淑倩, 李永新, 陈刚, 陆国权, 杨虎清. 甘薯解偶联蛋白基因家族鉴定与表达分析[J]. 作物学报, 2022, 48(7): 1683-1696.
[15] 杨迎霞, 张冠, 王梦梦, 陆国清, 王倩, 陈锐. 基于高通量测序技术的转基因玉米GM11061分子特征研究[J]. 作物学报, 2022, 48(7): 1843-1850.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .