作物学报 ›› 2024, Vol. 50 ›› Issue (12): 2925-2939.doi: 10.3724/SP.J.1006.2024.44029
戎宇轩(), 惠留洋(), 王沛琦, 孙思敏, 张献龙, 袁道军(), 杨细燕
RONG Yu-Xuan(), HUI Liu-Yang(), WANG Pei-Qi, SUN Si-Min, ZHANG Xian-Long, YUAN Dao-Jun(), YANG Xi-Yan
摘要:
CLAVATA3/Embryo surrounding region-related (CLE)小肽家族是植物中最大的小肽激素家族, 在植物中广泛存在, 且参与植物多个重要的生命活动。本研究对陆地棉CLE基因家族进行了鉴定, 并对GhCLE基因家族成员进行基因结构、启动子顺式作用元件、蛋白质理化性质、系统发育的分析; 通过RNA-seq数据构建了GhCLE基因家族成员在陆地棉各组织的表达谱及干旱处理下的表达模式, 并筛选在棉花根系特异表达且受干旱诱导的CLE基因; 最后通过VIGS技术对筛选出的GhCLE基因进行了抗旱功能的验证。结果显示,在陆地棉全基因组共鉴定出40个GhCLE基因, GhCLE基因结构较为简单, 32个GhCLE基因没有内含子, 所有基因编码的蛋白序列均包含12 aa的CLE结构域; GhCLE基因启动子区域包含多种光诱导响应、胁迫响应、激素响应和发育相关的顺式作用元件; GhCLE基因在陆地棉多个组织均有表达, 筛选出了1个根系特异表达且受干旱诱导的GhCLE13-D-2基因。通过VIGS技术和MDA含量的测定和比较验证了GhCLE13-D-2基因提高棉花的抗旱性的功能。本研究为CLE小肽在植物抗逆方面的深入研究以及棉花种质创新提供了新的理论依据。
[1] | Murphy E, Smith S, De Smet I. Small signaling peptides in Arabidopsis development: how cells communicate over a short distance. Plant Cell, 2012, 24: 3198-3217. |
[2] | Busch W, Benfey P. Information processing without brains the power of intercellular regulators in plants. Development, 2010, 137: 1215-1226. |
[3] |
Pearce G, Strydom D, Johnson S, R yan C A. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science, 1991, 253: 895-897.
doi: 10.1126/science.253.5022.895 pmid: 17751827 |
[4] |
Loivamäki M, Stührwohldt N, Deeken R, Steffens B, Roitsch T, Hedrich R, Saute M. A role for PSK signaling in wounding and microbial interactions in Arabidopsis. Physiol Plant, 2010, 139: 348-357.
doi: 10.1111/j.1399-3054.2010.01371.x pmid: 20403122 |
[5] | Amano Y, Tsubouchi H, Shinohara H, Matsubayashi Y. Tyrosine-sulfated glycopeptide involved in cellular proliferation and expansion in Arabidopsis. Proc Natl Acad Sci USA, 2007, 104: 18333-18338. |
[6] | Hu H Y, Wang M J, Ding Y H, Zhu S T, Tu L L, Zhang X L. Transcriptomic repertoires depict the initiation of lint and fuzz fibres in cotton (Gossypium hirsutum L.). Plant Biotechnol J, 2017, 16: 1002-1012. |
[7] | An Z C, Liu Y L, Li J, Zhang B W, Sun D Y, Sun Y. Regulation of the stability of RGF1 receptor by the ubiquitin-specific proteases UBP12/UBP13 is critical for root meristem maintenance. Proc Natl Acad Sci USA, 2018, 115: 1123-1128. |
[8] |
He Y H, Chen S Y, Chen X Y, Xu Y P, Liang Y, Cai X Z. RALF22 promotes plant immunity and amplifies the Pep3 immune signal. J Integr Plant Biol, 2023, 65: 2519-2534.
doi: 10.1111/jipb.13566 |
[9] | Zhong S, Li L, Wang Z J, Ge Z X, Li Q Y, Bleckmann A, Wang J Z, Song Z H, Shi Y H, Liu T X, Li L H, Zhou H B, Wang Y Y, Zhang L, Wu H M, Lai L H, Gu H Y, Dong J, Cheung A Y, Dresselhaus T, Qu L J. RALF peptide signaling controls the polytubey block in Arabidopsis. Science, 2022, 375: 290-296. |
[10] |
Fletcher J C, Brand U, Running M P, Simon R, Meyerowitz E M. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science, 1999, 283: 1911-1914.
doi: 10.1126/science.283.5409.1911 pmid: 10082464 |
[11] |
Brand U, Fletcher J C, Hobe M, Meyerowitz E M, Simon R. Dependence of stem cell Fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science, 2000, 289: 617-619.
doi: 10.1126/science.289.5479.617 pmid: 10915624 |
[12] |
Ito Y, Nakanomyo I, Motose H, Iwamoto K, Sawa S, Dohmae N, Fukuda H. Dodeca-CLE Peptides as suppressors of plant stem cell differentiation. Science, 2006, 313: 842-845.
doi: 10.1126/science.1128436 pmid: 16902140 |
[13] |
Lei L, Gallagher J, Arevalo E D, Chen R, Skopelitis T, Wu Q Y, Madelaine B, Jackson D. Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes. Nat Plants, 2021, 7: 287-294.
doi: 10.1038/s41477-021-00858-5 pmid: 33619356 |
[14] | Yang Y, Zhu K Y, Li H L, Han S Q, Meng Q W, Khan S U, Fan C C, Xie K B, Zhou Y M. Precise editing of CLAVATA genes in Brassica napus L.regulates multilocular silique development. Plant Biotechnol J, 2017, 16: 1322-1355. |
[15] | Guo X L, Chronis D, Torre C M D L, Smeda J, Wang X H, Mitchum M G. Enhanced resistance to soybean cyst nematode Heterodera glycines in transgenic soybean by silencing putative CLE receptors. Plant Biotechnol J, 2015, 13: 801-810. |
[16] | Takahashi F, Suzuki T, Osakabe Y, Betsuyaku S, Kondo Y, Dohmae N, Fukuda H, Yamaguchi-Shinozaki K, Shinozaki K. A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature, 2018, 556: 235-238. |
[17] | Lehman A M. Assessing the Impacts of Gene Flow Between Endemic Hawaiian Cotton, Gossypium tomentosum, and Two Commercial Cotton Species. MS Thesis of University of Hawaii at Manoa, Hawaii, USA, 2012. |
[18] |
Passioura J. The drought environment: physical, biological and agricultural perspectives. J Exp Bot, 2007, 58: 113-117.
pmid: 17122406 |
[19] |
袁娜, 李阳, 杨郁文, 张保龙, 杜建厂. 棉花CLE多肽家族的全基因组鉴定与生物信息学分析. 棉花学报, 2019, 31: 263-281.
doi: 10.11963/1002-7807.yndjc.20190614 |
Yuan N, Li Y, Yang Y W, Zhang B L, Du J C. Genome-wide identification and characterization of CLE family in cotton (Gossypium spp.). Cotton Sci, 2019, 31: 263-281 (in Chinese with English abstract).
doi: 10.11963/1002-7807.yndjc.20190614 |
|
[20] | 高梦涛. 棉属CLE基因家族全基因组鉴定与GhCLE5功能机制初步研究. 南京农业大学硕士学位论文,江苏南京, 2021. |
Gao M T. Identification and Functional Analysis of Small Peptide CLE and RALF in Cotton. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2021 (in Chinese with English abstract). | |
[21] | Wang M, Tu L L, Yuan D, Zhu D, Shen C, Li J Y, Liu F Y, Pei L L, Wang P C, Zhao G N, Ye Z X, Huang H, Yan F L, Ma Y Z, Zhang L, Liu M, You J Q, Yang Y C, Liu Z P, Huang F, Li B Q, Qiu P, Zhang Q H, Zhu L F, Jin S X, Yang X Y, Min L, Li G L, Chen L L, Zheng H K, Lindsey K, Lin Z X, Udall J A, Zhang X L. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet, 2019, 51: 224-229. |
[22] |
Kinoshita A, Nakamura Y, Sasaki E, Kyozuka J, Fukuda H, Shinichiro S A. Gain-of-Function phenotypes of chemically synthetic CLAVATA3/ESR-Related (CLE) peptides in Arabidopsis thaliana and Oryza sativa. Plant Cell Physiol, 2007, 48: 1821-1825.
doi: 10.1093/pcp/pcm154 pmid: 17991631 |
[23] |
Altschul S F, Gish W, Miller W, Myers E W, Lipman D J. Basic local alignment search tool. J Mol Biol, 1990, 215: 403-410.
doi: 10.1016/S0022-2836(05)80360-2 pmid: 2231712 |
[24] | Timothy L B, James J, Charles E G, William S N. The MEME suite. Nucleic Acids Res, 2015, 43: W39-W49. |
[25] |
Almagro A J J, Tsirigos K D, Sønderby C K, Petersen T N, Winther O, Brunak S, Heijne G, Nielsen H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol, 2019, 37: 420-423.
doi: 10.1038/s41587-019-0036-z pmid: 30778233 |
[26] |
顾家琦, 朱福慧, 谢沛豪, 孟庆营, 郑颖, 张献龙, 袁道军. 棉属光敏色素PHY基因家族的全基因组鉴定与驯化选择分析. 植物学报, 2024, 59: 34-53.
doi: 10.11983/CBB23004 |
Gu J Q, Zhu F H, Xie P H, Meng Q Y, Zheng Y, Zhang X L, Yuan D J. Genome-wide identification and domestication analysis of the phytochrome PHY gene family in Gossypium. Chin Bull Bot, 2024, 59: 34-53. | |
[27] |
Chen C J, Chen H, Zhang Y, Tomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[28] |
Min B Q, Schmidt H A, Chernomor O, Schrempf D, Woodhams M D, Haseseler A, Lanfear R. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol, 2020, 37: 1530-1534.
doi: 10.1093/molbev/msaa015 pmid: 32011700 |
[29] | Subramanian B, Gao S H, Lercher M J, Hu S N, Chen W H. Evolview v3: a webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res, 2019, 47: W270-W275. |
[30] |
Kim D, Paggi J M, Park C, Bennett C, Salzberg S L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol, 2019, 37: 907-915.
doi: 10.1038/s41587-019-0201-4 pmid: 31375807 |
[31] | Shumate A, Wong G, Pertea G, Pertra M. Improved transcriptome assembly using a hybrid of long and short reads with StringTie. PLoS Comput Biol, 2022, 18: e1009730. |
[32] | Ito K, Murphy D. Application of ggplot2 to pharmacometric graphics. CPT Pharmacometr Syst Pharmacol, 2013, 2: e79. |
[33] | 白志英, 李存东, 吴同燕, 孙红春. 干旱胁迫条件下小麦旗叶酶活性和丙二醛含量的染色体定位. 植物遗传资源学报, 2009, 10: 255-261. |
Bai Z Y, Li C D, Wu T Y, Sun H C. Chromosomal control on flag leaf enzyme activity and MDA content under drought stress in wheat (Triticum aestivum L.). J Plant Genet Resour, 2009, 10: 255-261. | |
[34] | 李娜. 气候变化对棉花生长和产量的影响. 西北农林科技大学博士学位论文, 陕西西安, 2022. |
Li N. Effects of Climate Change on Cotton Growth and Yield. PhD Dissertation of Northwest A&F University, Xi’an, Shaanxi, China, 2022 (in Chinese with English abstract). | |
[35] | Du T S, Kang S Z, Zhang J H, Li F S. Yield and physiological responses of cotton to partial root-zone irrigation in the oasis field of northwest China. Agric Water Manag, 2006, 84: 41-52. |
[36] | Rahman M T, Rana S M S, Zahed M A, Lee S H, Yoon E S, Park J Y. Metal-organic framework-derived nanoporous carbon incorporated nanofibers for high-performance triboelectric nanogenerators and self-powered sensors. Nano Energy, 2022, 94: 106921. |
[37] | Chastain D R, Snider J L, Choinski J S, Collins G D, Perry C D, Whitaker J, Timothy L G, Sorensen R B, Iersel M, Byrd S A, Porter W. Leaf ontogeny strongly influences photosynthetic tolerance to drought and high temperature in Gossypium hirsutum. J Plant Physiol, 2016, 199: 18-28. |
[38] | Unlu M, Kanber R, Koc D L, Tekin S, Kapur B. Effects of deficit irrigation on the yield and yield components of drip irrigated cotton in a mediterranean environment. Agric Water Manag, 2011, 98: 597-605. |
[39] |
Ullah A, Sun H, Yang X Y, Zhang X L. Drought coping strategies in cotton: increased crop per drop. Plant Biotechnol J, 2017, 15: 271-284.
doi: 10.1111/pbi.12688 pmid: 28055133 |
[40] |
Bergonci T, Ribeiro B, Ceciliato P H O, Guerrero-Abad J C, Silva-Filho M C, Moura D S. Arabidopsis thaliana RALF1 opposes brassinosteroid effects on root cell elongation and lateral root formation. J Exp Bot, 2014, 65: 2219-2230.
doi: 10.1093/jxb/eru099 pmid: 24620000 |
[41] |
Suzaki T, Yoshida A, Hirano H Y. Functional diversification of CLAVATA3-Related CLE proteins in meristem maintenance in rice. Plant Cell, 2008, 20: 2049-2058.
doi: 10.1105/tpc.107.057257 pmid: 18676878 |
[42] | Han H B, Zhang G H, Wu M Y, Wang G D. Identification and characterization of the Populus trichocarpa CLE family. BMC Genomics, 2016, 17: 174. |
[43] | Fletcher J C. Recent advances in Arabidopsis CLE peptide signaling. Trends Plant Sci, 2020, 25: 1005-1016. |
[1] | 刘波, 池明, 曹梦琦, 唐达, 杨恒照, 张卫华, 薛聪. 过表达马铃薯StuPPO9基因对烟草抗旱能力的影响[J]. 作物学报, 2024, 50(9): 2237-2247. |
[2] | 刘爽, 李珅, 王东梅, 沙小茜, 何冠华, 张登峰, 李永祥, 刘旭洋, 王天宇, 黎裕, 李春辉. 基于大刍草渗入系的玉米抗旱优异等位基因挖掘[J]. 作物学报, 2024, 50(8): 1896-1906. |
[3] | 李长喜, 董占鹏, 关永虎, 刘金伟, 李航, 梅拥军. 南疆陆地棉农艺性状与皮棉产量性状的遗传贡献及决策系数分析[J]. 作物学报, 2024, 50(6): 1486-1502. |
[4] | 朱忠林, 文月, 周棋, 巫燕飞, 杜雪竹, 盛锋. 水稻OsCNGC10基因抗倒伏性以及抗旱性功能研究[J]. 作物学报, 2024, 50(5): 1351-1360. |
[5] | 王颖姮, 崔丽丽, 蔡秋华, 林强, 吴方喜, 陈飞鹤, 谢鸿光, 朱永生, 陈丽萍, 谢华安, 张建福. 代谢组和转录组分析籼稻福香占干旱胁迫的分子响应[J]. 作物学报, 2024, 50(12): 2998-3012. |
[6] | 陈旭升, 赵亮, 狄佳春. 陆地棉抗虫与抗草甘膦基因的分子聚合及经济性状相关分析[J]. 作物学报, 2024, 50(10): 2637-2642. |
[7] | 左春阳, 李亚玮, 李焱龙, 金双侠, 朱龙付, 张献龙, 闵玲. 陆地棉漆酶基因家族成员表达模式分析[J]. 作物学报, 2023, 49(9): 2344-2361. |
[8] | 朱旭东, 杨兰锋, 陈媛媛, 侯泽豪, 罗旖柔, 熊泽浩, 方正武. 甜荞FeSGT1基因克隆及抗旱功能解析[J]. 作物学报, 2023, 49(6): 1573-1583. |
[9] | 马春敏, 李维希, 李芳军, 田晓莉, 李召虎. 陆地棉硝酸盐转运体NRT基因家族鉴定及表达分析[J]. 作物学报, 2023, 49(6): 1496-1517. |
[10] | 郭宏, 于霁雯, 裴文锋, 关永虎, 李航, 李长喜, 刘金伟, 王伟, 王宝全, 梅拥军. 南疆陆地棉杂种F2的遗传分析及遗传主效聚类[J]. 作物学报, 2023, 49(3): 608-621. |
[11] | 孟雨, 田文仲, 温鹏飞, 丁志强, 张学品, 贺利, 段剑钊, 刘万代, 郭天财, 冯伟. 基于不同发育阶段协同的小麦品种抗旱性综合评判[J]. 作物学报, 2023, 49(2): 570-582. |
[12] | 周文期, 强晓霞, 李思雨, 王森, 卫万荣. 水稻卷叶等位突变体e202的鉴定和基因精细定位[J]. 作物学报, 2023, 49(11): 3029-3041. |
[13] | 朱继杰, 王士杰, 赵红霞, 贾晓昀, 李妙, 王国印. 田间条件下不同棉花品种叶片响应化学脱叶剂噻苯隆的转录组分析[J]. 作物学报, 2023, 49(10): 2705-2716. |
[14] | 沈庆庆, 王天菊, 王俊刚, 张树珍, 赵雪婷, 何丽莲, 李富生. 割手密转录因子SsWRKY1提高甘蔗品种抗旱能力的功能鉴定[J]. 作物学报, 2023, 49(10): 2654-2664. |
[15] | 王云奇, 高福莉, 李傲, 郭同济, 戚留冉, 曾寰宇, 赵建云, 王笑鸽, 高国英, 杨佳鹏, 白金泽, 马亚欢, 梁月馨, 张睿. 小麦花后穗部温度变化规律及其与产量的关系[J]. 作物学报, 2022, 48(9): 2400-2408. |
|