欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (6): 1715-1725.doi: 10.3724/SP.J.1006.2023.24142

• 研究简报 • 上一篇    下一篇

甘薯PHB基因家族的全基因组鉴定和表达分析

梅玉琴1,2,**(), 刘意1,**(), 王崇2,3, 雷剑2, 朱国鹏1,*(), 杨新笋2,*()   

  1. 1海南大学园艺学院/海南省热带园艺作物品质调控重点实验室, 海南海口 570228
    2湖北省农业科学院粮食作物研究所, 湖北武汉 430064
    3长江大学农学院, 湖北荆州 434025
  • 收稿日期:2022-06-16 接受日期:2022-10-11 出版日期:2023-06-12 网络出版日期:2022-10-21
  • 通讯作者: *朱国鹏, E-mail: guopengzhu@163.com;杨新笋, E-mail: yangxins013@163.com
  • 作者简介:梅玉琴, E-mail: 20095131210148@hainanu.edu.cn;
    刘意, E-mail: 15549421602@163.com第一联系人:**同等贡献
  • 基金资助:
    财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-10-C13-2021);国家重点研发计划项目“双子叶杂粮抗性种质创制”(2019YFD1001303-4);湖北省农业科技创新中心湖北省农科院领军人才培养计划项目(L2018005);湖北省重点研发计划项目“中贝鄂薯系列新品种与新技术示范”(2020BHB024)

Genome-wide identification and expression analysis of PHB gene family in sweet potato

MEI Yu-Qin1,2,**(), LIU Yi1,**(), WANG Chong2,3, LEI Jian2, ZHU Guo-Peng1,*(), YANG Xin-Sun2,*()   

  1. 1Horticulture College, Hainan University/Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province, Haikou 570228, Hainan, China
    2Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China
    3College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
  • Received:2022-06-16 Accepted:2022-10-11 Published:2023-06-12 Published online:2022-10-21
  • Contact: *E-mail: guopengzhu@163.com;E-mail: yangxins013@163.com
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-10-C13-2021);National Key Research and Development Program of China “Creation of Resistant Germplasm for Dicotyledonous Grains”(2019YFD1001303-4);Leading Talent Training Plan of Hubei Academy of Agricultural Sciences(L2018005);Hubei Province Key Research and Development Program Project “China and Benin Eshu Series New Varieties and New Technology Demonstration”(2020BHB024)

摘要:

蛋白质抑制素(prohibitin, PHB)是在原核生物到真核生物中发现的含有SPFH结构域的蛋白质。植物PHB基因家族参与多种不同生物过程的重要功能, 包括生长发育以及对生物和非生物胁迫的响应。目前PHB蛋白在拟南芥、水稻、玉米、大豆、番茄和陆地棉等多种植物中被鉴定。但对甘薯中PHB家族的系统分析仍未确定。本研究鉴定出甘薯11个PHB基因, 且对这些保守的蛋白质基序和基因结构的分析显示它们在系统发育亚群中具有高度的保守性。此外, 启动子区域预测出与多种激素调节及胁迫相关的顺式作用元件, 同时研究发现IbPHB基因在植物不同部位及受到不同的非生物胁迫时的表达模式存在差异。本研究系统分析了甘薯中IbPHB基因的一般特性, 为甘薯及其他植物中PHB基因的功能特性研究提供了理论基础。

关键词: 甘薯, PHB基因家族, 系统进化, 生物信息学, 表达分析

Abstract:

The prohibitins (PHB) are SPFH domain-containing proteins found in the prokaryotes to eukaryotes. Plant PHB gene family is involved in many important functions in a variety of different biological processes, including growth and development and responses to biotic and abiotic stresses. At present, PHB proteins have been identified in Arabidopsis, rice, maize, soybean, tomato, upland cotton, and other plants. However, the systematic analysis of PHB family in sweet potato is still uncertain. In this study, 11 PHB genes in sweet potato were identified, and the analysis of these conserved protein motifs and gene structures showed that they were highly conserved in phylogenetic subgroups. In addition, the cis-acting elements related to various hormone regulation and stress were predicted in the promoter region and the relative expression patterns of IbPHB genes were different in different parts of plants and under different abiotic stresses. This study systematically analyzed the general characteristics of IbPHB gene in sweet potato, and provided a theoretical basis for the study of functional characteristics of PHB gene in sweet potato and other plants.

Key words: sweet potato, PHB gene family, phylogenetic evolution, bioinformatics, the relative expression level

表1

试验所用引物"

引物用途
Primer function
引物名称
Primer name
引物序列Primer sequence
正向引物序列
Forward sequence (5°-3°)
反向引物序列
Reverse sequence (5°-3°)
qRT-PCR 扩增
The qRT-PCR
amplification
IbPHB1 CACGTGTCTGCTTTGGTTCG TGCTGAGCAACCTGCTTTTG
IbPHB2 CTTTGACATTCGCACCAGGC GCACCCGGAGAGTGAGATTC
IbPHB3 GTGGAGAAATGGGGTCGGTT ACGTCCAGAGAGCAGATCCT
IbPHB4 CCACCGCTTCTTCTCCCATT AGTCATGCCTGGAGCTAGGA
IbPHB5 GTCTTCGACGTTTCTCCGGT TGGCGTACTTCAAGAGGCTG
IbPHB6 TCTGGCGAAGAAGAAGGCTG CTCTGCATCTCTAAGCGCCA
IbPHB7 TGCTGCTGCAAGACTTAGGG TTTGATTCCGCTTCCCCCTC
IbPHB8 AGTATAACGCCAGCCAGCTC GTTGAAGTTAGCCGCCCTCT
IbPHB9 GGTGACTCCTTCGCTGTCAA CCTCCTCTCCAGTAGACCCC
IbPHB10 GGCAAGCTGCGAATGAGAAG CGCGAGGTACTTGGACTCTG
IbPHB11 ATGAAGGAAATTGGCGCTGC GATGGTCAGACTGGGAAGCC
内参基因
Internal reference genes
β-Actin AGCAGCATGAAGATTAAGGTTGTAGCAC TGGAAAATTAGAAGCACTTCCTGTGAAC

表2

甘薯PHB基因家族"

基因名称 Gene name 基因编号Gene ID 染色体定位
Chromosome
location
氨基酸
长度
Amino acid length
等电点Isoelectric
point
相对分子量Molecular
weight (kD)
不稳定指数Instability index 脂溶系数 Aliphatic index 亲水性
平均值
Grand average of
hydropathicity
亚细胞定位
Subcellular
localization
IbPHB1 g1330.t1 LG1(+): 8004568-8006394 277 6.55 30,473.85 40.46 98.59 -0.072 线粒体Mitochondrion
IbPHB2 g1344.t1 LG1 (-): 8093622-8097050 276 8.77 30,402.86 45.33 98.95 -0.106 线粒体Mitochondrion
IbPHB3 g1611.t1 LG1 (+): 10011048-10014530 314 5.38 34,754.86 30.67 91.59 -0.129 线粒体Mitochondrion
基因名称 Gene name 基因编号Gene ID 染色体定位
Chromosome
location
氨基酸
长度
Amino acid length
等电点Isoelectric
point
相对分子量Molecular
weight (kD)
不稳定指数Instability index 脂溶系数 Aliphatic index 亲水性
平均值
Grand average of
hydropathicity
亚细胞定位
Subcellular
localization
IbPHB4 g20708.t1 LG5 (+): 29636330-29640330 400 8.89 43,335.23 46.92 90.35 -0.314 线粒体Mitochondrion
细胞核Nucleus
IbPHB5 g22098.t1 LG6 (-): 9204364-9206354 474 5.57 52,238.60 26.20 89.01 -0.343 细胞核Nucleus
IbPHB6 g22144.t1 LG6 (+): 9498264-9500186 446 5.40 49,012.72 27.04 86.95 -0.388 细胞核Nucleus
IbPHB7 g30111.t1 LG7 (+): 34852091-34854904 286 5.30 31,314.79 37.48 93.11 -0.115 线粒体Mitochondrion
IbPHB8 g30789.t1 LG8 (+): 2906392-2910014 283 9.23 31,632.31 36.05 101.38 -0.113 线粒体Mitochondrion
IbPHB9 g47367.t1 LG12 (+): 3383794-3389526 313 6.57 35,302.44 38.84 82.62 -0.401 细胞质Cytoplasm
线粒体Mitochondrion
细胞核Nucleus
IbPHB10 g53565.t1 LG13 (-): 17737704-17740759 287 6.26 31,728.35 23.91 94.81 -0.197 线粒体Mitochondrion
IbPHB11 g59949.t1 LG15 (+): 555231-558804 277 5.84 30,569.89 26.37 93.65 -0.200 线粒体Mitochondrion

图1

甘薯和拟南芥的PHB基因家族蛋白系统发育树"

图2

甘薯PHB基因家族在染色体上的分布"

图3

甘薯PHB基因家族进化树与基因结构 A: 甘薯PHB家族基因系统进化树; B: IbPHB保守基序; C: 保守结构域分布。"

图4

甘薯PHB基因家族启动子预测"

图5

IbPHB基因家族的组织特异性表达分析 图中标以不同字母表示数据间在0.05概率水平差异显著。"

图6

IbPHB基因家族响应高盐胁迫表达分析 图中标以不同字母表示数据间在0.05概率水平差异显著。"

图7

IbPHB基因家族响应干旱胁迫表达分析 图中标以不同字母表示数据间在0.05概率水平差异显著。"

[1] Duncan T B, Maja B H, Stephen M R. The SPFH domain- containing proteins: more than lipid raft markers. Trends Cell Biol, 2007, 17: 394-402.
doi: 10.1016/j.tcb.2007.06.005
[2] Morrow I C, Parton R G. Flotillins and the PHB domain protein family: rafts, worms and anaesthetics. Traffic, 2005, 6: 725-740.
doi: 10.1111/j.1600-0854.2005.00318.x pmid: 16101677
[3] Di C, Xu W Y, Su Z, Yuan J. Comparative genome analysis of PHB gene family reveals deep evolutionary origins and diverse gene function. BMC Bioinf, 2010, 11: S22.
[4] McClung J K, Danner D B, Stewart D A, Smith J R, Schneider E L, Lumpkin C K, Dell’Orco R T, Nuell M J. Isolation of a cDNA that hybrid selects antiproliferative mRNA from rat liver. Biochem Biophys Res Commun, 1989, 164: 1316-1322.
doi: 10.1016/0006-291X(89)91813-5
[5] Sato T, Sakamoto T, Takita K, Saito H, Okui K, Nakamura Y. The human prohibitin (PHB) gene family and its somatic mutations in human tumors. Genomics, 1993, 17: 762-764.
doi: 10.1006/geno.1993.1402 pmid: 8244394
[6] 黄浩浩. PHB基因对胶质瘤干细胞的调控研究. 中国人民解放军军事医学科学院硕士学位论文, 北京, 2017.
Huang H H. The Roles of PHB on the Regulation of Glioma Stem Cell. MS Thesis of PLA Academy of Military Medical Sciences, Beijing, China, 2017. (in Chinese with English abstract)
[7] Wu Y W, Yang S H, Hwangbo M, Chu K H. Analysis of Zobellella denitrificans ZD1 draft genome: genes and gene clusters responsible for high polyhydroxybutyrate (PHB) production from glycerol under saline conditions and its CRISPR-Cas system. PLoS One, 2019, 14: e0222143.
[8] Van Aken O, Pecenková T, Van De Cotte B, De Rycke R, Eeckhout D, Fromm H, De Jaeger G, Witters E, Beemster G T S, Inzé D, Van Breusegem F. Mitochondrial type-I prohibitins of Arabidopsis thaliana are required for supporting proficient meristem development. Plant J, 2007, 52: 850-864.
doi: 10.1111/tpj.2007.52.issue-5
[9] Ahn C S, Lee J H, Reum H A, Kim W T, Pai H S. Prohibitin is involved in mitochondrial biogenesis in plants. Plant J, 2006, 46: 658-667.
doi: 10.1111/j.1365-313X.2006.02726.x pmid: 16640602
[10] Christians M J, Larsen P B. Mutational loss of the prohibitin AtPHB3 results in an extreme constitutive ethylene response phenotype coupled with partial loss of ethylene-inducible gene expression in Arabidopsis seedlings. J Exp Bot, 2007, 58: 2237-2248.
doi: 10.1093/jxb/erm086 pmid: 17525078
[11] 王晓萍, Amber R, Kati W, Albert Y, Nigel M C, 王勇. 拟南芥抑制蛋白基因PHB3在NO介导反应和H2O2诱导NO积累过程中的功能研究. 见:诸葛健, 李华钟主编. 山东植物生理学会第七次代表大会暨植物生物学与现代农业研讨会论文集. 山东泰安: 山东省科学技术协会, 2012. pp 51-61.
Wang X P, Amber R, Kati W, Albert Y, Nigel M C, Wang Y. The function of Arabidopsis inhibitor protein gene PHB3 in NO mediated reaction and H2O2 induced NO accumulation. In: Zhu G J, Li H Z, eds. Shandong Plant Physiology Association Seventh Congress and Workshop on Plant Biology and Modern Agriculture. Tai’an, Shandong, China: Shandong Science and Technology Association, 2012. pp 51-61. (in Chinese)
[12] Song M, Peng X Y, Du C F, Lei L, Zhang T, Xiang Y. Genome-wide analysis of the PHB gene family in Glycine max (L.) Merr. Genes Genomics, 2017, 39: 1095-1106.
doi: 10.1007/s13258-017-0580-1
[13] Huang F Y, Ye X W, Wang Z J, Ding Y, Cai X J, Yu L, Waseem M, Abbas F, Ashraf U, Chen X L, Ke Y G. The prohibitins (PHB) gene family in tomato: Bioinformatic identification and expression analysis under abiotic and phytohormone stresses. GM Crops Food, 2021, 12: 535-550.
doi: 10.1080/21645698.2021.1872333
[14] 章妮, 陈克龙. 陆地棉PHB基因家族鉴定与表达分析. 分子植物育种, 2021. https://kns.cnki.net/kcms/detail/46.1068.S.20211216.1051.007.html.
Zhang N, Chen K L. Identification and expression analysis of PHB gene family in upland cotton. Mol Plant Breed, 2021, https://kns.cnki.net/kcms/detail/46.1068.S.20211216.1051.007.html. (in Chinese with English abstract)
[15] Wen X J, Niu T T, Kong X P. In silico analysis of PHB gene family in maize. Plant Growth Regul, 2014, 73: 181-191.
doi: 10.1007/s10725-013-9879-3
[16] 王欣, 李强, 曹清河, 马代夫. 中国甘薯产业和种业发展现状与未来展望. 中国农业科学, 2021, 54: 483-492.
doi: 10.3864/j.issn.0578-1752.2021.03.003
Wang X, Li Q, Cao Q H, Ma D F. Current status and future prospective of sweetpotato production and seed industry in China. Sci Agric Sin, 2021, 54: 483-492 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.03.003
[17] Yang J, Moeinzadeh M H, Kuhl H, Helmuth J, Xiao P, Haas S, Liu G L, Zheng J L, Sun Z, Fan W J, Deng G F, Wang H X, Hu F H, Zhao S S, Fernie A R, Boerno S, Timmermann B, Zhang P, Vingron M. Haplotype-resolved sweet potato genome traces back its hexaploidization history. Nat Plants, 2017, 3: 696-703.
doi: 10.1038/s41477-017-0002-z pmid: 28827752
[18] 刘振雷, 潘家荃, 周桦楠, 刘冠求, 于涛. 甘薯耐冷组学及分子生物学研究进展. 江苏农业科学, 2021, 49(24): 45-48.
Liu Z L, Pan J Q, Zhou H N, Liu G Q, Yu T. Research progress on cold tolerance omics and molecular biology of sweet potato. Jiangsu Agric Sci, 2021, 49(24): 45-48. (in Chinese with English abstract)
[19] 陈璐, 周淑倩, 李永新, 陈刚, 陆国权, 杨虎清. 甘薯解偶联蛋白基因家族鉴定与表达分析. 作物学报, 2022, 48: 1683-1696.
doi: 10.3724/SP.J.1006.2022.14126
Chen L, Zhou S Q, Li Y X, Chen G, Lu G Q, Yang H Q. Identification and expression analysis of uncoupling protein gene family in sweet potato. Acta Agron Sin, 2022, 48: 1683-1696. (in Chinese with English abstract)
[20] 饶莉萍. 甘薯IbCCoAOMT基因的克隆与功能鉴定. 长江大学硕士学位论文, 湖北荆州, 2021.
Rao L P. Cloning and Functional Identification of IbCCoAOMT Gene from Ipomoea batatas (L.) Lam. MS Thesis of Yangtze University, Jingzhou, Hubei, China, 2021. (in Chinese with English abstract)
[21] 梁璇, 李鹏, 杨哲, 贾小云, 王文斌. 甘薯近缘二倍体野生种TPS家族全基因组鉴定及表达分析. 山西农业科学, 2022, 50: 605-612.
Liang X, Li P, Yang Z, Jia X Y, Wang W B. Identification and expression analysis of genome of TPS family of wild relative diploid species of sweet potato. Shanxi Agric Sci, 2022, 50: 605-612. (in Chinese with English abstract)
[22] 张文杰, 辛曙丽, 黄哲瑞, 祝志欣, 司成成, 陈艳丽, 朱国鹏, 刘永华. 甘薯块根发育过程中关键蔗糖分解酶及其基因家族成员的鉴定. 热带作物学报, 2022, 43: 1535-1544.
Zhang W J, Xin S L, Huang Z R, Zhu Z X, Si C C, Chen Y L, Zhu G P, Liu Y H. Identification of key sucrose-degrading enzymes and the relevant gene family members in the development of sweetpotato storage roots. Chin J Trop Crops, 2022, 43: 1535-1544. (in Chinese with English abstract)
[23] 黄小芳, 毕楚韵, 陈其俊, 刘江洪, 胡韵卓, 黄碧芳, 陈选阳, 林世强. 甘薯α-淀粉酶基因的全基因组鉴定和分析. 分子植物育种, 2022, 20: 8035-8042.
Huang X F, Bi C Y, Chen Q J, Liu J H, Hu Y Z, Huang B F, Chen X Y, Lin S Q. Genome-wide identification and analysis of α- amylase gene family of Ipomoea batatas. Mol Plant Breed, 2022, 20: 8035-8042. (in Chinese with English abstract)
[24] 黄小芳, 毕楚韵, 黄伟群, 刘江洪, 胡韵卓, 黄碧芳, 林世强, 陈选阳. 甘薯β-淀粉酶家族基因的全基因组鉴定和表达分析. 华南农业大学学报, 2021, 42(5): 50-59.
Huang X F, Bi C Y, Huang W Q, Liu J H, Hu Y Z, Huang B F, Lin S Q, Chen X Y. Genome-wide identification and expression analysis of the β-amylase gene family in Ipomoea batatas. J South China Agric Univ, 2021, 42(5): 50-59. (in Chinese with English abstract)
[25] 黄小芳, 毕楚韵, 石媛媛, 胡韵卓, 周丽香, 梁才晓, 黄碧芳, 许明, 林世强, 陈选阳. 甘薯基因组NBS-LRR类抗病家族基因挖掘与分析. 作物学报, 2020, 46: 1195-1207.
doi: 10.3724/SP.J.1006.2020.94163
Huang X F, Bi C Y, Shi Y Y, Hu Y Z, Zhou L X, Liang C X, Huang B F, Xu M, Lin S Q, Chen X Y. Discovery and analysis of NBS-LRR gene family in sweet potato genome. Acta Agron Sin, 2020, 46: 1195-1207. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94163
[26] 许光龄, 王建伟, 陈玥, 陈艳丽, 祝志欣, 朱国鹏. 甘薯NRT基因家族成员鉴定及其在不同氮素条件下的表达模式分析. 分子植物育种, 2022, 20: 7316-7331.
Xu G L, Wang J W, Chen Y, Chen Y L, Zhu Z X, Zhu G P. Identification of sweetpotato NRT gene family members and expression patterns analysis under different nitrogen conditions. Mol Plant Breed, 2022, 20: 7316-7331 (in Chinese with English abstract).
[27] 毕楚韵, 黄小芳, 王和寿, 陈其俊, 胡韵卓, 黄碧芳, 许明, 杨志坚, 林世强, 陈选阳. 甘薯全基因组WRKY转录因子的基因鉴定与逆境胁迫表达分析. 西北农林科技大学学报(自然科学版), 2021, 49(9): 30-44.
Bi C Y, Huang X F, Wang H S, Chen Q J, Hu Y Z, Huang B F, Xu M, Yang Z J, Lin S Q, Chen X Y. Identification of WRKY transcription factor genes in Ipomoea batatas genome and expression analysis under stresses. J Northwest A&F Univ (Nat Sci Edn), 2021, 49(9): 30-44. (in Chinese with English abstract)
[28] 黄小芳, 毕楚韵, 王和寿, 陈其俊, 胡韵卓, 陈选阳, 林世强. 甘薯NAC转录因子家族的全基因组鉴定与分析. 热带作物学报, 2021, 42: 1831-1840.
Huang X F, Bi C Y, Wang H S, Chen Q J, Hu Y Z, Chen X Y, Lin S Q. Genome-wide identification and analysis of NAC transcription factor family of Ipomoea batatas. Chin J Trop Crops, 2021, 42: 1831-1840. (in Chinese with English abstract)
[29] Zhang H, Gao X R, Zhi Y H, Li X, Zhang Q, Niu J B, Wang J, Zhai H, Zhao N, Li J G, Liu Q C, He S Z. A non-tandem CCCH-type zinc-finger protein, IbC3H18, functions as a nuclear transcriptional activator and enhances abiotic stress tolerance in sweet potato. New Phytol, 2019, 223: 1918-1936.
doi: 10.1111/nph.15925 pmid: 31091337
[30] 宋小锋, 原增艳. 甘薯水通道蛋白基因家族的全基因组鉴定和表达分析. 分子植物育种, 2022, 20: 1452-1461.
Song X F, Yuan Z Y. Genome-wide identification and expression pattern profiling of aquaporin gene family in Ipomoea batatas. Mol Plant Breed, 2022, 20: 1452-1461. (in Chinese with English abstract)
[31] 宋天晓, 刘意, 饶莉萍, Soviguidi D R J, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析. 作物学报, 2021, 47: 1297-1308.
doi: 10.3724/SP.J.1006.2021.04180
Song T X, Liu Y, Rao L P, Soviguidi D R J, Zhu G P, Yang X S. Identification and expression analysis of cell wall invertase IbCWIN gene family members in sweet potato. Acta Agron Sin, 2021, 47: 1297-1308. (in Chinese with English abstract)
[32] 周淑倩, 陈璐, 陈惠云, 李永新, 陈刚, 陆国权, 杨虎清. 甘薯交替氧化酶基因家族生物信息学与表达分析. 核农学报, 2022, 36: 270-281.
doi: 10.11869/j.issn.100-8551.2022.02.0270
Zhou S Q, Chen L, Chen H Y, Li Y X, Chen G, Lu G Q, Yang H Q. Bioinformatics and expression analysis of alternative oxidase genes in sweetpotato. J Nucl Agric Sci, 2022, 36: 270-281. (in Chinese with English abstract)
doi: 10.11869/j.issn.100-8551.2022.02.0270
[33] 毕楚韵, 黄小芳, 黄伟群, 刘江洪, 胡韵卓, 黄碧芳, 林世强, 陈选阳. 甘薯基因组BBX转录因子基因鉴定与逆境胁迫表达分析. 四川农业大学学报, 2021, 39(2): 157-165.
Bi C Y, Huang X F, Huang W Q, Liu J H, Hu Y Z, Huang B F, Lin S Q, Chen X Y. Identification of BBX transcription factor genes in Ipomoea batatas genome and expression analysis under stresses. J Sichuan Agric Univ, 2021, 39(2): 157-165. (in Chinese with English abstract)
[34] 邵正伟, 曾志鹏, 陈彦竹, 何敏红, 张毅, 陈善兰, 朱宏波. 甘薯全基因组SBP-box基因家族鉴定及表达分析. 分子植物育种, 2021. https://kns.cnki.net/kcms/detail/46.1068.S.20210722.1407.014.html.
Shao Z W, Zeng Z P, Chen Y Z, He M H, Zhang Y, Chen S L, Zhu H B. Genome-wide identification and expression analysis of the SBP-box gene family in sweet potato (Ipomoea batatas). Mol Plant Breed, 2021. https://kns.cnki.net/kcms/detail/46.1068.S.20210722.1407.014.html. (in Chinese with English abstract)
[35] 夏梦, 徐畅, 王吉, 王玲, 孙丹. 植物Prohibitins基因(PHBs)的研究进展. 中国农学通报, 2016, 32(35): 24-29.
doi: 10.11924/j.issn.1000-6850.casb16060159
Xia M, Xu C, Wang J, Wang L, Sun D. Research progress of plant Prohibitins gene (PHBs). Chin Agric Sci Bull, 2016, 32(35): 24-29. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb16060159
[36] 熊炤成, 屈春凤, 沈开元, 刘庆友, 王英群, 石德顺, 李湘萍. 水牛PHB基因克隆与表达模式. 中国兽医学报, 2016, 36: 1422-1428.
Xiong Z C, Qu C F, Shen K Y, Liu Q Y, Wang Y Q, Shi D Y, Li X P. Cloning and expression pattern of buffalo PHB gene. Chin J Veterin Sci, 2016, 36: 1422-1428. (in Chinese with English abstract)
[37] 王晗, 闫敏, 许晔, 王仁雷, 刘少华. 芸薹属物种(B. napus, B. rapa, B. oleracea) PHB基因的生物信息学分析. 分子植物育种, 2021, 19: 4232-4241.
Wang H, Yan M, Xu Y, Wang R L, Liu S H. Bioinformatics analysis of PHB gene in Brassica species (B. napus, B. rapa, B. oleracea). Mol Plant Breed, 2021, 19: 4232-4241. (in Chinese with English abstract)
[38] 张佳宇. 黄瓜CsPHB基因功能的初步分析. 西北农林科技大学硕士学位论文,陕西杨凌, 2020.
Zhang J Y. A Preliminary Analysis of the Function of the CsPHB Gene in Cucumber (Cucumis sativus L.). MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2020. (in Chinese with English abstract)
[39] 徐丽. 利用基因工程进行PHB相关基因的克隆和烟草转化. 山东师范大学硕士学位论文, 山东济南, 2000.
Xu L. Cloning and Transformation of PHB Related Genes in Tobacco by Genetic Engineering. MS Thesis of Shandong Normal University, Jinan, Shandong, China, 2000. (in Chinese with English abstract)
[40] 张瑜. 条斑紫菜PHB基因克隆及生物信息学分析. 辽宁师范大学硕士学位论文, 辽宁大连, 2014.
Zhang Y. Molecular Cloning and Bioinformatics Analysis of Prohibitin from Porphra yezoensis. MS Thesis of Liaoning Normal University, Dalian, Liaoning, China, 2014. (in Chinese with English abstract)
[1] 王雁楠, 陈金金, 卞倩倩, 胡琳琳, 张莉, 尹雨萌, 乔守晨, 曹郭郑, 康志河, 赵国瑞, 杨国红, 杨育峰. 转录组与代谢组联合分析揭示遮阴胁迫下甘薯的代谢响应途径[J]. 作物学报, 2023, 49(7): 1785-1798.
[2] 丁洪艳, 冯晓溪, 汪柏宇, 张积森. 甘蔗割手密种LRRII-RLK基因家族演化和表达分析[J]. 作物学报, 2023, 49(7): 1769-1784.
[3] 刘佳, 邹晓悦, 马继芳, 王永芳, 董志平, 李志勇, 白辉. 谷子MAPK家族成员的鉴定及其对生物胁迫的响应分析[J]. 作物学报, 2023, 49(6): 1480-1495.
[4] 贾玉库, 高宏欢, 冯健超, 郝紫瑞, 王晨阳, 谢迎新, 郭天财, 马冬云. 小麦G2-like转录因子家族基因鉴定与表达模式分析[J]. 作物学报, 2023, 49(5): 1410-1425.
[5] 张小红, 彭琼, 鄢铮. 盐胁迫下不同甘薯品种的转录组测序分析[J]. 作物学报, 2023, 49(5): 1432-1444.
[6] 陈伊航, 唐朝臣, 张雄坚, 姚祝芳, 江炳志, 王章英. 基于表型性状和SSR分子标记构建甘薯核心种质[J]. 作物学报, 2023, 49(5): 1249-1261.
[7] 孙全喜, 苑翠玲, 牟艺菲, 闫彩霞, 赵小波, 王娟, 王奇, 孙慧, 李春娟, 单世华. 花生SWEET基因全基因组鉴定及表达分析[J]. 作物学报, 2023, 49(4): 938-954.
[8] 刘明, 范文静, 赵鹏, 靳容, 张强强, 朱晓亚, 王静, 李强. 甘薯耐低钾基因型苗期筛选及综合评价[J]. 作物学报, 2023, 49(4): 926-937.
[9] 吴世雨, 陈匡稷, 吕尊富, 徐锡明, 庞林江, 陆国权. 施氮量对甘薯块根膨大过程中淀粉含量及特性的影响[J]. 作物学报, 2023, 49(4): 1090-1101.
[10] 齐燕妮, 李闻娟, 赵丽蓉, 李雯, 王利民, 谢亚萍, 赵玮, 党照, 张建平. 亚麻生氰糖苷合成关键酶CYP79基因家族的鉴定及表达分析[J]. 作物学报, 2023, 49(3): 687-702.
[11] 潘洁明, 田绍锐, 梁艳兰, 朱宇林, 周定港, 阙友雄, 凌辉, 黄宁. 甘蔗PIN-LIKES基因家族的鉴定与表达分析[J]. 作物学报, 2023, 49(2): 414-425.
[12] 濮雪, 王凯彤, 张宁, 司怀军. 马铃薯StMAPKK4基因表达分析及互作蛋白筛选与鉴定[J]. 作物学报, 2023, 49(1): 36-45.
[13] 吴旭莉, 吴正丹, 晚传芳, 杜叶, 高艳, 李賾萱, 王志前, 唐道彬, 王季春, 张凯. 甘薯糖转运蛋白IbSWEET15的功能研究[J]. 作物学报, 2023, 49(1): 129-139.
[14] 姚祝芳, 张雄坚, 杨义伶, 黄立飞, 陈新亮, 姚肖健, 罗忠霞, 陈景益, 王章英, 房伯平. 177份甘薯地方资源表型性状的遗传多样性分析[J]. 作物学报, 2022, 48(9): 2228-2241.
[15] 王沙沙, 黄超, 汪庆昌, 晁岳恩, 陈锋, 孙建国, 宋晓. 小麦籽粒大小相关基因TaGS2克隆及功能分析[J]. 作物学报, 2022, 48(8): 1926-1937.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .