欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (1): 161-171.doi: 10.3724/SP.J.1006.2024.34070

• 耕作栽培·生理生化 • 上一篇    下一篇

带宽和株距对带状间作大豆物质积累分配及产量形成的影响

袁晓婷(), 王甜, 罗凯, 刘姗姗, 彭新月, 杨立达, 蒲甜, 王小春, 杨文钰, 雍太文*()   

  1. 四川农业大学农学院 / 农业农村部西南作物生理生态与耕作重点实验室 / 四川省作物带状复合种植工程技术研究中心, 四川成都 611130
  • 收稿日期:2023-04-10 接受日期:2023-06-29 出版日期:2024-01-12 网络出版日期:2023-07-21
  • 通讯作者: *雍太文, E-mail: yongtaiwen@sicau.edu.cn
  • 作者简介:E-mail: 2536403834@qq.com
  • 基金资助:
    财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-04-PS20);四川省科技计划项目(21NZZH0063)

Effects of bandwidth and plant spacing on biomass accumulation and allocation and yield formation in strip intercropping soybean

YUAN Xiao-Ting(), WANG Tian, LUO Kai, LIU Shan-Shan, PENG Xin-Yue, YANG Li-Da, PU Tian, WANG Xiao-Chun, YANG Wen-Yu, YONG Tai-Wen*()   

  1. College of Agronomy, Sichuan Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs / Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu 611130, Sichuan, China
  • Received:2023-04-10 Accepted:2023-06-29 Published:2024-01-12 Published online:2023-07-21
  • Contact: *E-mail: yongtaiwen@sicau.edu.cn
  • Supported by:
    Agriculture Research System of China of MOF and MARA(CARS-04-PS20);Science and Technology Plan of Sichuan(21NZZH0063)

摘要:

间套作系统中合理的田间配置能改善作物生长环境, 增加系统产量。为进一步完善西南地区大豆-玉米带状间作系统高产高效的田间配置技术, 本研究以大豆-玉米带状间作为研究对象, 采用二因素裂区试验设计, 综合分析2.0 m (B1)和2.4 m (B2) 2个带宽与9 cm (P1)、11 cm (P2)、14 cm (P3)、18 cm (P4) 4个株距对大豆物质积累分配、籽粒灌浆和产量的影响。结果表明, B2带宽下各株距处理的净光合速率均高于B1, 其2年平均值在B2下较B1增加14.26%; 相同带宽下净光合速率在B1P4和B2P4达到最大, 开花期较B1P1和B2P1增加13.57%和25.21%。2个带宽下大豆群体物质积累均随株距增加呈先增后减的趋势且分别在B1P3和B2P2下达到最大, 完熟期B2较B1增加9.82%~22.08%。同时, 带宽与株距的增加促进了大豆花后物质的积累与向籽粒的转移, 与B1相比, B2处理使大豆花后干物质积累量与干物质转移量分别增加13.82%~28.01%和13.38%~37.76%, 籽粒物质积累占比增加到41.80%~44.26%。物质积累的增加改善籽粒灌浆过程, B2带宽下籽粒灌浆活跃期(D)较B1延长2~3 d; 2种带宽下平均灌浆速率均在P4达到最大且分别较P1增加5.80%和6.58%。产量结果表明, 大豆-玉米带状间作模式中, 带宽和株距的增加降低了群体有效株数, 增加了单株粒数和百粒重; B2带宽下的大豆产量较B1增加22.32%~36.87%, 2个带宽下分别在B1P3和B2P2达到最大值, 2年间较B1P1和B2P1增加17.83%~26.44%和10.71%~10.76%。综上所述, 2.4 m带宽下大豆株距为11 cm时能有效改善大豆花后干物质积累和分配, 促进籽粒灌浆, 增加单株粒数和百粒重, 提高大豆群体产量, 实现大豆-玉米带状间作系统的高产高效。

关键词: 间作大豆, 带宽, 株距, 物质积累, 产量

Abstract:

Reasonable field configuration can improve crop growth environment and increase system yield in intercropping systems. To further improve the field configuration technology for high yield and efficiency in the soybean-maize strip intercropping system in Southwest China, the soybean-maize strip intercropping system was used as the research object, and two factor split zone design was adopted. The effects of two bandwidths of 2.0 m (B1) and 2.4 m (B2) and four plant spacings of 9 cm (P1), 11 cm (P2), 14 cm (P3), and 18 cm (P4) on soybean biomass accumulation, allocation, grain filling, and yield were comprehensively analyzed. The results showed that the net photosynthetic rate of each plant spacing treatment under B2 bandwidth was higher than that of B1, and the two-year average increased by 14.26% compared with B1 under B2. At the same bandwidth, the net photosynthetic rate reached the maximum in B1P4 and B2P4, which increased by 13.57% and 25.21% compared with B1P1 and B2P1 at flowering stage, respectively. The biomass accumulation of soybean population increased and then decreased with the increase of plant spacing under the two bandwidths, and reached the maximum at B1P3 and B2P2, respectively, and B2 increased by 9.82%-22.08% compared with B1 at maturity stage. And the increase of bandwidth and plant spacing promoted the accumulation and transfer of soybean post-flowering matter to grain. Compared with B1, post-flowering dry matter accumulation and dry matter transfer increased by 13.82-28.01% and 13.38%-37.76% under B2 treatment, respectively, and the proportion of grain matter accumulation increased to 41.80%-44.26%. The increase of biomass accumulation improved the grain filling process, and the active grain-filling period (D) of soybean under B2 was extended by 2-3 days compared with B1. The mean grain-filling rate reached its maximum at P4 and increased by 5.80% and 6.58% compared with P1 under the two bandwidths. The yield results showed that, with the increase of bandwidth and plant spacing, the effective plants decreased, and the seeds per plan and 100-seed weight increased in the soybean-maize strip intercropping model. The soybean yield under B2 bandwidth increased by 22.32%-36.87% compared with B1, it reached the maximum in B1P3 and B2P2 under the two bandwidths, respectively, and increased by 17.83%-26.44% and 10.71%-10.76% compared with B1P1 and B2P1 for two years. In summary, the soybean plant spacing of 11 cm at the bandwidth of 2.4 m can effectively improve the post-flowering dry matter accumulation and allocation, promote grain filling, increase the number of seeds per plant and 100-seed weight, improve soybean population yield, and achieve the high yield and high efficiency in the soybean-maize intercropping system.

Key words: intercropping soybean, bandwidth, plant spacing, biomass accumulation, yield

表1

带宽和株距对大豆产量及产量构成的影响"

年份
Year
带宽
Bandwidth
株距
Plant spacing
有效株数
Effective plants
单株粒数
Seeds per plant
百粒重
100-seed weight (g)
产量
Yield (kg hm-2)
2018 B1 P1 93,967±1590 a 52.5±4.1 c 19.4±0.4 b 956.8±76.4 b
P2 86,467±1443 b 62.2±2.7 b 20.5±0.4 a 1101.4±40.7 a
P3 80,356±1273 c 73.4±3.7 a 20.5±0.1 a 1209.8±56.6 a
B2 P1 86,930±802 a 79.6±5.5 b 20.3±0.4 a 1407.0±96.9 b
P2 84,485±549 b 85.5±0.8 b 20.9±0.4 a 1558.4±122 a
P3 78,270±345 c 95.1±3.4 a 20.9±0.9 a 1507.3±15.2 ab
2019 B1 P1 91,280±1342 a 60.6±2.1 d 18.1±0.5 b 1004.1±43.1 b
P2 84,265±2585 b 66.7±4.6 c 18.4±0.2 b 1034.0±47.4 b
P3 78,278±1812 c 77.7±2.5 b 19.5±0.5 a 1183.1±25.4 a
P4 61,557±511 d 93.3±2.9 a 19.8±0.3 a 1136.4±29.4 a
B2 P1 85,041±749 a 78.8±2.7 d 18.8±0.6 b 1260.9±36.8 c
P2 82,357±1699 b 87.6±2.2 c 19.4±0.5 ab 1395.9±13.4 a
P3 71,496±882 c 96.4±2.5 b 19.8±0.3 a 1366.0±6.3 ab
P4 58,597±1221 d 111.8±2.7 a 20.0±0.3 a 1307.6±61.5 bc
年份Year (Y) 40.6** 8.8** 80.1** 17.8**
带宽Bandwidth (B) 1.7** 388.4** 15.2** 290.8**
株距Plant spacing (P) 4.5** 87.9** 13.6** 26.0**
Y×B 1.9 4.6* 0.1 11.7**
Y×P 2.5 0.1 1.8 0.8
B×P 8.5** 0.4 0.7 3.3
Y×B×P 3.4* 0.9 0.6 1.4

图1

不同生育时期下带宽和株距对大豆净光合速率的影响 处理同表1。R2: 盛花期; R5: 始粒期。不同小写字母表示在0.05概率水平差异显著。"

图2

不同生育时期下带宽和株距对大豆干物质积累的影响 处理同表1。V5: 五节期; R1: 初花期; R3: 始荚期; R5: 始粒期; R8: 完熟期。不同小写字母表示在0.05概率水平差异显著。"

图3

不同生育时期下带宽和株距对大豆干物质分配的影响 处理和时期同图2。不同小写字母表示在0.05概率水平差异显著。"

表2

带宽和株距对花后干物质积累与转运的影响"

年份Year 带宽
Band width
株距
Plant spacing
花后干物质积累量
Dry matter accumulation after flowering
(kg hm-2)
干物质转移量
Dry matter transfer amount
(kg hm-2)
干物质转移率
Dry matter transfer ratio (%)
转移干物质
对荚果贡献率
Transfer dry matter to pod contribution ratio (%)
2018 B1 P1 2231.3±190 b 833.4±77.6 a 37.70±1.94 a 41.88±3.68 a
P2 2344.8±171.2 ab 900.1±149.4 a 39.49±3.89 a 42.92±4.04 a
P3 2468.3±164.8 a 828.2±75.3 a 37.83±2.94 a 38.45±4.16 a
B2 P1 2770.9±22.0 b 1189.6±100.8 a 43.47±1.45 a 47.36±3.79 a
P2 3095.0±62.7 a 1180.7±55.5 a 42.39±1.52 a 44.16±2.52 a
P3 3150.8±87.9 a 1158.7±141.6 a 41.75±2.18 a 43.31±5.74 a
2019 B1 P1 1911.0±168.1 b 745.6±28.9 a 38.33±1.15 a 41.75±1.18 a
P2 1931.5±169.7 b 756.3±38.4 a 39.22±2.52 a 41.28±3.19 ab
P3 2202.1±69.7 a 657.9±74.7 a 35.21±3.22 a 33.21±4.92 b
P4 2086.4±145.6 ab 461.8±70.5 b 27.79±2.83 b 24.78±2.51 c
B2 P1 2376.3±234.8 ab 820.7±104.9 a 39.45±3.93 a 37.09±6.72 a
P2 2569.6±52.7 a 732.6±122.0 a 35.58±3.98 a 31.22±5.14 a
P3 2203.6±76.5 bc 745.6±96.3 a 39.65±3.84 a 35.82±4.87 a
P4 2105.5±61.1 c 673.4±145.6 a 38.04±3.99 a 33.63±6.96 a
年份Year (Y) 107.02** 72.41** 6.88* 18.39**
带宽Band width (B) 123.29** 33.28** 6.27* 0.01
株距Plant spacing (P) 6.33** 0.98 0.46 2.90
Y×B 9.80** 18.65** 3.39 7.26*
Y×P 2.44 0.47 0.31 0.17
B×P 4.86* 0.77 2.12 2.60
Y×B×P 4.51* 0.08 1.20 0.94

图4

不同带宽和株距处理下籽粒增重进程与籽粒灌浆速率 处理同表1。A和B分别表示2019年籽粒增重进程和灌浆速率。"

表3

不同带宽和株距处理下大豆籽粒灌浆特征参数"

年份Year 带宽
Band width
株距
Plant spacing
Tmax
(d)
Wmax
(mg g-1)
Vmax
(mg g-1 d-1)
Vmean
(mg g-1 d-1)
D
(d)
2018 B1 P1 62.9±0.78 ab 10.3±0.44 a 0.69±0.025 a 0.212±0.002 b 44.7±3.5 b
P2 63.1±0.56 a 10.6±0.44 a 0.69±0.029 a 0.216±0.008 ab 45.9±0.8 ab
P3 62.9±0.73 ab 10.6±0.57 a 0.68±0.026 a 0.215±0.009 ab 46.8±0.7 ab
B2 P1 63.1±0.61 ab 10.7±0.18 a 0.68±0.021 a 0.216±0.003 ab 46.8±1.9 ab
P2 63.0±0.28 ab 10.9±0.19 a 0.68±0.015 a 0.219±0.002 ab 48.0±1.6 a
P3 62.1±0.46 b 10.8±0.18 a 0.70±0.019 a 0.222±0.004 a 46.1±1.0 ab
2019 B1 P1 58.6±0.22 a 9.22±0.16 f 0.89±0.015 a 0.224±0.003 f 31.1±0.5 b
P2 58.4±0.17 ab 9.29±0.06 ef 0.90±0.041 a 0.226±0.003 ef 31.1±1.6 b
P3 58.4±0.16 ab 9.57±0.13 cd 0.90±0.046 a 0.231±0.002 cd 31.8±2.0 ab
P4 58.2±0.23 bc 9.79±0.08 b 0.93±0.016 a 0.237±0.002 b 31.7±0.6 ab
B2 P1 58.6±0.24 a 9.46±0.13 de 0.89±0.01 a 0.228±0.001 de 31.8±0.7 ab
P2 58.7±0.35 a 9.78±0.15 bc 0.89±0.028 a 0.233±0.001 c 33.1±1.5 ab
P3 58.3±0.22 abc 9.98±0.08 ab 0.89±0.035 a 0.238±0.003 b 33.5±1.5 a
P4 58.0±0.23 c 10.06±0.16 a 0.93±0.007 a 0.243±0.002 a 32.6±0.7 ab
年份 (Y) 822.76** 146.09** 487.17** 94.01** 679.82**
带宽 (B) 0.22 13.10** 0.06 13.75** 5.69*
株距 (P) 3.07 4.87* 0.15 8.01** 1.36
Y×B 1.20 0.30 0.13 0.27 0.08
Y×P 0.60 0.83 0.02 0.84 0.30
B×P 1.28 0.08 0.34 0.35 0.68
Y×B×P 0.86 0.39 0.49 0.28 1.00
[1] 翟涛, 吴玲. 开放视角下中国大豆产业发展态势与振兴策略研究. 大豆科学, 2020, 39: 472-478.
Zhai T, Wu L. Study on development situation and revitalization strategy of soybean industry in China from an open perspective. Soybean Sci, 2020, 39: 472-478. (in Chinese with English abstract)
[2] Zhang R, Meng L, Li Y, Wang X, Ogundeji A O, Li X, Sang P, Mu Y, Wu H, Li S. Yield and nutrient uptake dissected through complementarity and selection effects in the maize/soybean intercropping. Food Energy Secur, 2021, 10: e282.
[3] Xu Z, Li C, Zhang C, Yu Y, van der Werf W, Zhang F. Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use: a meta-analysis. Field Crops Res, 2020, 246: 107661.
doi: 10.1016/j.fcr.2019.107661
[4] 王兴才, 杨文钰. 基于间套作弱光胁迫下作物源库协调与产量研究进展. 中国油料作物学报, 2019, 41: 292-299.
doi: 10.7505/j.issn.1007-9084.2019.02.019
Wang X C, Yang W Y. Review on relationship of source-sink and crop yield under shading stress in intercropping systems. Chin J Oil Crop Sci, 2019, 41: 292-299 (in Chinese with English abstract).
[5] Raza M A, Cui L, Khan I, Din A M U, Chen G, Ansar M, Ahmed M, Ahmad S, Manaf A, Titriku J K, Shah G A, Yang F, Yang W. Compact maize canopy improves radiation use efficiency and grain yield of maize/soybean relay intercropping system. Environ Sci Poll Res, 2021, 28: 41135-41148.
doi: 10.1007/s11356-021-13541-1
[6] 范元芳, 杨峰, 王锐, 黄山, 雍太文, 刘卫国, 杨文钰. 弱光对大豆生长、光合特性及产量的影响. 中国油料作物学报, 2016, 38: 71-76.
doi: 10.7505/j.issn.1007-9084.2016.01.012
Fan Y F, Yang F, Wang R, Huang S, Yong T W, Liu W G, Yang W Y. Effects of low light on growth, photosynthetic characteristics and yield of soybean. Chin J Oil Crop Sci, 2016, 38: 71-76. (in Chinese with English abstract)
[7] 崔亮, 苏本营, 杨峰, 杨文钰. 不同玉米-大豆带状套作组合条件下光合有效辐射强度分布特征对大豆光合特性和产量的影响. 中国农业科学, 2014, 47: 1489-1501.
doi: 10.3864/j.issn.0578-1752.2014.08.005
Cui L, Su B Y, Yang F, Yang W Y. Effects of photo-synthetically active radiation on photosynthetic characteristics and yield of soybean in different maize/soybean relay strip intercropping systems. Sci Agric Sin, 2014, 47: 1489-1501. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2014.08.005
[8] 王雅梅, 许彦骁, 王亚露, 李静, 张海芳, 杨殿林, 赵建宁, 轩清霞. 玉米-大豆不同宽幅间作对大豆光合特性及群体产量的影响. 农业环境科学学报, 2020, 39: 2587-2595.
Wang Y M, Xu Y X, Wang Y L, Li J, Zhang H F, Yang D L, Zhao J N, Xuan Q X. Effects of maize-soybean intercropping with different widths on photosynthetic characteristics of soybean and population yield. J Agro-Environ Sci, 2020, 39: 2587-2595. (in Chinese with English abstract)
[9] Chen X F, Sun N, Gu Y, Zheng H Y, Li J F, Wu C S, Wang Z M. Photosynthetic and chlorophyll fluorescence responses in maize and soybean strip intercropping system. Int J Agric Biol, 2020, 24: 799-811.
[10] 代希茜, 詹和明, 赵银月, 王铁军. 玉/豆间作模式下幅宽和玉米密度配置优化研究. 西南农业学报, 2018, 31: 39-43.
Dai X X, Zhan H M, Zhao Y Y, Wang T J. Research of optimization for planting width and density in maize/soybean intercropping model. Southwest China J Agric Sci, 2018, 31: 39-43. (in Chinese with English abstract)
[11] 王竹, 杨文钰. 玉米株型和幅宽对套作大豆碳氮代谢及产量的影响. 中国油料作物学报, 2014, 36: 206-212.
doi: 10.7505/j.issn.1007-9084.2014.02.010
Wang Z, Yang W Y. Effects of plant-types of maize and planting width on carbon-nitrogen metabolism and yield of relay-cropping soybean. Chin J Oil Crop Sci, 2014, 36: 206-212. (in Chinese with English abstract)
doi: 10.7505/j.issn.1007-9084.2014.02.010
[12] 王甜, 庞婷, 杜青, 陈平, 张晓娜, 周颖, 汪锦, 杨文钰, 雍太文. 田间配置对间作大豆光合特性、干物质积累及产量的影响. 华北农学报, 2020, 35: 107-116.
doi: 10.7668/hbnxb.20190359
Wang T, Pang T, Du Q, Chen P, Zhang X N, Zhou Y, Wang J, Yang W Y, Yong T W. Effects of different field collocation patterns on photosynthetic characteristics and dry matter accumulation and yield in intercropping soybean. Acta Agric Boreali-Sin, 2020, 35: 107-116. (in Chinese with English abstract)
doi: 10.7668/hbnxb.20190359
[13] 白晶, 张春雨, 丁相鹏, 张吉旺, 刘鹏, 任佰朝, 赵斌. 行距配置和覆反光膜对夏玉米产量及光能利用的影响. 中国农业科学, 2020, 53: 3942-3953.
doi: 10.3864/j.issn.0578-1752.2020.19.008
Bai J, Zhang C Y, Ding X P, Zhang J W, Liu P, Ren B Z, Zhao B. Effects of row spacing and mulching reflective film on the yield and light utilization of summer maize. Sci Agric Sin, 2020, 53: 3942-3953. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2020.19.008
[14] 彭姜龙, 张永强, 唐江华, 张娜, 苏丽丽, 李亚杰, 徐文修. 株行距配置对夏大豆光合特性及产量的影响. 大豆科学, 2015, 34: 794-800.
Peng J L, Zhang Y Q, Tang J H, Zhang N, Su L L, Li Y J, Xu W X. Effect of plant-row spacing on photosynthetic characteristics and yield of summer soybean. Soybean Sci, 2015, 34: 794-800. (in Chinese with English abstract)
[15] 周勋波, 杨国敏, 孙淑娟, 陈雨海. 不同株行距配置对夏大豆群体结构及光截获的影响. 生态学报, 2010, 30: 691-697.
Zhou X B, Yang G M, Sun S J, Chen Y H. Effect of different plant-row spacing on population structure and PAR interception in summer soybean. Acta Ecol Sin, 2010, 30: 691-697. (in Chinese with English abstract)
[16] 陈传信, 唐江华, 陈佳君, 王娜, 符小文, 杜孝敬, 徐文修. 种植方式对夏大豆鼓粒期叶片光合能力及籽粒灌浆特性的影响. 干旱地区农业研究, 2018, 36(3): 101-105.
Chen C X, Tang J H, Chen J J, Wang N, Fu X W, Du X J, Xu W X. Effect of planting patterns on photosynthetic capacity and grain filling characteristics of summer soybean at seed-filling stage. Agric Res Arid Areas, 2018, 36(3): 101-105. (in Chinese with English abstract)
[17] 庞婷, 陈平, 袁晓婷, 雷鹿, 杜青, 付智丹, 张晓娜, 周颖, 任建锐, 王甜, 汪锦, 杨文钰, 雍太文. 种间距对不同结瘤特性套作大豆物质积累、鼓粒及产量形成的影响. 中国农业科学, 2019, 52: 3751-3762.
doi: 10.3864/j.issn.0578-1752.2019.21.004
Pang T, Chen P, Yuan X T, Lei L, Du Q, Fu Z D, Zhang X N, Zhou Y, Ren J R, Wang T, Wang J, Yang W Y, Yong T W. Effects of row spacing on dry matter accumulation, grain filling and yield formation of different nodulation characteristic soybeans in intercropping. Sci Agric Sin, 2019, 52: 3751-3762. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2019.21.004
[18] 徐彤, 吕艳杰, 邵玺文, 耿艳秋, 王永军. 不同时期化控对密植玉米冠层结构及籽粒灌浆特性的影响. 作物学报, 2023, 49: 472-484.
doi: 10.3724/SP.J.1006.2023.23028
Xu T, Lyu Y J, Shao X W, Geng Y Q, Wang Y J. Effect of different times of spraying chemical regulator on the canopy structure and grain filling characteristics of high planting densities. Acta Agron Sin, 2023, 49: 472-484. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2023.23028
[19] Slewinski T, Braun D. Current perspectives on the regulation of whole-plant carbohydrate partitioning. Plant Sci, 2010, 178: 341-349.
doi: 10.1016/j.plantsci.2010.01.010
[20] 高仁才, 杨峰, 廖敦平, 苏本营, 崔亮, 邓传蓉, 杨文钰. 行距配置对套作大豆冠层光环境及其形态特征和产量的影响. 大豆科学, 2015, 34: 611-615.
Gao R C, Yang F, Liao D P, Su B Y, Cui L, Deng C R, Yang W Y. Effects of different row spacings of maize on light environment, morphological characteristics and yield of soybeans in a relay intercropping system. Soybean Sci, 2015, 34: 611-615. (in Chinese with English abstract)
[21] Marcos J L, Nogueira M A, Hungria M. Feasibility of lowering soybean planting density without compromising nitrogen fixation and yield. Agron J, 2014, 106: 2118-2124.
doi: 10.2134/agronj14.0234
[22] 程彬, 刘卫国, 王莉, 许梅, 覃思思, 卢俊吉, 高阳, 李淑贤, Raza A, 张熠, Ahmad I, 敬树忠, 刘然金, 杨文钰. 种植密度对玉米-大豆带状间作下大豆光合、产量及茎秆抗倒的影响. 中国农业科学, 2021, 54: 4084-4096.
doi: 10.3864/j.issn.0578-1752.2021.19.005
Cheng B, Liu W G, Wang L, Xu M, Qin S S, Lu J J, Gao Y, Li S X, Raza A, Zhang Y, Ahmad I, Jing S Z, Liu R J, Yang W Y. Effects of planting density on photosynthetic characteristics, yield and stem lodging resistance of soybean in maize-soybean strip intercropping system. Sci Agric Sin, 2021, 54: 4084-4096. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2021.19.005
[23] Cui X, Dong Y, Gi P, Wang H, Xu K, Zhang Z. Relationship between root vigour, photosynthesis and biomass in soybean cultivars during 87 years of genetic improvement in the northern China. Photosynthetica, 2016, 54: 81-86.
doi: 10.1007/s11099-015-0160-z
[24] 高英波, 陶洪斌, 黄收兵, 田北京, 王丽君, 李芸, 任建宏, 王璞. 密植和行距配置对夏玉米群体光分布及光合特性的影响. 中国农业大学学报, 2015, 20(6): 9-15.
Gao Y B, Tao H B, Huang S B, Tian B J, Wang L J, Li Y, Ren J H, Wang P. Effect of high planting density and row spacing on canopy light distribution and photosynthetic characteristics of summer maize. J China Agric Univ, 2015, 20(6): 9-15. (in Chinese with English abstract)
[25] 徐婷, 雍太文, 刘文钰, 刘小明, 董茜, 宋春, 杨峰, 王小春, 杨文钰. 播期和密度对玉米-大豆套作模式下大豆植株、干物质积累及产量的影响. 中国油料作物学报, 2014, 36: 593-601.
doi: 10.7505/j.issn.1007-9084.2014.05.006
Xu T, Yong T W, Liu W Y, Liu X M, Dong Q, Song C, Yang F, Wang X C, Yang W Y. Effects of sowing time and density on soybean agronomic traits, dry matter accumulation and yield in maize-soybean relay strip intercropping system. Chin J Oil Crop Sci, 2014, 36: 593-601. (in Chinese with English abstract)
[26] Raza M A, Feng L Y, vander W W, Cai G R, Bin Khalid M H, Iqbal N, Hassan M J, Meraj T A, Naeem M, Khan I, Rehman S, Ansar M, Ahmed M, Yang F, Yang W. Narrow-wide-row planting pattern increases the radiation use efficiency and seed yield of intercrop species in relay-intercropping system. Food Energy Secur, 2019, 8: e170.
doi: 10.1002/fes3.2019.8.issue-3
[27] Yang F, Liao D, Fan Y, Gao R, Wu X, Rahman T, Yong T, Liu W, Liu J, Du J, Shu K, Wang X, Yang W. Effect of narrow-row planting patterns on crop competitive and economic advantage in maize-soybean relay strip intercropping system. Plant Prod Sci, 2017, 20: 1-11.
doi: 10.1080/1343943X.2016.1224553
[28] Yang F, Liao D, Wu X L, Gao R C, Fan Y F, Raza M A, Wang X C, Yong T W, Liu W G, Liu J, Du J B, Shu K, Yang W Y. Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems. Field Crops Res, 2017, 203: 16-23.
doi: 10.1016/j.fcr.2016.12.007
[29] 王贝贝, 廖敦平, 范元芳, 王仲林, 张佳伟, 雍太文, 王小春, 刘卫国, 杨文钰, 杨峰. 玉米大豆套作窄行距对作物竞争效应及物质分配的影响. 中国油料作物学报, 2020, 42: 734-742.
Wang B B, Liao D P, Fan Y F, Wang Z L, Zhang J W, Yong T W, Wang X C, Liu W G, Yang W Y, Yang F. Effects of narrow row spacing on crop competition and substance distribution under maize-soybean relay strip intercropping. Chin J Oil Crop Sci, 2020, 42: 734-742. (in Chinese with English abstract)
doi: 10.19802/j.issn.1007-9084.2019203
[30] Luo K, Yuan X, Xie C, Liu S, Chen P, Du Q, Zheng B, Wu Y, Wang X, Yong T, Yang W. Diethyl aminoethyl hexanoate increase relay strip intercropping soybean grain by optimizing photosynthesis aera and delaying leaf senescence. Front Plant Sci, 2022, 12: 818327.
doi: 10.3389/fpls.2021.818327
[31] Xu C, He Y, Sun S, Song W, Wu T, Han T, Wu C. Analysis of soybean yield formation differences across different production regions in China. Agron J, 2020, 112: 4195-4206.
doi: 10.1002/agj2.v112.5
[32] 李刘龙, 库旭灿, 李赟, 王小燕. 花后弱光对江汉平原稻茬小麦的产量及碳、氮分配效应的影响. 麦类作物学报, 2020, 40: 1364-1374.
Li L L, Ku X C, Li Y, Wang X Y. Effect of shading after anthesis on yield and distribution of carbon and nitrogen of rice stubble wheat in Jianghan plain. J Triticeae Crops, 2020, 40: 1364-1374. (in Chinese with English abstract)
[33] Carciochi W D, Schwalbert R, Andrade F H, Corassa G M, Carter P, Gaspar A P, Schmidt J, Ciampitti I A. Soybean seed yield response to plant density by yield environment in North America. Agron J, 2019, 111: 1923-1932.
doi: 10.2134/agronj2018.10.0635
[34] Echarte L, Maggiora A D, Cerrudo D, Gonzalez V H, Abbate P, Cerrudo A, Sadras V O, Calviño P. Yield response to plant density of maize and sunflower intercropped with soybean. Field Crops Res, 2011, 121: 423-429.
doi: 10.1016/j.fcr.2011.01.011
[35] Yang F, Wang X, Liao D, Lu F, Gao R, Liu W, Yong T, Wu X, Du J, Liu J, Yang W. Yield response to different planting geometries in maize soybean relay strip intercropping systems. Agron J, 2015, 107: 296-304.
doi: 10.2134/agronj14.0263
[36] 封亮, 黄国勤, 杨文亭, 黄天宝, 唐海鹰, 麻巧迎, 王淑彬. 江西红壤旱地玉米||大豆间作模式对作物产量及种间关系的影响. 中国生态农业学报, 2021, 29: 1127-1137.
Feng L, Huang G Q, Yang W T, Huang T B, Tang H Y, Ma Q Y, Wang S B. Yields and interspecific relationship of the maize- soybean intercropping system in the upland red soil of Jiangxi province. Chin J Eco-Agric, 2021, 29: 1127-1137. (in Chinese with English abstract)
[37] 舒泽兵, 罗万宇, 蒲甜, 陈国鹏, 梁冰, 杨文钰, 王小春. 基于高产与高效条件下鲜食玉米鲜食大豆带状间作田间配置技术优化. 作物学报, 2023, 49: 1140-1150.
doi: 10.3724/SP.J.1006.2023.23013
Shu Z B, Luo W Y, Pu T, Chen G P, Liang B, Yang W Y, Wang X C. Optimization of field configuration technology of strip intercropping of fresh corn and fresh soybean based on high yield and high efficiency. Acta Agron Sin, 2023, 49: 1140-1150. (in Chinese with English abstract)
[38] 于晓波, 梁建秋, 何泽民, 吴海英. 张明荣. 株行距配置对大豆农艺性状和产量的影响. 大豆科学, 2021, 40: 482-489.
Yu X B, Liang J Q, He Z M, Wu H Y, Zhang M R. Effects of different spacing configurations on soybean agronomic traits and yield. Soybean Sci, 2021, 40: 482-489. (in Chinese with English abstract)
[1] 吴昊, 张瑛, 王琛, 顾汉柱, 周天阳, 张伟杨, 顾骏飞, 刘立军, 杨建昌, 张耗. 栽培优化对长江下游水稻灌浆期根系特征和稻米淀粉特性的影响[J]. 作物学报, 2024, 50(2): 478-492.
[2] 柯会锋, 苏红梅, 孙正文, 谷淇深, 杨君, 王国宁, 徐东永, 王洪这, 吴立强, 张艳, 张桂寅, 马峙英, 王省芬. 棉花现代品种资源产量与纤维品质性状鉴定及分子标记评价[J]. 作物学报, 2024, 50(2): 280-293.
[3] 李志坤, 贾文华, 朱伟, 刘伟, 马宗斌. 氮肥和缩节胺对棉花纤维产量及品质时间分布的影响[J]. 作物学报, 2024, 50(2): 514-528.
[4] 徐冉, 杨文叶, 朱均林, 陈松, 徐春梅, 刘元辉, 章秀福, 王丹英, 褚光. 不同灌溉模式对籼粳杂交稻甬优1540产量与水分利用效率的影响[J]. 作物学报, 2024, 50(2): 425-439.
[5] 谢炜, 贺鹏, 马宏亮, 雷芳, 黄秀兰, 樊高琼, 杨洪坤. 秋闲期秸秆覆盖与施磷对冬小麦氮素吸收利用的影响[J]. 作物学报, 2024, 50(2): 440-450.
[6] 邵扬, 郭延平, 周丙月, 张峰, 张兴民, 王玉萍. 蚕豆产量组分的基因型与环境互作及稳定性分析[J]. 作物学报, 2024, 50(1): 149-160.
[7] 杨立达, 任俊波, 彭新月, 杨雪丽, 罗凯, 陈平, 袁晓婷, 蒲甜, 雍太文, 杨文钰. 施氮与种间距离下大豆/玉米带状套作作物生长特性及其对产量形成的影响[J]. 作物学报, 2024, 50(1): 251-264.
[8] 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372.
[9] 房孟颖, 任粱, 卢霖, 董学瑞, 武志海, 闫鹏, 董志强. 乙矮合剂对粒用高粱根系建构和产量的影响[J]. 作物学报, 2023, 49(9): 2528-2538.
[10] 杨毅, 何志强, 林佳慧, 李洋, 陈飞, 吕长文, 唐道彬, 周全卢, 王季春. 椰糠施用量对土壤理化性状和甘薯产量的影响[J]. 作物学报, 2023, 49(9): 2517-2527.
[11] 李亦扬, 李远, 赵子胥, 张鼎顺, 杜嘉宁, 吴淑娟, 孙思琦, 陈媛, 张祥, 陈德华, 刘震宇. 土壤增氮对棉铃对位叶Bt杀虫蛋白含量影响及氮代谢机制[J]. 作物学报, 2023, 49(9): 2505-2516.
[12] 张丽华, 张经廷, 董志强, 侯万彬, 翟立超, 姚艳荣, 吕丽华, 赵一安, 贾秀领. 不同降水年型水分运筹对冬小麦产量及其构成的影响[J]. 作物学报, 2023, 49(9): 2539-2551.
[13] 张刁亮, 杨昭, 胡发龙, 殷文, 柴强, 樊志龙. 复种绿肥在不同灌水水平下对小麦籽粒品质和产量的影响[J]. 作物学报, 2023, 49(9): 2572-2581.
[14] 曹玉军, 刘志铭, 兰天娇, 刘小丹, 魏雯雯, 姚凡云, 吕艳杰, 王立春, 王永军. 吉林省不同年代玉米品种光合生理特性对施氮量的响应[J]. 作物学报, 2023, 49(8): 2183-2195.
[15] 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J]. 作物学报, 2023, 49(8): 2196-2209.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .