作物学报 ›› 2024, Vol. 50 ›› Issue (12): 2940-2949.doi: 10.3724/SP.J.1006.2024.41027
武丽芬1,2(), 夏川2, 张立超2, 孔秀英2, 陈景堂1,3,*(), 刘旭1,2,*()
WU Li-Fen1,2(), XIA Chuan2, ZHANG Li-Chao2, KONG Xiu-Ying2, CHEN Jing-Tang1,3,*(), LIU Xu1,2,*()
摘要:
适宜的抽穗期(开花时间)是作物获得高产和稳产的重要育种目标, EMF2是参与成花调控过程中的重要基因之一, 但该基因在小麦中的功能仍不清楚。本研究从普通小麦中克隆了水稻OsEMF2b的直系同源基因TaEMF2, TaEMF2-2D是一个细胞核和细胞质定位蛋白。敲除TaEMF2会推迟小麦的抽穗期, 过表达TaEMF2-2D会使小麦抽穗期提前。利用RT-qPCR检测小麦开花相关基因在TaEMF2转基因株系中的表达, 结果表明,VRN1和VRN3在敲除转基因株系中的表达水平显著下调, 在过表达株系中这2个基因的表达量则显著上调, 表明TaEMF2可能通过调控VRN1和VRN3的表达来影响小麦的抽穗期。
[1] | Xing L J, Li J, Xu Y Y, Xu Z H, Chong K. Phosphorylation modification of wheat lectin VER2 is associated with vernalization-induced O-GlcNAc signaling and intracellular motility. PLoS One, 2009, 4: e4854. |
[2] |
Yan L L, Fu D L, Li C X, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA, 2006, 103: 19581-19586.
doi: 10.1073/pnas.0607142103 pmid: 17158798 |
[3] | Yan L L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, Sanmiguel P, Bennetzen J L, Echenique V, Dubcovsky J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science, 2004, 303: 1640-1644. |
[4] |
Yan L L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA, 2003, 100: 6263-6268.
doi: 10.1073/pnas.0937399100 pmid: 12730378 |
[5] | Yong W D, Xu Y Y, Xu W Z, Wang X, Li N, Wu J S, Liang T B, Chong K, Xu Z H, Tan K H, Zhu Z Q. Vernalization-induced flowering in wheat is mediated by a lectin-like gene VER2. Planta, 2003, 217: 261-270. |
[6] | Kippes N, Debernardi J M, Vasquez-Gross H A, Akpinar B A, Budak H, Kato K, Chao S, Akhunov E, Dubcovsky J. Identification of the VERNALIZATION 4 gene reveals the origin of spring growth habit in ancient wheats from South Asia. Proc Natl Acad Sci USA, 2015, 112: E5401-E5410. |
[7] | Xu S J, Dong Q, Deng M, Lin D X, Xiao J, Cheng P L, Xing L J, Niu Y D, Gao C X, Zhang W H, Xu Y Y, Chong K. The vernalization-induced long non-coding RNA VAS functions with the transcription factor TaRF2b to promote TaVRN1 expression for flowering in hexaploid wheat. Mol Plant, 2021, 14: 1525-1538. |
[8] | Lewis E B. A gene complex controlling segmentation in Drosophila. ANature, 1978, 276: 565-570. |
[9] | Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature, 2011, 469: 343-349. |
[10] | De Lucia F, Crevillen P, Jones A M E, Greb T, Dean C. A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization. Proc Natl Acad Sci USA, 2008, 105: 16831-16836. |
[11] | Wood C C, Robertson M, Tanner G, Peacock W J, Dennis E S, Helliwell C A. The Arabidopsis thaliana vernalization response requires a polycomb-like protein complex that also includes VERNALIZATION INSENSITIVE 3. Proc Natl Acad Sci USA, 2006, 103: 14631-14636. |
[12] |
Gendall A R, Levy Y Y, Wilson A, Dean C. The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell, 2001, 107: 525-535.
doi: 10.1016/s0092-8674(01)00573-6 pmid: 11719192 |
[13] |
Baroux C, Pien S, Grossniklaus U. Chromatin modification and remodeling during early seed development. Curr Opin Genet Dev, 2007, 17: 473-479.
pmid: 18029170 |
[14] |
Berger F, Chaudhury A. Parental memories shape seeds. Trends Plant Sci, 2009, 14: 550-556.
doi: 10.1016/j.tplants.2009.08.003 pmid: 19748816 |
[15] | Goodrich J, Puangsomlee P, Martin M, Long D, Meyerowitz E M, Coupland G. A Polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature, 1997, 386: 44-51. |
[16] | Schonrock N, Bouveret R, Leroy O, Borghi L, Kohler C, Gruissem W, Hennig L. Polycomb-group proteins repress the floral activator AGL19 in the FLC-independent vernalization pathway. Genes Dev, 2006, 20: 1667-1678. |
[17] | Park H Y, Lee S Y, Seok H Y, Kim S H, Sung Z R, Moon Y H. EMF1 interacts with EIP1, EIP6 or EIP9 involved in the regulation of flowering time in Arabidopsis. Plant Cell Physiol, 2011, 52: 1376-1388. |
[18] | Sanchez R, Kim M Y, Calonje M, Moon Y H, Sung Z R. Temporal and spatial requirement of EMF1 activity for Arabidopsis vegetative and reproductive development. Mol Plant, 2009, 2: 643-653. |
[19] |
Yoshida N, Yanai Y, Chen L, Kato Y, Hiratsuka J, Miwa T, Sung Z R, Takahashi S. EMBRYONIC FLOWER2, a novel polycomb group protein homolog, mediates shoot development and flowering in Arabidopsis. Plant Cell, 2001, 13: 2471-2481.
pmid: 11701882 |
[20] | Tonosaki K, Ono A, Kunisada M, Nishino M, Nagata H, Sakamoto S, Kijima S T, Furuumi H, Nonomura K I, Sato Y, Ohme-Takagi M, Endo M, Comai L, Hatakeyama K, Kawakatsu T, Kinoshita T. Mutation of the imprinted gene OsEMF2a induces autonomous endosperm development and delayed cellularization in rice. Plant Cell, 2021, 33: 85-103. |
[21] | Conrad L J, Khanday I, Johnson C, Guiderdoni E, An G, Vijayraghavan U, Sundaresan V. The polycomb group gene EMF2B is essential for maintenance of floral meristem determinacy in rice. Plant J, 2014, 80: 883-894. |
[22] |
Chen C, Li T T, Zhu S, Liu Z H, Shi Z Y, Zheng X M, Chen R, Huang J F, Shen Y, Luo S Y, Wang L, Liu Q Q, Zhiguo E. Characterization of imprinted genes in rice reveals conservation of regulation and imprinting with other plant species. Plant Physiol, 2018, 177: 1754-1771.
doi: 10.1104/pp.17.01621 pmid: 29914891 |
[23] | Yang J, Lee S, Hang R L, Kim S R, Lee Y S, Cao X F, Amasino R, An G. OsVIL2 functions with PRC2 to induce flowering by repressing OsLFL1 in rice. Plant J, 2013, 73: 566-578. |
[24] | Xie S Y, Chen M, Pei R, Ouyang Y D, Yao J L. OsEMF2b acts as a regulator of flowering transition and floral organ identity by mediating H3K27me3 deposition at OsLFL1 and OsMADS4 in rice. Plant Mol Biol Rep, 2015, 33: 121-132. |
[25] |
Ma Q F, Qu Z Y, Wang X Y, Qiao K K, Mangi N, Fan S L. EMBRYONIC FLOWER2B, coming from a stable QTL, represses the floral transition in cotton. Int J Biol Macromol, 2020, 163: 1087-1096.
doi: S0141-8130(20)33859-9 pmid: 32679317 |
[26] | Liu M S, Chen L F O, Lin C H, Lai Y M, Huang J Y, Sung Z R. Molecular and functional characterization of broccoli EMBRYONIC FLOWER 2 genes. Plant Cell Physiol, 2012, 53: 1217-1231. |
[27] | Zhou X, Wang L L, Yan J, Ye J B, Cheng S Y, Xu F, Wang G Y, Zhang W W, Liao Y L, Liu X M. Functional characterization of the EMBRYONIC FLOWER 2 gene involved in flowering in Ginkgo biloba. Front Plant Sci, 2021, 12: 681166. |
[28] | 杨浩. 绿竹成花相关基因BoEMF2的克隆和功能分析. 浙江农林大学硕士学位论文,浙江杭州, 2011. |
Yang H. Cloning and Functional Analysis of the BoEMF2 Gene Related to the Flowering of Green Bamboo. MS Thesis of Zhejiang A&F University, Hangzhou, Zhejiang, China, 2011 (in Chinese with English abstract). | |
[29] |
Chanvivattana Y, Bishopp A, Schubert D, Stock C, Moon Y H, Sung Z R, Goodrich J. Interaction of Polycomb-group proteins controlling flowering in Arabidopsis. Development, 2004, 131: 5263-5276.
doi: 10.1242/dev.01400 pmid: 15456723 |
[30] | Jiang D H, Wang Y Q, Wang Y Z, He Y H. Repression of flowering locus c and flowering locus t by the Arabidopsis Polycomb repressive complex 2 components. PLoS One, 2008, 3: e3404. |
[31] |
Chou M L, Haung M D, Yang C H. EMF genes interact with late-flowering genes in regulating floral initiation genes during shoot development in Arabidopsis thaliana. Plant Cell Physiol, 2001, 42: 499-507.
pmid: 11382816 |
[32] | Zhang X L, Li W J, Liu Y, Li Y Z, Li Y, Yang W D, Chen X S, Pi L M, Yang H C. Replication protein RPA2A regulates floral transition by cooperating with PRC2 in Arabidopsis. New Phytol, 2022, 235: 2439-2453. |
[1] | 禹海龙, 吴文雪, 裴星旭, 刘晓宇, 邓跟望, 李西臣, 甄士聪, 望俊森, 赵永涛, 许海霞, 程西永, 詹克慧. 小麦茎秆性状的转录组测序及全基因组关联分析[J]. 作物学报, 2024, 50(9): 2187-2206. |
[2] | 黄林玉, 张潇月, 李豪, 邓梅, 康厚扬, 魏育明, 王际睿, 蒋云峰, 陈国跃. 小麦农家种成株期条锈病抗性QTL定位及其育种效应解析[J]. 作物学报, 2024, 50(9): 2167-2178. |
[3] | 彭小爱, 卢茂昂, 张玲, 刘童, 曹磊, 宋有洪, 郑文寅, 何贤芳, 朱玉磊. 基于55K SNP芯片的小麦籽粒主要品质性状的全基因组关联分析[J]. 作物学报, 2024, 50(8): 1948-1960. |
[4] | 高维东, 胡城祯, 张龙, 张艳艳, 张沛沛, 杨德龙, 陈涛. 小麦泛素结合酶TaUBC16基因的克隆与功能分析[J]. 作物学报, 2024, 50(8): 1971-1988. |
[5] | 梁进宇, 尹嘉德, 侯慧芝, 薛云贵, 郭宏娟, 王硕, 赵绮志, 张绪成, 谢军红. 干旱条件下深施肥对春小麦旗叶生态化学计量特征及其光合碳同化的影响[J]. 作物学报, 2024, 50(8): 2078-2090. |
[6] | 陈娟, 杨婷婷, 闫素辉, 雍玉东, 张士雅, 李文阳. 拔节期渍水对软质小麦淀粉粒度分布与糊化特性的影响[J]. 作物学报, 2024, 50(7): 1877-1884. |
[7] | 方宇辉, 齐学礼, 李艳, 张煜, 彭超军, 华夏, 陈艳艳, 郭瑞, 胡琳, 许为钢. 强光胁迫对转玉米C4型ZmPEPC+ZmPPDK基因小麦光合和生理特性的影响[J]. 作物学报, 2024, 50(7): 1647-1657. |
[8] | 毕俊鸽, 曾占奎, 李琼, 洪壮壮, 颜群翔, 赵越, 王春平. 两个RIL群体中小麦籽粒品质相关性状QTL定位及KASP标记开发[J]. 作物学报, 2024, 50(7): 1669-1683. |
[9] | 张智源, 周界光, 刘家君, 王素容, 王同著, 赵聪豪, 尤佳宁, 丁浦洋, 唐华苹, 刘燕林, 江千涛, 陈国跃, 魏育明, 马建. 基于遗传解析新模式的小麦寡分蘖QTL的鉴定和验证[J]. 作物学报, 2024, 50(6): 1373-1383. |
[10] | 朱明昆, 包俊浩, 庞菁璐, 周诗绮, 方忠艳, 郑文, 张亚洲, 吴丹丹. 纤毛鹅观草-普通小麦高抗条锈病多年生属间杂种F1的创制及鉴定[J]. 作物学报, 2024, 50(6): 1406-1420. |
[11] | 乔志新, 张杰道, 王雨, 郭启芳, 刘燕静, 陈蕊, 胡文浩, 孙爱清. 干旱胁迫下冬小麦不同品种萌发特性差异的研究[J]. 作物学报, 2024, 50(6): 1568-1583. |
[12] | 马艳明, 娄鸿耀, 王威, 孙娜, 颜国荣, 张胜军, 刘杰, 倪中福, 徐麟. 新疆冬小麦籽粒品质性状遗传差异与关联分析[J]. 作物学报, 2024, 50(6): 1394-1405. |
[13] | 陈家婷, 白欣, 谷雨杰, 张潇文, 郭慧娟, 常利芳, 陈芳, 张树伟, 张晓军, 李欣, 冯瑞云, 畅志坚, 乔麟轶. 小麦芽期和苗期耐盐鉴定方法的适用性评价[J]. 作物学报, 2024, 50(5): 1193-1206. |
[14] | 陆汝华, 王文轩, 曹强, 田永超, 朱艳, 曹卫星, 刘小军. 稻麦复种模式下氮肥与稻秸互作对小麦产量和N2O排放影响及推荐施肥研究[J]. 作物学报, 2024, 50(5): 1300-1311. |
[15] | 许乃银, 金石桥, 晋芳, 刘丽华, 徐剑文, 刘丰泽, 任雪贞, 孙全, 许栩, 庞斌双. 基于SNP标记的小麦品种遗传相似度及其检测准确度分析[J]. 作物学报, 2024, 50(4): 887-896. |
|