欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (12): 2940-2949.doi: 10.3724/SP.J.1006.2024.41027

所属专题: 小麦:遗传育种·种质资源·分子遗传学

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

TaEMF2调控小麦抽穗期的功能分析

武丽芬1,2(), 夏川2, 张立超2, 孔秀英2, 陈景堂1,3,*(), 刘旭1,2,*()   

  1. 1河北农业大学农学院 / 国家玉米改良中心河北分中心 / 华北作物改良与调控国家重点实验室, 河北保定 071001
    2中国农业科学院作物科学研究所 / 作物基因资源与育种全国重点实验室, 北京 100081
    3青岛农业大学农学院, 山东青岛 266109
  • 收稿日期:2024-04-15 接受日期:2024-08-15 出版日期:2024-12-12 网络出版日期:2024-09-02
  • 通讯作者: *陈景堂, E-mail: chenjingtang@126.com; 刘旭, E-mail: liuxu03@caas.cn
  • 作者简介:E-mail: wulifen324826@163.com
  • 基金资助:
    国家重点研发计划项目(2022YFF1002902)

Functional analysis of TaEMF2 in regulating wheat heading date

WU Li-Fen1,2(), XIA Chuan2, ZHANG Li-Chao2, KONG Xiu-Ying2, CHEN Jing-Tang1,3,*(), LIU Xu1,2,*()   

  1. 1College of Agronomy, Hebei Agricultural University / Hebei Sub-Center for National Maize Improvement Center / State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, Hebei, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding, Beijing 100081, China
    3College of Agronomy, Qingdao Agricultural University, Qingdao 266109, Shandong, China
  • Received:2024-04-15 Accepted:2024-08-15 Published:2024-12-12 Published online:2024-09-02
  • Contact: *E-mail: chenjingtang@126.com; E-mail: liuxu03@caas.cn
  • Supported by:
    National Key Research and Development Program of China(2022YFF1002902)

摘要:

适宜的抽穗期(开花时间)是作物获得高产和稳产的重要育种目标, EMF2是参与成花调控过程中的重要基因之一, 但该基因在小麦中的功能仍不清楚。本研究从普通小麦中克隆了水稻OsEMF2b的直系同源基因TaEMF2, TaEMF2-2D是一个细胞核和细胞质定位蛋白。敲除TaEMF2会推迟小麦的抽穗期, 过表达TaEMF2-2D会使小麦抽穗期提前。利用RT-qPCR检测小麦开花相关基因在TaEMF2转基因株系中的表达, 结果表明,VRN1VRN3在敲除转基因株系中的表达水平显著下调, 在过表达株系中这2个基因的表达量则显著上调, 表明TaEMF2可能通过调控VRN1VRN3的表达来影响小麦的抽穗期。

关键词: 小麦, 抽穗期, TaEMF2, CRISPR/Cas9基因编辑, 过表达

Abstract:

A suitable heading date (flowering time) is a crucial breeding goal for achieving high and stable crop yields. EMF2 is an important gene involved in the regulation of heading date, but its function in wheat remains unclear. In this study, TaEMF2-2D, the orthologous gene of the rice heading date regulatory gene OsEMF2b, was cloned from wheat. Subcellular localization assays revealed that TaEMF2-2D is a nucleus and cytoplasm protein. To elucidate the role of TaEMF2 in regulating wheat heading date, we used the CRISPR/Cas9 gene editing system to knockout TaEMF2, which resulted in a delayed heading date in wheat. Conversely, overexpression of TaEMF2-2D caused an early heading date. Further analysis showed that the expression levels of the flowering-related genes VRN1 and VRN3 were significantly reduced in the knockout lines, while their expression levels were significantly increased in the overexpression plants, as determined by RT-qPCR. These results suggest that the TaEMF2 gene influences wheat heading date by regulating the expression levels of VRN1 and VRN3.

Key words: wheat (Triticum aestivum L.), heading date, TaEMF2 gene, CRISPR/Cas9 gene editing, overexpression

表1

本研究所用引物"

引物名称 Primer name 引物序列 Primer sequence (5'-3')
TaEMF2-2D-CDS-F CATCCTTATCCTTATCCTTAGGGCA
TaEMF2-2D-CDS-R GGGAACGACAAGTGCAAAGTC
pWMB110-TaEMF2-CDS-F GTCGACTCTAGAGGATCCCCGGGATGTGCCGTCAACCGTCG
pWMB110-TaEMF2-CDS-R CATGAATTCCGGCTCGAGACTAGTAAACGTCTTCTTCTTGGGTT
TaEMF2-CDS-SEQF TTGTGTTTCAGATTCAGAA
TaEMF2-CDS-SEQR TGCTCGGCAGAATCGGGTGCT
pBUE413-TaEMF2-F aataatggtctcAAGCgTGTCCTGCTCCAGAAATTTgttttagagctagaaatagc
pBUE413-TaEMF2-R attattggtctcTAAAcGACCACATGTGCCGTCAACcgcttcttggtgcc
pBUE413-413-seq-F TTTCCCAGTCACGACGTTGT
pBUE413-413-seq-R ATCTCTAGAGAGGGGCACGA
TaEMF2-G-2A-P1-F2 TACGCGATGCATTTTGACAGAGT
TaEMF2-G-2A-P1-R2 TATTGTGTTACCTTATAATATGAC
TaEMF2-G-2A-P2-F1 GTGGAAGCTTGCTATCCATGTGC
TaEMF2-G-2A-P2-R1 AATGAGAGCTACCTCTTTTTGCGGT
TaEMF2-G-2B-P1-F1 AATTAAGTTAGGCACCCGTACTTT
TaEMF2-G-2B-P1-R1 GGGGTCTCTCTTTTGAACAATCG
TaEMF2-G-2B-P2-R2 CATGATGGCATTGTTTAATGAGATA
TaEMF2-G-2D-P1-F1 GCATGTAACTTTAGTTGTCCTAG
TaEMF2-G-2D-P2-F1 GGATTGATTGGTGATACGATAG
TaEMF2-G-2D-P2-R1 TCACGTAAATGATAGTAAGTAGTC
TaEMF2-G-2A-P1-seq-R CAGAAGGTCTACAATATAATC
TaEMF2-G-2A-P2-seq-F CTCTAATTATCTATCTATCTATCC
TaEMF2-G-2B-P1-seq-F ATCAACCTTATTTATTTTAAAAAT
TaEMF2-G-2B-P2-seq-F TCTTTGTTAGACACGACCATC
TaEMF2-G-2D-P1-seq-R ATAATCCGTTGCCCTTAAATATG
TaEMF2-G-2D-P2-seq-R ATCAAGGGCTCGTTTTTGGATAACA
RT-TaGAPDH-F TTAGACTTGCGAAGCCAGCA
RT-TaGAPDH-R AAATGCCCTTGAGGTTTCCC
RT-TaEMF2-2D-F3 TGGAGGCGCTGGAGCGGCGGCTA
RT-TaEMF2-2D-R3 GCGCTCCCAGCCCAGCGACCCT
RT-VRN1-5A-F CAGCCTCAAACCAGCTCTTCA
RT-VRN1-5A-R CTCTGCCCTCTCGCCTGT
RT-VRN3-7ABD-F GTCGTTCGGGCAGGAG
RT-VRN3-7ABD-R TCGTGCTCGTACTCTTCCA
pAN-580-GFP-TaEMF2-2D-CDS-F AGCCCAGATCACTAGTATGTGCCGTCAACCGTCG
pAN-580-GFP-TaEMF2-2D-CDS-R TGCTCACCATGGATCCAAACGTCTTCTTCTTGGGTT

图1

小麦TaEMF2基因结构图"

图2

EMF2在高等植物中的进化分析 小麦(Triticum aestivum)、野生二粒小麦(Triticum dicoccoides)、硬粒小麦(Triticum turgidum)、粗山羊草(Aegilops tauschii)、乌拉尔图小麦(Triticum urartu)、长穗偃麦草(Thinopyrum elongatum)、大麦(Hordeum vulgare)、二穗短柄草(Brachypodium distachyon)、水稻(Oryza sativa)、玉米(Zea mays)、高粱(Sorghum bicolor)、向日葵(Helianthus annuus)、银杏(Ginkgo biloba)、绿竹(Bamboosa oldhami)、油菜(Brassica napus)、拟南芥(Arabidopsis thaliana)、大豆(Glycine max)和棉花(Gossypium raimondii)的EMF2间的进化分析。六倍体小麦的同源基因TaEMF2用红色三角标出; 二穗短柄草EMF2用红色方块标出; 玉米和高粱EMF2用红色圆形标出。"

图3

TaEMF2蛋白在小麦原生质体中的亚细胞定位 mCherry: 核定位marker; Merged: TaEMF2与mCherry信号融合; 标尺为10 μm。"

图4

TaEMF2的CRISPR/Cas9基因敲除系的基因型和表型 A: TaEMF2的基因结构和靶点的设计。黑色框表示外显子, 红色线表示靶点的位置, 靶点序列在基因结构下方。B: 基因编辑载体结构示意图。C: TaEMF2敲除系的突变位点序列变化。PAM和sgRNA靶位点分别用红字和黑线表示。蓝色字母表示碱基的插入, 黑色虚线表示缺失的序列。D: TaEMF2敲除系的抽穗期表型。红色箭头指示已抽出的麦穗, 标尺为20 cm。E: TaEMF2敲除系的抽穗天数的统计。数值代表平均值±标准方差(n = 3), ** 表示P < 0.01时达到差异显著水平。"

图5

TaEMF2-2D基因过表达株系的表达量与表型分析 A: 表达量检测, n = 3。B: TaEMF2-2D的过表达株系的抽穗期表型, 红色箭头表示已抽出的麦穗, 标尺为20 cm。C: TaEMF2-2D过表达株系抽穗天数的统计, 数值代表平均值±标准方差(n = 3)。** 表示在P < 0.01差异显著。"

图6

VRN1和VRN3基因在TaEMF2转基因小麦中的表达量分析 A, B: VRN1和VRN3分别在TaEMF2敲除系中的表达水平; C, D: VRN1和VRN3分别在TaEMF2过表达系中的表达水平。TaGAPDH为内参基因。数值代表平均值±标准方差(n = 3)。* 表示在P < 0.05时达到差异极显著水平; ** 表示在P < 0.01差异显著。"

[1] Xing L J, Li J, Xu Y Y, Xu Z H, Chong K. Phosphorylation modification of wheat lectin VER2 is associated with vernalization-induced O-GlcNAc signaling and intracellular motility. PLoS One, 2009, 4: e4854.
[2] Yan L L, Fu D L, Li C X, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA, 2006, 103: 19581-19586.
doi: 10.1073/pnas.0607142103 pmid: 17158798
[3] Yan L L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, Sanmiguel P, Bennetzen J L, Echenique V, Dubcovsky J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science, 2004, 303: 1640-1644.
[4] Yan L L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA, 2003, 100: 6263-6268.
doi: 10.1073/pnas.0937399100 pmid: 12730378
[5] Yong W D, Xu Y Y, Xu W Z, Wang X, Li N, Wu J S, Liang T B, Chong K, Xu Z H, Tan K H, Zhu Z Q. Vernalization-induced flowering in wheat is mediated by a lectin-like gene VER2. Planta, 2003, 217: 261-270.
[6] Kippes N, Debernardi J M, Vasquez-Gross H A, Akpinar B A, Budak H, Kato K, Chao S, Akhunov E, Dubcovsky J. Identification of the VERNALIZATION 4 gene reveals the origin of spring growth habit in ancient wheats from South Asia. Proc Natl Acad Sci USA, 2015, 112: E5401-E5410.
[7] Xu S J, Dong Q, Deng M, Lin D X, Xiao J, Cheng P L, Xing L J, Niu Y D, Gao C X, Zhang W H, Xu Y Y, Chong K. The vernalization-induced long non-coding RNA VAS functions with the transcription factor TaRF2b to promote TaVRN1 expression for flowering in hexaploid wheat. Mol Plant, 2021, 14: 1525-1538.
[8] Lewis E B. A gene complex controlling segmentation in Drosophila. ANature, 1978, 276: 565-570.
[9] Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature, 2011, 469: 343-349.
[10] De Lucia F, Crevillen P, Jones A M E, Greb T, Dean C. A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization. Proc Natl Acad Sci USA, 2008, 105: 16831-16836.
[11] Wood C C, Robertson M, Tanner G, Peacock W J, Dennis E S, Helliwell C A. The Arabidopsis thaliana vernalization response requires a polycomb-like protein complex that also includes VERNALIZATION INSENSITIVE 3. Proc Natl Acad Sci USA, 2006, 103: 14631-14636.
[12] Gendall A R, Levy Y Y, Wilson A, Dean C. The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell, 2001, 107: 525-535.
doi: 10.1016/s0092-8674(01)00573-6 pmid: 11719192
[13] Baroux C, Pien S, Grossniklaus U. Chromatin modification and remodeling during early seed development. Curr Opin Genet Dev, 2007, 17: 473-479.
pmid: 18029170
[14] Berger F, Chaudhury A. Parental memories shape seeds. Trends Plant Sci, 2009, 14: 550-556.
doi: 10.1016/j.tplants.2009.08.003 pmid: 19748816
[15] Goodrich J, Puangsomlee P, Martin M, Long D, Meyerowitz E M, Coupland G. A Polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature, 1997, 386: 44-51.
[16] Schonrock N, Bouveret R, Leroy O, Borghi L, Kohler C, Gruissem W, Hennig L. Polycomb-group proteins repress the floral activator AGL19 in the FLC-independent vernalization pathway. Genes Dev, 2006, 20: 1667-1678.
[17] Park H Y, Lee S Y, Seok H Y, Kim S H, Sung Z R, Moon Y H. EMF1 interacts with EIP1, EIP6 or EIP9 involved in the regulation of flowering time in Arabidopsis. Plant Cell Physiol, 2011, 52: 1376-1388.
[18] Sanchez R, Kim M Y, Calonje M, Moon Y H, Sung Z R. Temporal and spatial requirement of EMF1 activity for Arabidopsis vegetative and reproductive development. Mol Plant, 2009, 2: 643-653.
[19] Yoshida N, Yanai Y, Chen L, Kato Y, Hiratsuka J, Miwa T, Sung Z R, Takahashi S. EMBRYONIC FLOWER2, a novel polycomb group protein homolog, mediates shoot development and flowering in Arabidopsis. Plant Cell, 2001, 13: 2471-2481.
pmid: 11701882
[20] Tonosaki K, Ono A, Kunisada M, Nishino M, Nagata H, Sakamoto S, Kijima S T, Furuumi H, Nonomura K I, Sato Y, Ohme-Takagi M, Endo M, Comai L, Hatakeyama K, Kawakatsu T, Kinoshita T. Mutation of the imprinted gene OsEMF2a induces autonomous endosperm development and delayed cellularization in rice. Plant Cell, 2021, 33: 85-103.
[21] Conrad L J, Khanday I, Johnson C, Guiderdoni E, An G, Vijayraghavan U, Sundaresan V. The polycomb group gene EMF2B is essential for maintenance of floral meristem determinacy in rice. Plant J, 2014, 80: 883-894.
[22] Chen C, Li T T, Zhu S, Liu Z H, Shi Z Y, Zheng X M, Chen R, Huang J F, Shen Y, Luo S Y, Wang L, Liu Q Q, Zhiguo E. Characterization of imprinted genes in rice reveals conservation of regulation and imprinting with other plant species. Plant Physiol, 2018, 177: 1754-1771.
doi: 10.1104/pp.17.01621 pmid: 29914891
[23] Yang J, Lee S, Hang R L, Kim S R, Lee Y S, Cao X F, Amasino R, An G. OsVIL2 functions with PRC2 to induce flowering by repressing OsLFL1 in rice. Plant J, 2013, 73: 566-578.
[24] Xie S Y, Chen M, Pei R, Ouyang Y D, Yao J L. OsEMF2b acts as a regulator of flowering transition and floral organ identity by mediating H3K27me3 deposition at OsLFL1 and OsMADS4 in rice. Plant Mol Biol Rep, 2015, 33: 121-132.
[25] Ma Q F, Qu Z Y, Wang X Y, Qiao K K, Mangi N, Fan S L. EMBRYONIC FLOWER2B, coming from a stable QTL, represses the floral transition in cotton. Int J Biol Macromol, 2020, 163: 1087-1096.
doi: S0141-8130(20)33859-9 pmid: 32679317
[26] Liu M S, Chen L F O, Lin C H, Lai Y M, Huang J Y, Sung Z R. Molecular and functional characterization of broccoli EMBRYONIC FLOWER 2 genes. Plant Cell Physiol, 2012, 53: 1217-1231.
[27] Zhou X, Wang L L, Yan J, Ye J B, Cheng S Y, Xu F, Wang G Y, Zhang W W, Liao Y L, Liu X M. Functional characterization of the EMBRYONIC FLOWER 2 gene involved in flowering in Ginkgo biloba. Front Plant Sci, 2021, 12: 681166.
[28] 杨浩. 绿竹成花相关基因BoEMF2的克隆和功能分析. 浙江农林大学硕士学位论文,浙江杭州, 2011.
Yang H. Cloning and Functional Analysis of the BoEMF2 Gene Related to the Flowering of Green Bamboo. MS Thesis of Zhejiang A&F University, Hangzhou, Zhejiang, China, 2011 (in Chinese with English abstract).
[29] Chanvivattana Y, Bishopp A, Schubert D, Stock C, Moon Y H, Sung Z R, Goodrich J. Interaction of Polycomb-group proteins controlling flowering in Arabidopsis. Development, 2004, 131: 5263-5276.
doi: 10.1242/dev.01400 pmid: 15456723
[30] Jiang D H, Wang Y Q, Wang Y Z, He Y H. Repression of flowering locus c and flowering locus t by the Arabidopsis Polycomb repressive complex 2 components. PLoS One, 2008, 3: e3404.
[31] Chou M L, Haung M D, Yang C H. EMF genes interact with late-flowering genes in regulating floral initiation genes during shoot development in Arabidopsis thaliana. Plant Cell Physiol, 2001, 42: 499-507.
pmid: 11382816
[32] Zhang X L, Li W J, Liu Y, Li Y Z, Li Y, Yang W D, Chen X S, Pi L M, Yang H C. Replication protein RPA2A regulates floral transition by cooperating with PRC2 in Arabidopsis. New Phytol, 2022, 235: 2439-2453.
[1] 胡润慧, 汪军成, 司二静, 张宏, 李兴茂, 马小乐, 孟亚雄, 王化俊, 刘青, 姚立蓉, 李葆春. 小麦苗期耐旱耐盐种质筛选及抗旱耐盐综合评价[J]. 作物学报, 2025, 51(9): 2371-2386.
[2] 杨颖聪, 张俊豪, 唐一哲, 乔唱唱, 王鹏博, 黄明, 徐国伟, 王贺正. 秸秆还田和施磷量对旱地小麦籽粒淀粉及其合成相关酶活性的影响[J]. 作物学报, 2025, 51(9): 2467-2484.
[3] 孔德真, 桑伟, 聂迎彬, 李伟, 徐红军, 李江博, 刘鹏鹏, 田笑明. 小麦AL型细胞质雄性不育系与同型保持系穗花发育时期代谢物变化比较研究[J]. 作物学报, 2025, 51(9): 2454-2466.
[4] 李云香, 郭千纤, 侯万伟, 张小娟. 引进ICARDA小麦苗期根系抗旱性状的全基因组关联分析[J]. 作物学报, 2025, 51(9): 2387-2398.
[5] 李璐琪, 程宇坤, 白斌, 雷斌, 耿洪伟. 小麦叶片气孔相关性状全基因组关联分析[J]. 作物学报, 2025, 51(9): 2266-2284.
[6] 杨婷婷, 陈娟, ABDUL Rehman, 李婧, 闫素辉, 汪建来, 李文阳. 花后弱光对软质小麦干物质积累转运、籽粒产量和淀粉品质的影响[J]. 作物学报, 2025, 51(8): 2204-2219.
[7] 闫喆林, 任强, 樊志龙, 殷文, 孙亚丽, 范虹, 何蔚, 胡发龙, 闫丽娟, 柴强. 氮肥后移优化绿洲灌区小麦间作玉米种间关系提高氮素利用效率[J]. 作物学报, 2025, 51(8): 2190-2203.
[8] 王曜阔, 王文政, 张敏, 刘希伟, 杨敏, 李昊昱, 张灵鑫, 闫彦菲, 蔡瑞国. 水氮运筹对冬小麦籽粒GMP合成和面粉加工品质的影响[J]. 作物学报, 2025, 51(8): 2176-2189.
[9] 姜朋, 吴磊, 黄倩楠, 李畅, 王化敦, 何漪, 张鹏, 张旭. 矮秆基因Rht-D1在长江中下游麦区的育种利用探索[J]. 作物学报, 2025, 51(8): 2077-2086.
[10] 蔡金珊, 李超男, 王景一, 李宁, 柳玉平, 景蕊莲, 李龙, 孙黛珍. 小麦幼苗根系性状全基因组关联分析及TaSRL-3B优异等位基因发掘[J]. 作物学报, 2025, 51(8): 2020-2032.
[11] 张飞飞, 何万龙, 焦文娟, 白斌, 耿洪伟, 程宇坤. 小麦抗条锈病相关性状元分析及候选基因分析[J]. 作物学报, 2025, 51(8): 2111-2127.
[12] 宋改利, 王璐倩, 屈柯飞, 唐建卫, 董纯豪, 黄振朴, 高艳, 牛吉山, 殷贵鸿, 李巧云. Bipolaris sorokiniana黑胚病对中筋小麦淀粉含量、粒度分布与糊化特性的影响[J]. 作物学报, 2025, 51(8): 2164-2175.
[13] 高梦娟, 赵贺莹, 陈家辉, 陈晓倩, 牛萌康, 钱琪润, 崔陆飞, 邢江敏, 银庆淼, 郭雯, 张宁, 孙丛苇, 阳霞, 裴丹, 贾奥琳, 陈锋, 余晓东, 任妍. 小麦抗纹枯病新位点Qse.hnau-5AS的定位及其候选基因鉴定[J]. 作物学报, 2025, 51(8): 2240-2250.
[14] 鲁向前, 付玉洁, 赵俊恒, 郑楠楠, 孙楠楠, 张国平, 叶玲珍. 小麦花药培养最佳取样时期穗部形态特征鉴定与高培养力基因型筛选[J]. 作物学报, 2025, 51(8): 2033-2047.
[15] 王天译, 杨绣娟, 赵佳佳, 郝宇琼, 郑兴卫, 武棒棒, 李晓华, 郝水源, 郑军. 山西小麦醇溶蛋白多样性及其对面粉品质效应研究[J]. 作物学报, 2025, 51(7): 1784-1800.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!