欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (1): 76-88.doi: 10.3724/SP.J.1006.2024.33007

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米转录因子ZmMYB12提高植物抗旱性和低磷耐受性的功能鉴定

王丽平(), 王晓钰, 傅竞也, 王强*()   

  1. 四川农业大学农学院 / 西南作物基因资源发掘与利用国家重点实验室, 四川成都 611130
  • 收稿日期:2023-02-12 接受日期:2023-06-29 出版日期:2024-01-12 网络出版日期:2023-07-20
  • 通讯作者: *王强, E-mail: qwang@sicau.edu.cn
  • 作者简介:E-mail: wlp2019@sina.com
  • 基金资助:
    国家自然科学基金项目(31971825)

Functional identification of maize transcription factor ZmMYB12 to enhance drought resistance and low phosphorus tolerance in plants

WANG Li-Ping(), WANG Xiao-Yu, FU Jing-Ye, WANG Qiang*()   

  1. State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
  • Received:2023-02-12 Accepted:2023-06-29 Published:2024-01-12 Published online:2023-07-20
  • Contact: *E-mail: qwang@sicau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31971825)

摘要:

玉米生长发育过程中会遭受干旱、高温、高盐及营养元素匮乏等多种非生物胁迫, 导致其产量和品质下降, 造成严重的农业减产。MYB类转录因子在植物中广泛分布, 参与植物生长发育和环境响应, 筛选及鉴定出具有抗逆功能的MYB类转录因子能为玉米抗逆遗传改良提供理论依据。本研究从玉米干旱处理的材料中克隆了一个R2R3-MYB家族转录因子基因ZmMYB12, 其响应自然干旱、ABA及PEG处理, 基因表达被诱导上调。病毒诱导沉默ZmMYB12后的玉米植株对干旱更加敏感, 活性氧积累更多, 根系更小; 复水后ZmMYB12沉默植株存活率更低, 表明ZmMYB12是干旱正调控因子。进一步构建ZmMYB12稳定过表达拟南芥, 干旱处理后ZmMYB12过表达株系活性氧积累更少, 侧根更多, 抗旱能力增强。同时, 发现ZmMYB12过表达拟南芥在低磷胁迫下侧根数量更多, 根系酸化程度增加, 叶绿素及花青素含量更多, 体内无机磷含量高于野生型, 表明ZmMYB12参与到低磷胁迫过程中, 并且提高了植株对磷元素的吸收及利用率。研究表明ZmMYB12调控干旱抗性并响应低磷胁迫, 为作物抗旱及耐低磷育种提供了一个良好的基因资源。

关键词: 玉米, MYB转录因子, 干旱胁迫, 低磷胁迫, 根系

Abstract:

Maize usually suffers from various abiotic stresses such as drought, high temperature, high salt, and deficiency of nutrient elements during growth and development period, which will eventually lead to the decline of yield and quality, resulting in serious agricultural yield reduction. MYB transcription factors are widely distributed in plants and involved in the whole process of plant growth and development and environmental response. Therefore, the screening and identification of MYB transcription factors conferring stress resistance can provide the theoretical basis and technical support for genetic improvement in maize. In this study, a R2R3-MYB family transcription factor gene, ZmMYB12, was cloned from maize materials under drought treatment. This gene showed inducible expression in response to drought, ABA, and PEG treatments. Maize plants with virus induced gene silencing (VIGS) of ZmMYB12 had higher sensitivity to drought and accumulated more reactive oxygen species (ROS), as well as smaller roots. The survival rate of ZmMYB12 silencing plants was lower after re-watering than the wild type plants (WT), indicating that ZmMYB12 was a positive regulator of drought response. Overexpression of ZmMYB12 in Arabidopsis thaliana resulted in less ROS accumulation and more lateral roots than WT, thus elevating drought resistance. After low phosphorus stress, ZmMYB12 overexpression Arabidopsis had more lateral roots and stronger root system, as well as higher contents of chlorophyll and anthocyanin. The content of inorganic phosphorus in ZmMYB12 overexpression Arabidopsis was also higher than WT. In conclusion, this study indicates that ZmMYB12 positively regulates drought response and increases the uptake and utilization of phosphorus in plants, providing an elite gene for maize breeding to increase abiotic resistance.

Key words: maize, MYB, drought stress, low phosphorus stress, root

表1

本研究所用引物"

引物名称
Primer name
引物序列
Primer sequence (5'-3')
引物用途
Primer usage
ZmMYB12-F ATGGGGAGAGCTCCGTGCTG 基因克隆
ZmMYB12-R CTAATTCATCCCAAGCTTTC Gene cloning
MYB12-VIGS-F TGTCCGAGTCTGAGGTACCAGTCGCGCAACAAGG 病毒诱导基因沉默
MYB12-VIGS-R GAAGGGGAGGTTCTAGACAGCTCCTCCCAGCT Virus induced gene silencing (VIGS)
p3301-ZmMYB12-F AAACCATGG ATGGGGAGAGCTCCGTGCTG 植物表达载体构建
p3301-ZmMYB12-R AAAAGATCT CTAATTCATCCCAAGCTTTC Plant expression vector construction
ZmMYB12-qPCR-F CTGCGACAAGGCTACTGTGA qRT-PCR检测
ZmMYB12-qPCR-R GTTTGGCCGGAGGTAGTTGA qRT-PCR detection
ZmEf1a-qPCR-F TGGTGTCATCAAGCCTGGTA 内参引物
ZmEf1a-qPCR-R AACATTGTCACCCGGAAGAG Control primer

图1

ZmMYB12的表达模式分析和进化分析 A: PEG、ABA和自然干旱处理下ZmMYB12的表达模式分析; 以WT为1计算相对上调倍数, 每个处理设置3次生物学重复, 利用 SPSS 软件进行显著性分析(***: P < 0.001)。B: ZmMYB12的进化树分析。登录号来自MaizeGDB和NCBI。ZmMYB12登录号为Zm00001d013164, ZmMYB111登录号为Zm00001d021296, ZmMYB148登录号为Zm00001d026203, ZmMYB167登录号为Zm00001d032032, ZmMYB48登录号为Zm00001d030678, ZmMYB94登录号为Zm00001d022227, ZmMYB134登录号为Zm00001d024726, ZmMYB31登录号为Zm00001d006236, ZmMYB3R登录号为Zm00001d042910, ZmMYB119登录号为Zm00001d037994, OsMYB48登录号为LOC_Os01g 74410, OsMYBS1登录号为LOC_Os01g34060, OsMYB91登录号为LOC_Os12g38400。"

图2

玉米ZmMYB12-VIGS沉默植株的干旱处理表型 A: ZmMYB12 基因沉默效率检测; B: 沉默植株干旱处理图; C: 复水后存活率统计; D: 干旱处理后 DAB 染色; E: 正常生长GFP及沉默植株根系形态; F: 干旱处理后GFP及基因沉默植株根系形态, 以GFP作为对照, 每个处理设置3次生物学重复, 利用SPSS软件进行显著性分析(***: P < 0.001)。"

图3

ZmMYB12通过减少活性氧积累增强拟南芥抗旱 A: 阳性植株ZmMYB12-OE基因表达量检测; B: 抗旱表型鉴定图; C: 复水后存活率统计。D: 20% PEG模拟干旱处理离体叶片不同时间点活性氧积累情况, 每个处理设置3次生物学重复; E: 正常及干旱胁迫下MDA含量及酶活性测定。利用SPSS软件进行显著性分析每个处理设置3次生物学重复, 利用 SPSS 软件进行显著性分析(***: P < 0.001, 不同小写字母表示P < 0.05水平有显著差异)。"

图4

ZmMYB12通过调控侧根发育来响应低磷胁迫 A: 低磷处理7 d和21 d根系形态发育; B: 低磷处理21 d的拟南芥幼苗; C: 低磷处理21 d侧根密度统计; D: 正常和低磷处理下侧根形态的观察; E: 正常和低磷处理下侧根长度统计; F: 正常和低磷处理下根毛形态的观察; G: 正常和低磷处理下根毛长度统计; H: 正常和低磷处理下根毛密度统计。每处理设置3次生物学重复, 利用SPSS软件进行显著性分析(不同小写字母表示P < 0.05水平下有显著差异)。"

图5

过表达ZmMYB12增强拟南芥对磷的吸收 A: 正常及低磷处理下野生型(WT)和过表达植株根系溴甲酚紫原位显色; B: 正常及低磷处理野生型(WT)和过表达植株的根系酸化定量; C: 正常及低磷处理野生型(WT)和过表达植株叶片无机磷含量; D: 正常及低磷处理野生型(WT)和过表达植株根系无机磷含量; E: 正常及低磷处理下叶绿素a含量; F: 正常及低磷处理下叶绿素b含量; G: 正常及低磷处理下花青素含量测定。每个处理设置3次生物学重复, 利用SPSS软件进行显著性分析(*: P < 0.05, 不同小写字母表示在P < 0.05水平差异显著)。"

图6

ZmMYB12过表达影响拟南芥种子萌发 A: 正常MS平板生长1周野生型和过表达种子萌发情况; B: 正常生长萌发率统计; C: 正常生长子叶绿化率统计; D: MS+GA处理后种子萌发情况; E: MS+GA处理后萌发率统计; F: MS+GA处理后子叶绿化率统计; G: MS+ABA抑制剂处理后种子萌发情况; H: MS+ABA抑制剂处理后萌发率统计。每个处理设置3次生物学重复, 利用SPSS软件进行显著性分析(*: P < 0.05, ***: P < 0.001, 不同小写字母表示P < 0.05水平差异显著)。"

[1] Campos H, Cooper M, Habben J E, Edmeades G O, Schussler J R. Improving drought tolerance in maize: a view from industry. Field Crops Res, 2004, 90: 19-34.
doi: 10.1016/j.fcr.2004.07.003
[2] Esfahanian E, Nejadhashemi A P, Abouali M, Adhikari U, Zhang Z, Daneshvar F, Herman M R. Development and evaluation of a comprehensive drought index. J Environ Manage, 2017, 185: 31-43.
doi: S0301-4797(16)30840-4 pmid: 28029478
[3] Gupta A, Rico-Medina A, Caño-Delgado A I. The physiology of plant responses to drought. Science, 2020, 368: 266-269.
doi: 10.1126/science.aaz7614 pmid: 32299946
[4] Liu H, Wang X, Wang D, Zou Z, Liang Z. Effect of drought stress on growth and accumulation of active constituents in Salvia miltiorrhiza Bunge. Ind Crop Prod, 2011, 33: 84-88.
doi: 10.1016/j.indcrop.2010.09.006
[5] Allen R G, Tresini M, Allen R G, Tresini M. Oxidative stress and gene regulation. Free Radic Biol Med, 2000, 28: 463-499.
doi: 10.1016/S0891-5849(99)00242-7
[6] Gong F, Yang L, Tai F, Hu X, Wang W. “Omics” of maize stress response for sustainable food production: opportunities and challenges. OMICS: A J Integr Biol, 2014, 18: 714-732.
doi: 10.1089/omi.2014.0125
[7] Pan R, Buitrago S, Feng Z, Abou-Elwafa S F, Xu L, Li C, Zhang W. HvbZIP21, a novel transcription factor from wild barley confers drought tolerance by modulating ROS scavenging. Front Plant Sci, 2022, 13: 878459.
doi: 10.3389/fpls.2022.878459
[8] Newton J R. Linked gene ontology categories are novel and differ from associated gene ontology categories for the bipolar disorders. Psychiat Genet, 2007, 17: 29-34.
doi: 10.1097/YPG.0b013e328010f28c
[9] Ma H Z, Liu C, Li Z X, Ran Q J, Xie G N, Wang B M, Fang S, Chu J F, Zhang J R. ZmbZIP4 contributes to stress resistance in maize by regulating ABA synthesis and root development. Plant Physiol, 2018, 178: 753-770.
doi: 10.1104/pp.18.00436
[10] Wang B X, Li L Q, Liu M L, Peng D, Wei A S, Hou B Y, Lei Y H, Li X J. TaFDL2-1A confers drought stress tolerance by promoting ABA biosynthesis, ABA responses, and ROS scavenging in transgenic wheat. Plant J, 2022, 112: 722-737.
doi: 10.1111/tpj.v112.3
[11] Zhu J K. Abiotic stress signaling and responses in plants. Cell, 2016, 167: 313-324.
doi: 10.1016/j.cell.2016.08.029
[12] Calderón-Vázquez C, Sawers R J, Herrera-Estrella L. Phosphate deprivation in maize: genetics and genomics. Plant Physiol, 2011, 156: 1067-1077.
doi: 10.1104/pp.111.174987 pmid: 21617030
[13] Vance C P, Uhde-Stone C, Allan D L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol, 2003, 157: 423-447.
doi: 10.1046/j.1469-8137.2003.00695.x pmid: 33873400
[14] Bieleski R L. Phosphate pools, phosphate transport, and phosphate availability. Annu Rev Plant Physiol, 2003, 24: 225-252.
doi: 10.1146/arplant.1973.24.issue-1
[15] Usuda H. Phosphate deficiency in maize: V. Mobilization of nitrogen and phosphorus within shoots of young plants and its relationship to senescence. Plant Cell Physiol, 1995, 36: 1041-1049.
doi: 10.1093/oxfordjournals.pcp.a078846
[16] Siddiqui M H, Alamri S, Nasir Khan M, Corpas F J, Al-Amri A A, Alsubaie Q D, Ali H M, Kalaji H M, Ahmad P. Melatonin and calcium function synergistically to promote the resilience through ROS metabolism under arsenic-induced stress. J Haz Mat, 2020, 398: 122882.
doi: 10.1016/j.jhazmat.2020.122882
[17] Bechtold U, Penfold C A, Jenkins D J, Legaie R, Moore J D, Lawson T, Matthews J S, Vialet-Chabrand S R, Baxter L, Subramaniam S, Hickman R, Florance H, Sambles C, Salmon D L, Feil R, Bowden L, Hill C, Baker N R, Lunn J E, Finkenstädt B, Mead A, Buchanan-Wollaston V, Beynon J, Rand D A, Wild D L, Denby K J, Ott S, Smirnoff N, Mullineaux P M. Time-series transcriptomics reveals that AGAMOUS-LIKE22 affects primary metabolism and developmental processes in drought-stressed Arabidopsis. Plant Cell, 2016, 28: 345.
[18] Bates T R, Lynch J P. Root hairs confer a competitive advantage under low phosphorus availability. Plant Soil, 2001, 236: 243-250.
doi: 10.1023/A:1012791706800
[19] Devaiah B N, Madhuvanthi R, Karthikeyan A S, Raghothama K G. Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in Arabidopsis. Mol Plant, 2009, 2: 43-58.
[20] Jain A, Poling M D, Smith A P, Nagarajan V K, Lahner B, Meagher R B, Raghothama K G. Variations in the composition of gelling agents affect morphophysiological and molecular responses to deficiencies of phosphate and other nutrients. Plant Physiol, 2009, 150: 1033-1049.
doi: 10.1104/pp.109.136184 pmid: 19386810
[21] Wang L S, Li Z, Qian W Q, Guo W L, Gao X, Huang L L, Wang H, Zhu H F, Wu J W, Wang D W, Liu D. The Arabidopsis purple acid phosphatase AtPAP10 is predominantly associated with the root surface and plays an important role in plant tolerance to phosphate limitation. Plant Physiol, 2011, 157: 1283-1299.
doi: 10.1104/pp.111.183723
[22] Zhang J Y, Zhou X, Xu Y, Yao M L, Xie F B, Gai J Y, Li Y, Yang S P. Soybean SPX1 is an important component of the response to phosphate deficiency for phosphorus homeostasis. Plant Sci, 2016, 248: 82-91.
doi: 10.1016/j.plantsci.2016.04.010 pmid: 27181950
[23] Martin C, Paz-Ares J. MYB transcription factors in plants. Trends Genet, 1997, 13: 67-73.
doi: 10.1016/s0168-9525(96)10049-4 pmid: 9055608
[24] Fang Q, Wang X Q, Wang H Y, Tang X W, Liu C, Yin H, Ye S L, Jiang Y Z, Duan Y J, Luo K M. The poplar R2R3 MYB transcription factor PtrMYB94 coordinates with abscisic acid signaling to improve drought tolerance in plants. Tree Physiol, 2020, 40: 46-59.
doi: 10.1093/treephys/tpz113 pmid: 31728530
[25] Gao F, Zhou J, Deng R Y, Zhao H X, Li C L, Chen H, Suzuki T, Park S U, Wu Q.Overexpression of a tartary buckwheat R2R3-MYB transcription factor gene, FtMYB9, enhances tolerance to drought and salt stresses in transgenic Arabidopsis. Plant Physiol, 2017, 214: 81-90.
[26] Shukla P S, Gupta K, Agarwal P, Jha B, Agarwal P K. Overexpression of a novel SbMYB15 from Salicornia brachiata confers salinity and dehydration tolerance by reduced oxidative damage and improved photosynthesis in transgenic tobacco. Planta, 2015, 242: 1291-308.
doi: 10.1007/s00425-015-2366-5 pmid: 26202734
[27] Zheng X W, Liu C, Qiao L, Zhao J J, Han R, Wang X L, Ge C, Zhang W Y, Zhang S W, Qiao L Y, Zheng J, Hao C Y. The MYB transcription factor TaPHR3-A1 is involved in phosphate signaling and governs yield-related traits in bread wheat. J Exp Bot, 2020, 71: 5808-5822.
doi: 10.1093/jxb/eraa355 pmid: 32725154
[28] Gulzar F, Fu J Y, Zhu C Y, Yan J, Li X L, Meraj T A, Shen Q Q, Hassan B, Wang Q. Maize WRKY transcription factor ZmWRKY79 positively regulates drought tolerance through elevating ABA biosynthesis. Int J Mol Sci, 2021, 22: 10080.
doi: 10.3390/ijms221810080
[29] Pu Q Y, Liang J, Shen Q Q, Fu J Y, Pu Z E, Liu J, Wang X G, Wang Q. A wheat β-patchoulene synthase confers resistance against herbivory in transgenic Arabidopsis. Genes, 2019, 10: 441.
[30] Wu J D, Jiang Y L, Liang Y N, Chen L, Chen W J, Cheng B J. Expression of the maize MYB transcription factor ZmMYB3R enhances drought and salt stress tolerance in transgenic plants. Plant Physiol Bioch, 2019, 137: 179-188.
doi: 10.1016/j.plaphy.2019.02.010
[31] Du H, Feng B R, Yang S S, Huang Y B, Tang Y X, Wu K. The R2R3-MYB transcription factor gene family in Maize. PLoS One, 2012, 7: e37463.
doi: 10.1371/journal.pone.0037463
[32] Castorina G, Domergue F, Chiara M, Zilio M, Persico M, Ricciardi V, Horner D S, Consonni G. ZmFDL1/MYB94 drought- responsive regulates cuticle biosynthesis and cuticle-dependent leaf permeability. Plant Physiol, 2020, 184: 266-282.
doi: 10.1104/pp.20.00322 pmid: 32665334
[33] Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S. Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell, 2003, 15: 1591-1604.
doi: 10.1105/tpc.011650
[34] Zhong C M, Patra B, Tang Y, Li X K, Yuan L, Wang X J. A transcriptional hub integrating gibberellin-brassinosteroid signals to promote seed germination in Arabidopsis. J Exp Bot, 2021, 72: 4708-4720.
[35] Sano N, Marion-Poll A. ABA metabolism and homeostasis in seed dormancy and germination. Int J Mol Sci, 2021, 22: 5069.
doi: 10.3390/ijms22105069
[36] Wang X P, Niu Y L, Zheng Y. Multiple Functions of MYB transcription factors in abiotic stress responses. Int J Mol Sci, 2021, 22: 6125.
doi: 10.3390/ijms22116125
[37] Chen K, Li G J, A Bressan R, Song C P, Zhu J K. Abscisic acid dynamics, signaling, and functions in plants. J Integr Plant Biol, 2020, 62: 27-56.
[38] Xu W, Tang W, Wang C, Ge L, Sun J, Qi X, He Z, Zhou Y, Chen J, Xu Z, Ma Y Z, Chen M. SiMYB56 confers drought stress tolerance in transgenic rice by regulating lignin biosynthesis and ABA signaling pathway. Front Plant Sci, 2020, 11: 785.
doi: 10.3389/fpls.2020.00785 pmid: 32625221
[39] Valdés-López O, Arenas-Huertero C, Ramírez M, Girard L, Sánchez F, Vance C P, Luis Reyes J, Hernández G. Essential role of MYB transcription factor: PvPHR1 and microRNA: PvmiR399 in phosphorus-deficiency signalling in common bean roots. Plant Cell Environ, 2008, 31: 1834-1843.
doi: 10.1111/pce.2008.31.issue-12
[40] Val-Torregrosa B, Bundó M, Martín-Cardoso H, Bach-Pages M, Chiou T J, Flors V, Segundo B S. Phosphate-induced resistance to pathogen infection in Arabidopsis. Plant J, 2022, 110: 452-469.
doi: 10.1111/tpj.v110.2
[41] Tariq A, Pan K, Olatunji O A, Graciano C, Li Z, Sun F Sun X, Song D, Chen W, Zhang A, Wu X, Zhang L, Mingrui D, Xiong Q, Liu C. Phosphorous application improves drought tolerance of Phoebe zhennan. Front Plant Sci, 2017, 8: 1561.
doi: 10.3389/fpls.2017.01561 pmid: 28955356
[42] Begum N, Ahanger M A, Zhang L X. AMF inoculation and phosphorus supplementation alleviates drought induced growth and photosynthetic decline in Nicotiana tabacum by up-regulating antioxidant metabolism and osmolyte accumulation. Environ Exp Bot, 2020, 176: 104088.
doi: 10.1016/j.envexpbot.2020.104088
[43] Hansel F D, Amado T J C, Ruiz Diaz D A, Rosso L H M, Schorr M. Phosphorus fertilizer placement and tillage affect soybean root growth and drought tolerance. Agron J, 2017, 109: 2936-2944.
doi: 10.2134/agronj2017.04.0202
[1] 吴昊, 张瑛, 王琛, 顾汉柱, 周天阳, 张伟杨, 顾骏飞, 刘立军, 杨建昌, 张耗. 栽培优化对长江下游水稻灌浆期根系特征和稻米淀粉特性的影响[J]. 作物学报, 2024, 50(2): 478-492.
[2] 毛燕, 郑名敏, 牟成香, 谢吴兵, 唐琦. 渗透胁迫下玉米自然反义转录本cis-NATZmNAC48启动子的功能分析[J]. 作物学报, 2024, 50(2): 354-362.
[3] 马娟, 曹言勇 . 玉米杂交群体产量性状及其特殊配合力全基因组关联分析[J]. 作物学报, 2024, 50(2): 363-372.
[4] 杨静蕾, 吴冰杰, 王安洲, 肖英杰. 基于多维组学数据的玉米农艺和品质性状预测研究[J]. 作物学报, 2024, 50(2): 373-382.
[5] 朱晓亚, 张强强, 赵鹏, 刘明, 王静, 靳容, 于永超, 唐忠厚. 叶面喷施丹参碳点缓解甘薯低磷胁迫的转录组与代谢组学分析[J]. 作物学报, 2024, 50(2): 383-393.
[6] 吴宇, 刘磊, 崔克辉, 齐晓丽, 黄见良, 彭少兵. 低氮条件下超级杂交稻苗期根系特征的变化及与其高氮素积累的关系[J]. 作物学报, 2024, 50(2): 414-424.
[7] 徐冉, 杨文叶, 朱均林, 陈松, 徐春梅, 刘元辉, 章秀福, 王丹英, 褚光. 不同灌溉模式对籼粳杂交稻甬优1540产量与水分利用效率的影响[J]. 作物学报, 2024, 50(2): 425-439.
[8] 李艳, 方宇辉, 王永霞, 彭超军, 华夏, 齐学礼, 胡琳, 许为钢. 不同磷胁迫处理转OsPHR2小麦的转录组学分析[J]. 作物学报, 2024, 50(2): 340-353.
[9] 杨晨曦, 周文期, 周香艳, 刘忠祥, 周玉乾, 刘芥杉, 杨彦忠, 何海军, 王晓娟, 连晓荣, 李永生. 控制玉米株高基因PHR1的基因克隆[J]. 作物学报, 2024, 50(1): 55-66.
[10] 岳润清, 李文兰, 孟昭东. 转基因抗虫耐除草剂玉米自交系LG11的获得及抗性分析[J]. 作物学报, 2024, 50(1): 89-99.
[11] 宋旭东, 朱广龙, 张舒钰, 章慧敏, 周广飞, 张振良, 冒宇翔, 陆虎华, 陈国清, 石明亮, 薛林, 周桂生, 郝德荣. 长江中下游地区糯玉米花期耐热性鉴定及评价指标筛选[J]. 作物学报, 2024, 50(1): 172-186.
[12] 杨立达, 任俊波, 彭新月, 杨雪丽, 罗凯, 陈平, 袁晓婷, 蒲甜, 雍太文, 杨文钰. 施氮与种间距离下大豆/玉米带状套作作物生长特性及其对产量形成的影响[J]. 作物学报, 2024, 50(1): 251-264.
[13] 谭志新, 谢留伟, 李洪戈, 李芳军, 田晓莉, 李召虎. 基于AHP-隶属函数法的棉花子叶期耐低钾能力鉴定[J]. 作物学报, 2024, 50(1): 199-208.
[14] 艾蓉, 张春, 悦曼芳, 邹华文, 吴忠义. 玉米转录因子ZmEREB211对非生物逆境胁迫的应答[J]. 作物学报, 2023, 49(9): 2433-2445.
[15] 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .