作物学报 ›› 2024, Vol. 50 ›› Issue (12): 2940-2949.doi: 10.3724/SP.J.1006.2024.41027
所属专题: 小麦:遗传育种·种质资源·分子遗传学
武丽芬1,2(
), 夏川2, 张立超2, 孔秀英2, 陈景堂1,3,*(
), 刘旭1,2,*(
)
WU Li-Fen1,2(
), XIA Chuan2, ZHANG Li-Chao2, KONG Xiu-Ying2, CHEN Jing-Tang1,3,*(
), LIU Xu1,2,*(
)
摘要:
适宜的抽穗期(开花时间)是作物获得高产和稳产的重要育种目标, EMF2是参与成花调控过程中的重要基因之一, 但该基因在小麦中的功能仍不清楚。本研究从普通小麦中克隆了水稻OsEMF2b的直系同源基因TaEMF2, TaEMF2-2D是一个细胞核和细胞质定位蛋白。敲除TaEMF2会推迟小麦的抽穗期, 过表达TaEMF2-2D会使小麦抽穗期提前。利用RT-qPCR检测小麦开花相关基因在TaEMF2转基因株系中的表达, 结果表明,VRN1和VRN3在敲除转基因株系中的表达水平显著下调, 在过表达株系中这2个基因的表达量则显著上调, 表明TaEMF2可能通过调控VRN1和VRN3的表达来影响小麦的抽穗期。
| [1] | Xing L J, Li J, Xu Y Y, Xu Z H, Chong K. Phosphorylation modification of wheat lectin VER2 is associated with vernalization-induced O-GlcNAc signaling and intracellular motility. PLoS One, 2009, 4: e4854. |
| [2] |
Yan L L, Fu D L, Li C X, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA, 2006, 103: 19581-19586.
doi: 10.1073/pnas.0607142103 pmid: 17158798 |
| [3] | Yan L L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, Sanmiguel P, Bennetzen J L, Echenique V, Dubcovsky J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science, 2004, 303: 1640-1644. |
| [4] |
Yan L L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA, 2003, 100: 6263-6268.
doi: 10.1073/pnas.0937399100 pmid: 12730378 |
| [5] | Yong W D, Xu Y Y, Xu W Z, Wang X, Li N, Wu J S, Liang T B, Chong K, Xu Z H, Tan K H, Zhu Z Q. Vernalization-induced flowering in wheat is mediated by a lectin-like gene VER2. Planta, 2003, 217: 261-270. |
| [6] | Kippes N, Debernardi J M, Vasquez-Gross H A, Akpinar B A, Budak H, Kato K, Chao S, Akhunov E, Dubcovsky J. Identification of the VERNALIZATION 4 gene reveals the origin of spring growth habit in ancient wheats from South Asia. Proc Natl Acad Sci USA, 2015, 112: E5401-E5410. |
| [7] | Xu S J, Dong Q, Deng M, Lin D X, Xiao J, Cheng P L, Xing L J, Niu Y D, Gao C X, Zhang W H, Xu Y Y, Chong K. The vernalization-induced long non-coding RNA VAS functions with the transcription factor TaRF2b to promote TaVRN1 expression for flowering in hexaploid wheat. Mol Plant, 2021, 14: 1525-1538. |
| [8] | Lewis E B. A gene complex controlling segmentation in Drosophila. ANature, 1978, 276: 565-570. |
| [9] | Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature, 2011, 469: 343-349. |
| [10] | De Lucia F, Crevillen P, Jones A M E, Greb T, Dean C. A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization. Proc Natl Acad Sci USA, 2008, 105: 16831-16836. |
| [11] | Wood C C, Robertson M, Tanner G, Peacock W J, Dennis E S, Helliwell C A. The Arabidopsis thaliana vernalization response requires a polycomb-like protein complex that also includes VERNALIZATION INSENSITIVE 3. Proc Natl Acad Sci USA, 2006, 103: 14631-14636. |
| [12] |
Gendall A R, Levy Y Y, Wilson A, Dean C. The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell, 2001, 107: 525-535.
doi: 10.1016/s0092-8674(01)00573-6 pmid: 11719192 |
| [13] |
Baroux C, Pien S, Grossniklaus U. Chromatin modification and remodeling during early seed development. Curr Opin Genet Dev, 2007, 17: 473-479.
pmid: 18029170 |
| [14] |
Berger F, Chaudhury A. Parental memories shape seeds. Trends Plant Sci, 2009, 14: 550-556.
doi: 10.1016/j.tplants.2009.08.003 pmid: 19748816 |
| [15] | Goodrich J, Puangsomlee P, Martin M, Long D, Meyerowitz E M, Coupland G. A Polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature, 1997, 386: 44-51. |
| [16] | Schonrock N, Bouveret R, Leroy O, Borghi L, Kohler C, Gruissem W, Hennig L. Polycomb-group proteins repress the floral activator AGL19 in the FLC-independent vernalization pathway. Genes Dev, 2006, 20: 1667-1678. |
| [17] | Park H Y, Lee S Y, Seok H Y, Kim S H, Sung Z R, Moon Y H. EMF1 interacts with EIP1, EIP6 or EIP9 involved in the regulation of flowering time in Arabidopsis. Plant Cell Physiol, 2011, 52: 1376-1388. |
| [18] | Sanchez R, Kim M Y, Calonje M, Moon Y H, Sung Z R. Temporal and spatial requirement of EMF1 activity for Arabidopsis vegetative and reproductive development. Mol Plant, 2009, 2: 643-653. |
| [19] |
Yoshida N, Yanai Y, Chen L, Kato Y, Hiratsuka J, Miwa T, Sung Z R, Takahashi S. EMBRYONIC FLOWER2, a novel polycomb group protein homolog, mediates shoot development and flowering in Arabidopsis. Plant Cell, 2001, 13: 2471-2481.
pmid: 11701882 |
| [20] | Tonosaki K, Ono A, Kunisada M, Nishino M, Nagata H, Sakamoto S, Kijima S T, Furuumi H, Nonomura K I, Sato Y, Ohme-Takagi M, Endo M, Comai L, Hatakeyama K, Kawakatsu T, Kinoshita T. Mutation of the imprinted gene OsEMF2a induces autonomous endosperm development and delayed cellularization in rice. Plant Cell, 2021, 33: 85-103. |
| [21] | Conrad L J, Khanday I, Johnson C, Guiderdoni E, An G, Vijayraghavan U, Sundaresan V. The polycomb group gene EMF2B is essential for maintenance of floral meristem determinacy in rice. Plant J, 2014, 80: 883-894. |
| [22] |
Chen C, Li T T, Zhu S, Liu Z H, Shi Z Y, Zheng X M, Chen R, Huang J F, Shen Y, Luo S Y, Wang L, Liu Q Q, Zhiguo E. Characterization of imprinted genes in rice reveals conservation of regulation and imprinting with other plant species. Plant Physiol, 2018, 177: 1754-1771.
doi: 10.1104/pp.17.01621 pmid: 29914891 |
| [23] | Yang J, Lee S, Hang R L, Kim S R, Lee Y S, Cao X F, Amasino R, An G. OsVIL2 functions with PRC2 to induce flowering by repressing OsLFL1 in rice. Plant J, 2013, 73: 566-578. |
| [24] | Xie S Y, Chen M, Pei R, Ouyang Y D, Yao J L. OsEMF2b acts as a regulator of flowering transition and floral organ identity by mediating H3K27me3 deposition at OsLFL1 and OsMADS4 in rice. Plant Mol Biol Rep, 2015, 33: 121-132. |
| [25] |
Ma Q F, Qu Z Y, Wang X Y, Qiao K K, Mangi N, Fan S L. EMBRYONIC FLOWER2B, coming from a stable QTL, represses the floral transition in cotton. Int J Biol Macromol, 2020, 163: 1087-1096.
doi: S0141-8130(20)33859-9 pmid: 32679317 |
| [26] | Liu M S, Chen L F O, Lin C H, Lai Y M, Huang J Y, Sung Z R. Molecular and functional characterization of broccoli EMBRYONIC FLOWER 2 genes. Plant Cell Physiol, 2012, 53: 1217-1231. |
| [27] | Zhou X, Wang L L, Yan J, Ye J B, Cheng S Y, Xu F, Wang G Y, Zhang W W, Liao Y L, Liu X M. Functional characterization of the EMBRYONIC FLOWER 2 gene involved in flowering in Ginkgo biloba. Front Plant Sci, 2021, 12: 681166. |
| [28] | 杨浩. 绿竹成花相关基因BoEMF2的克隆和功能分析. 浙江农林大学硕士学位论文,浙江杭州, 2011. |
| Yang H. Cloning and Functional Analysis of the BoEMF2 Gene Related to the Flowering of Green Bamboo. MS Thesis of Zhejiang A&F University, Hangzhou, Zhejiang, China, 2011 (in Chinese with English abstract). | |
| [29] |
Chanvivattana Y, Bishopp A, Schubert D, Stock C, Moon Y H, Sung Z R, Goodrich J. Interaction of Polycomb-group proteins controlling flowering in Arabidopsis. Development, 2004, 131: 5263-5276.
doi: 10.1242/dev.01400 pmid: 15456723 |
| [30] | Jiang D H, Wang Y Q, Wang Y Z, He Y H. Repression of flowering locus c and flowering locus t by the Arabidopsis Polycomb repressive complex 2 components. PLoS One, 2008, 3: e3404. |
| [31] |
Chou M L, Haung M D, Yang C H. EMF genes interact with late-flowering genes in regulating floral initiation genes during shoot development in Arabidopsis thaliana. Plant Cell Physiol, 2001, 42: 499-507.
pmid: 11382816 |
| [32] | Zhang X L, Li W J, Liu Y, Li Y Z, Li Y, Yang W D, Chen X S, Pi L M, Yang H C. Replication protein RPA2A regulates floral transition by cooperating with PRC2 in Arabidopsis. New Phytol, 2022, 235: 2439-2453. |
| [1] | 胡润慧, 汪军成, 司二静, 张宏, 李兴茂, 马小乐, 孟亚雄, 王化俊, 刘青, 姚立蓉, 李葆春. 小麦苗期耐旱耐盐种质筛选及抗旱耐盐综合评价[J]. 作物学报, 2025, 51(9): 2371-2386. |
| [2] | 杨颖聪, 张俊豪, 唐一哲, 乔唱唱, 王鹏博, 黄明, 徐国伟, 王贺正. 秸秆还田和施磷量对旱地小麦籽粒淀粉及其合成相关酶活性的影响[J]. 作物学报, 2025, 51(9): 2467-2484. |
| [3] | 孔德真, 桑伟, 聂迎彬, 李伟, 徐红军, 李江博, 刘鹏鹏, 田笑明. 小麦AL型细胞质雄性不育系与同型保持系穗花发育时期代谢物变化比较研究[J]. 作物学报, 2025, 51(9): 2454-2466. |
| [4] | 李云香, 郭千纤, 侯万伟, 张小娟. 引进ICARDA小麦苗期根系抗旱性状的全基因组关联分析[J]. 作物学报, 2025, 51(9): 2387-2398. |
| [5] | 李璐琪, 程宇坤, 白斌, 雷斌, 耿洪伟. 小麦叶片气孔相关性状全基因组关联分析[J]. 作物学报, 2025, 51(9): 2266-2284. |
| [6] | 杨婷婷, 陈娟, ABDUL Rehman, 李婧, 闫素辉, 汪建来, 李文阳. 花后弱光对软质小麦干物质积累转运、籽粒产量和淀粉品质的影响[J]. 作物学报, 2025, 51(8): 2204-2219. |
| [7] | 闫喆林, 任强, 樊志龙, 殷文, 孙亚丽, 范虹, 何蔚, 胡发龙, 闫丽娟, 柴强. 氮肥后移优化绿洲灌区小麦间作玉米种间关系提高氮素利用效率[J]. 作物学报, 2025, 51(8): 2190-2203. |
| [8] | 王曜阔, 王文政, 张敏, 刘希伟, 杨敏, 李昊昱, 张灵鑫, 闫彦菲, 蔡瑞国. 水氮运筹对冬小麦籽粒GMP合成和面粉加工品质的影响[J]. 作物学报, 2025, 51(8): 2176-2189. |
| [9] | 姜朋, 吴磊, 黄倩楠, 李畅, 王化敦, 何漪, 张鹏, 张旭. 矮秆基因Rht-D1在长江中下游麦区的育种利用探索[J]. 作物学报, 2025, 51(8): 2077-2086. |
| [10] | 蔡金珊, 李超男, 王景一, 李宁, 柳玉平, 景蕊莲, 李龙, 孙黛珍. 小麦幼苗根系性状全基因组关联分析及TaSRL-3B优异等位基因发掘[J]. 作物学报, 2025, 51(8): 2020-2032. |
| [11] | 张飞飞, 何万龙, 焦文娟, 白斌, 耿洪伟, 程宇坤. 小麦抗条锈病相关性状元分析及候选基因分析[J]. 作物学报, 2025, 51(8): 2111-2127. |
| [12] | 宋改利, 王璐倩, 屈柯飞, 唐建卫, 董纯豪, 黄振朴, 高艳, 牛吉山, 殷贵鸿, 李巧云. Bipolaris sorokiniana黑胚病对中筋小麦淀粉含量、粒度分布与糊化特性的影响[J]. 作物学报, 2025, 51(8): 2164-2175. |
| [13] | 高梦娟, 赵贺莹, 陈家辉, 陈晓倩, 牛萌康, 钱琪润, 崔陆飞, 邢江敏, 银庆淼, 郭雯, 张宁, 孙丛苇, 阳霞, 裴丹, 贾奥琳, 陈锋, 余晓东, 任妍. 小麦抗纹枯病新位点Qse.hnau-5AS的定位及其候选基因鉴定[J]. 作物学报, 2025, 51(8): 2240-2250. |
| [14] | 鲁向前, 付玉洁, 赵俊恒, 郑楠楠, 孙楠楠, 张国平, 叶玲珍. 小麦花药培养最佳取样时期穗部形态特征鉴定与高培养力基因型筛选[J]. 作物学报, 2025, 51(8): 2033-2047. |
| [15] | 王天译, 杨绣娟, 赵佳佳, 郝宇琼, 郑兴卫, 武棒棒, 李晓华, 郝水源, 郑军. 山西小麦醇溶蛋白多样性及其对面粉品质效应研究[J]. 作物学报, 2025, 51(7): 1784-1800. |
|
||