作物学报 ›› 2024, Vol. 50 ›› Issue (2): 464-477.doi: 10.3724/SP.J.1006.2024.31018
ZHANG Kang1(), NIE Zhi-Gang1,*(), WANG Jun1, LI Guang2
摘要:
为有效识别基于APSIM模型籽粒生长参数中春小麦产量敏感性参数, 快速并准确的估算当地模型参数。使用甘肃省定西市安定区凤翔镇安家沟村1971—2018年的气象数据和2000—2018年旱地春小麦大田试验数据, 并利用EFAST方法对进行了5个增温梯度(0℃、0.5℃、1.0℃、1.5℃和2.0℃)下32个模型参数进行敏感性分析。粒子群算法对各个增温条件下均敏感的参数进行优化验证。结果表明: 不同温度变化梯度下, 对旱地春小麦产量影响最大的籽粒生长模型参数有9个, 分别为消光系数、每克茎籽粒数量、穗粒数、单株最大籽粒质量、灌浆到成熟积温、出苗到拔节积温、株高、最大比叶面积和光合叶片老化的水分胁迫斜率。并且对产量敏感性强度有着显著的差异, 其中消光系数和每克茎籽粒数量是对春小麦产量影响最大的参数, 其他参数在不同温度下对春小麦产量的敏感性顺序存在差异。利用粒子群算法针对这9个参数进行优化, 相较于优化前, 优化后的春小麦产量、开花期和灌浆期籽粒干物质的均方根误差、归一化均方根误差和模型有效性指数均得到了显著改善, 参数优化后开花期、灌浆期、成熟期产量的均方根误差平均值分别由13.50 kg hm-2减小到5.99 kg hm-2、183.17 kg hm-2减小到69.44 kg hm-2、141.69 kg hm-2减小到48.51 kg hm-2, 归一化均方根误差平均值分别由4.94%减小到2.19%、10.92%减小到4.65%、8.39%减小到2.87%, 模型有效性指数平均值分别由0.894提高到0.979、0.893提高到0.981、0.898提高到0.988。优化后的参数有效地提高了模型的预测精度。此研究为APSIM模型在当地应用和模型参数校准提供了科学依据。
[1] |
Jin X, Li Z, Nie C, Xu X, Feng H, Guo W, Wang J. Parameter sensitivity analysis of the AquaCrop model based on extended fourier amplitude sensitivity under different agro-meteorological conditions and application. Field Crops Res, 2018, 226: 1-15.
doi: 10.1016/j.fcr.2018.07.002 |
[2] | Wang J, Li X, Lu L, Fang F. Parameter sensitivity analysis of crop growth models based on the extended Fourier Amplitude Sensitivity Test method. Environ Mod Software, 2013, 48: 171-182. |
[3] |
崔颖, 蔺宏宏, 谢云, 刘素红. AquaCrop模型在东北黑土区作物产量预测中的应用研究. 作物学报, 2021, 47: 159-168.
doi: 10.3724/SP.J.1006.2021.03016 |
Cui Y, Lin H H, Xie Y, Liu S H. Application of AquaCrop model to crop yield prediction in black soil region of northeast China. Acta Agron Sin, 2011, 47: 159-168 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.03016 |
|
[4] | 崔金涛, 丁继辉, Yesilekin N, 邓升, 邵光成. 基于EFAST的CERES-Wheat模型土壤参数敏感性分析. 农业机械学报, 2020, 51(12): 276-283. |
Cui J T, Ding J H, Yesilekin N, Deng S, Shao G C. Soil parameter sensitivity analysis of CERES-wheat model based on EFAST. Trans CSAM, 2020, 51(12): 276-283 (in Chinese with English abstract). | |
[5] |
Saltelli A, Tarantola S, Chan K P S. A quantitative model- independent method for global sensitivity analysis of model output. Technometrics, 1999, 41: 39-56.
doi: 10.1080/00401706.1999.10485594 |
[6] | Saltell A, Bolado R. An alternative way to compute fourier amplitude sensitivity test (FAST). Comput SADA, 1998, 26: 445-460. |
[7] |
Morris M. Factorial sampling plans for preliminary computational experiments. Technometrics, 2012, 33: 161-174.
doi: 10.1080/00401706.1991.10484804 |
[8] | 李美水, 杨晓华. 基于Sobol方法的SWMM模型参数全局敏感性分析. 中国给水排水, 2020, 36(17): 95-102. |
Li M S, Yang X H. Global sensitivity analysis of SWMM model parameters based on Sobol method. China Water Drain, 2020, 36(17): 95-102 (in Chinese with English abstract). | |
[9] |
Liu J Z, Liu Z C, Zhu A X, Shen F, Lei Q L, Duan Z. Global sensitivity analysis of the APSIM-Oryza rice growth model under different environmental conditions. Sci Total Environ, 2019, 651: 953-968.
doi: 10.1016/j.scitotenv.2018.09.254 |
[10] | Xing H M, Xiang S Y, Xin G X, Chen Y J, Feng H K, Yang G J, Chen Z X. Global sensitivity analysis of AquaCrop crop model parameters based on EFAST method. Sci Agric Sin, 2017, 16: 2444-2458. |
[11] |
Zhao G, Bryan B A, Song X D. Sensitivity and uncertainty analysis of the APSIM-wheat model: Interactions between cultivar, environmental, and management parameters. Ecol Mod, 2014, 279: 1-11.
doi: 10.1016/j.ecolmodel.2014.02.003 |
[12] | 何亮, 赵刚, 靳宁, 庄伟, 于强. 不同气候区和不同产量水平下APSIM-Wheat模型的全局敏感性分析. 农业工程学报, 2015, 31(14): 148-157. |
He L, Zhao G, Jin N, Zhuang W, Yu Q. Global sensitivity analysis of APSIM-Wheat Model parameters under different climate zones and different yield levels. Trans CSAE, 2015, 31(14): 148-157 (in Chinese with English abstract). | |
[13] | 邓晓垒, 董莉霞, 李广, 聂志刚, 胥建杰, 王钧, 逯玉兰. 西北春麦区Apsim-Wheat模型参数全局敏感性分析. 麦类作物学报, 2022, 42: 746-754. |
Deng X L, Dong L X, Li G, Nie Z G, Xu J J, Wang J, Lu Y L. Global sensitivity analysis of Apsim-wheat model parameters in Spring wheat region of Northwest China. J Triticeae Crops, 2002, 42: 746-754 (in Chinese with English abstract). | |
[14] | 金梦潇, 田勇, Michele L, 于江, 郑春苗. 基于Morris、Sobol和EFAST的LID设施模型参数全局敏感性分析. 中国农村水利水电, 2022, (6): 104-110. |
Jin M X, Tian Y, Michele L, Yu J, Zheng C M. Global Sensitivity analysis of LID facility model parameters based on morris, sobol and EFAST. China Rural Water Hydrop, 2022, (6): 104-110 (in Chinese with English abstract). | |
[15] |
Guo D, Olesen J E, Pullens J W M, Guo C, Ma X. Calibrating AquaCrop model using genetic algorithm with multi-objective functions applying different weight factors. Agron J, 2021, 113: 1420-1438.
doi: 10.1002/agj2.v113.2 |
[16] |
庄嘉祥, 姜海燕, 刘蕾蕾, 王芳芳, 汤亮, 朱艳, 曹卫星. 基于个体优势遗传算法的水稻生育期模型参数优化. 中国农业科学, 2013, 46: 2220-2231.
doi: 10.3864/j.issn.0578-1752.2013.11.005 |
Zhuang J X, Jiang H Y, Liu L L, Wang F F, Tang L, Zhu Y, Cao W X. Rice growth stage model parameter optimization based on individual dominance genetic algorithm. Sci Agric Sin, 2013, 46: 2220-2231 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2013.11.005 |
|
[17] | 沈禹颖, 南志标, Bill B, Michael R, 陈文, 邵新庆. APSIM模型的发展与应用. 应用生态学报, 2002, 13: 1027-1032. |
Shen Y Y, Nan Z B, Bill B, Michael R, Chen W, Shao X Q. Development and application of APSIM model. Chin J Appl Ecol, 2002, 13: 1027-1032 (in Chinese with English abstract). | |
[18] | 李广, 黄高宝, William B, 陈文. APSIM模型在黄土丘陵沟壑区不同耕作措施中的适用性. 生态学报, 2009, 29: 2655-2663. |
Li G, Huang G B, William B, Chen W. Application of APSIM model to different tillage practices in loess Hilly-gully region. Acta Ecol Sin, 2009, 29: 2655-2663 (in Chinese with English abstract). | |
[19] | 李广, 黄高宝. 基于APSIM模型的降水量分配对旱地小麦和豌豆产量影响的研究. 中国生态农业学报, 2010, 18: 342-347. |
Li G, Huang G B. Study on the effect of precipitation allocation on wheat and pea yield in dry land based on APSIM model. Chin J Eco-Agric, 2010, 18: 342-347 (in Chinese with English abstract).
doi: 10.3724/SP.J.1011.2010.00342 |
|
[20] | 李广, 李玥, 黄高宝, 罗珠珠, 王琦, 刘强, 燕振刚, 赵有益. 基于APSIM模型旱地春小麦产量对温度和CO2浓度升高的响应. 中国生态农业学报, 2012, 20: 1088-1095. |
Li G, Li Y, Huang G B, Luo Z Z, Wang Q, Liu Q, Yan Z G, Zhao Y Y. Response of spring wheat yield to temperature and CO2 concentration increase in dryland based on APSIM model. Chin J Eco-Agric, 2012, 20: 1088-1095 (in Chinese with English abstract).
doi: 10.3724/SP.J.1011.2012.01088 |
|
[21] | 李广, 黄高宝, 王琦, 罗珠珠. 基于APSIM模型的旱地小麦和豌豆水肥协同效应分析. 草业学报, 2011, 20: 151-159. |
Li G, Huang G B, Wang Q, Luo Z Z. Analysis of synergistic effect of water and fertilizer on wheat and pea in dry land based on APSIM model. Acta Pratac Sin, 2011, 20: 151-159 (in Chinese with English abstract). | |
[22] |
聂志刚, 李广, 雒翠萍, 马维伟, 代永强. 利用混合蛙跳算法优化基于APSIM的旱地小麦产量形成模型参数. 作物学报, 2018, 44: 1229-1236.
doi: 10.3724/SP.J.1006.2018.01229 |
Nie Z G, Li G, Luo C P, Ma W W, Dai Y Q. Optimization of yield formation model parameters of dryland wheat based on APSIM by hybrid leapfrog algorithm. Acta Agron Sin, 2018, 44: 1229-1236 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.01229 |
|
[23] |
Gaydon D S, Singh B, Wang E, Poulton P L. Evaluation of the APSIM model in cropping systems of Asia. Field Crops Res, 2017, 204: 52-75.
doi: 10.1016/j.fcr.2016.12.015 |
[24] |
Anuytrecht E, Thorburn P J. Responses to atmospheric CO2 concentrations in crop simulation models: a review of current simple and semicomplex representations and options for model development. Global Change Biol, 2017, 23: 1806-1820.
doi: 10.1111/gcb.2017.23.issue-5 |
[25] |
茹晓雅, 李广, 陈国鹏, 张统帅, 闫丽娟. 不同降水年型下水氮调控对小麦产量及生物量的影响. 作物学报, 2019, 45: 1725-1734.
doi: 10.3724/SP.J.1006.2019.91008 |
Ru X Y, Li G, Chen G P, Zhang T S, Yan L J. Effects of groundwater nitrogen regulation on wheat yield and biomass in different precipitation year. Acta Agron Sin, 2019, 45: 1725-1734 (in Chinese with English abstract). | |
[26] | Simlabv3.2.5 User Manual 2009. Ispra, Italy: POLIS-JRC/ISIS, 2009. http://simlab.JrcEc.Europa.eu/docs/html/index.Html. |
[27] |
Saltelli A, Tarantola S, Chan K. A quantitative model- independent method for global sensitivity analysis of model output. Technometrics, 1999, 41: 39-56.
doi: 10.1080/00401706.1999.10485594 |
[28] |
Dejonge K C, James I I, Ahmadi M, Andales A A, Arabi M. Global sensitivity and uncertainty analysis of a dynamic agroecosystem model under different irrigation treatments. Ecol Mod, 2012, 231: 113-125.
doi: 10.1016/j.ecolmodel.2012.01.024 |
[29] | Kennedy J, Eberhart R C. Swarm Intelligence. Morgan: Kaufman Academic Press, 2001. pp 212-216. |
[30] | Guo Y, Li J Y, Zhan Z H. Efficient hyperparameter optimization for convolution neural networks in deep learning: a distributed particle swarm optimization approach. Cybernet Syst, 2020, 52: 36-57. |
[31] | 杨霞, 吴东伟. R语言在大数据处理中的应用. 科技资讯, 2013, (344): 19-20. |
Yang X, Wu D W. Application of R language in big data processing. Technol News, 2013, (344): 19-20 (in Chinese with English abstract). | |
[32] | Stocker T F, Qin D, Plattner G K. Climate Change 2013: The Physical Science Basis. UK: Cambridge University Press, 2013. |
[33] | 米荣娟, 聂志刚. 基于ETAST法的APSIM小麦产量形成参数敏感性分析. 甘肃农业大学学报, 2021, 56(4): 23-30. |
Mi R J, Nie Z G. Sensitivity analysis of yield formation parameters of APSIM wheat based on ETAST method. J Gansu Agric Univ, 2021, 56(4): 23-30 (in Chinese with English abstract). | |
[34] | Zheng B Y, Chenu K, Doherty A, Chapman S. The APSIM-wheat module (7.5 R3008) documentation. Toowoomba: APSRU, 2014. pp 18-19. |
[35] | 韩雪, 刘强, 王钧, 高雪慧, 车鹏鹏. 基于APSIM模型的气候变化条件下播期对旱地春小麦产量影响研究. 作物研究, 2022, 36: 499-506. |
Han X, Liu Q, Wang J, Gao X H, Che P P. Effects of sowing date on spring wheat yield in dryland under climate change conditions based on APSIM model. Crop Res, 2002, 36: 499-506 (in Chinese with English abstract). | |
[36] |
张佳运, 马淑梅, 余常兵, 王淑彬, 魏亚凤, 杨文钰, 王小春. 长江流域旱地多熟模式水分供需平衡特征与水分生产效益. 作物学报, 2022, 48: 2891-2907.
doi: 10.3724/SP.J.1006.2022.14206 |
Zhang J Y, Ma S M, Yu C B, Wang S B, Wei Y F, Yang W Y, Wang X C. Water supply and demand balance characteristics and water production efficiency of dryland multi-cropping model in the Yangtze River Basin. Acta Agron Sin, 2022, 48: 2891-2907 (in Chinese with English abstract). | |
[37] | 何亮, 侯英雨, 赵刚, 邬定荣, 于强. 基于全局敏感性分析和贝叶斯方法的WOFOST作物模型参数优化. 农业工程学报, 2016, 32(2): 169-179. |
He L, Hou Y Y, Zhao G, Wu D R, Yu Q. Parameter optimization of WOFOST crop model based on global sensitivity analysis and Bayesian method. Trans CSAE, 2016, 32(2): 169-179 (in Chinese with English abstract). | |
[38] | 贡复俊. 消光系数的含义、数值变化及与作物高产的关系——兼与殷宏章、王天铎等商榷. 江苏农学院学报, 1982, (4): 36-41. |
Gong F J. The meaning of extinction coefficient, its numerical variation and its relationship with crop yield: discussion with Yin Hongzhang, Wang Tianduo. J Jiangsu Agric Coll, 1982, (4): 36-41 (in Chinese with English abstract). | |
[39] | 周延辉, 朱新开, 郭文善, 封超年. 稻茬小麦中高产水平下产量及其构成因素分析. 麦类作物学报, 2018, 38: 293-297. |
Zhou Y H, Zhu X K, Guo W S, Feng C N. Analysis of yield and its component factors at medium and high yield of rice-stubble wheat. J Triticeae Crops, 2018, 38: 293-297 (in Chinese with English abstract). | |
[40] |
王钧, 李广, 闫丽娟, 刘强, 聂志刚. 旱地春小麦产量对不同生育阶段温度变化的响应模拟. 中国农业科学, 2020, 53: 904-916.
doi: 10.3864/j.issn.0578-1752.2020.05.004 |
Wang J, Li G, Yan L J, Liu Q, Nie Z G. Simulation of response of spring wheat yield to temperature change at different growth stages in dryland. Sci Agric Sin, 2020, 53: 904-916 (in Chinese with English abstract). | |
[41] |
周宝元, 马玮, 孙雪芳, 丁在松, 李从锋, 赵明. 冬小麦-夏玉米高产模式周年气候资源分配与利用特征研究. 作物学报, 2019, 45: 589-600.
doi: 10.3724/SP.J.1006.2019.81067 |
Zhou B Y, Ma W, Sun X F, Ding Z S, Li C F, Zhao M. Study on annual climate resource allocation and utilization characteristics of high yield model of winter wheat and summer maize. Acta Agron Sin, 2019, 45: 589-600 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2019.81067 |
|
[42] | 赵吉平, 周伟, 郭鹏燕, 任杰成, 许瑛. 干旱胁迫对小麦品种株高与产量及抗旱性相关分析. 种子, 2020, 39: 120-123. |
Zhao J P, Zhou W, Guo P Y, Ren J C, Xu Y. Correlation analysis of plant height, yield and drought resistance of wheat varieties under drought stress. Seed, 2020, 39: 120-123 (in Chinese with English abstract). | |
[43] |
王义芹, 杨兴洪, 李滨, 童依平, 李振声. 小麦叶面积及光合速率与产量关系的研究. 华北农学报, 2008, 23: 10-15.
doi: 10.7668/hbnxb.2008.S2.003 |
Wang Y Q, Yang X H, Li B, Tong Y P, Li Z S. Study on the relationship between leaf area, photosynthetic rate and yield of wheat. Acta Agric Boreali-Sin, 2008, 23: 10-15 (in Chinese with English abstract). | |
[44] | 符玉英. 水分胁迫下植物叶片光合的气孔和非气孔限制. 科技与创新, 2018, (104): 57-58. |
Fu Y Y. Stomatal and non-stomatal restrictions on photosynthesis of plant leaves under water stress. Sci Technol Innov, 2018, (104): 57-58 (in Chinese with English abstract). | |
[45] | 戴忠民, 李妍, 张红, 王丽燕, 张秀玲, 李勇, 王振林. 不同灌溉处理对小麦花后氮素积累和转运的影响. 麦类作物学报, 2015, 35: 1712-1718. |
Dai Z M, Li Y, Zhang H, Wang L Y, Zhang X L, Li Y, Wang Z L. Effects of different irrigation treatments on post-anthesis nitrogen accumulation and transport in wheat. J Triticeae Crops, 2015, 35: 1712-1718 (in Chinese with English abstract). | |
[46] | 曹广才, 吴东兵. 播种至生理拔节期间的积温对冬型小麦品种生育天数的影响. 北京农业科学, 1990, (3): 6-9. |
Cao G G, Wu D B. Effects of accumulated Temperature from Sowing to physiological jointing on growth days of winter type wheat varieties. Beijing Agric Sci, 1990, (3): 6-9 (in Chinese with English abstract). | |
[47] | 刘奕辰, 高雅洁, 张玲, 石大山. 积温和降水对主要作物产量的影响——以章丘市为例. 江西农业, 2018, (14): 52-53. |
Liu Y C, Gao Y J, Zhang L, Shi D S. Effects of accumulated temperature and precipitation on yield of main crops: a case study of Zhangqiu City. Jiangxi Agric, 2018, (14): 52-53 (in Chinese). | |
[48] | 张洁, 白青华, 马鸿勇. 气候变化对河西走廊中部地区主要农作物的影响. 干旱气象, 2013, 31: 303-308. |
Zhang J, Bai Q H, Ma H Y. Effects of climate change on main crops in central Hexi Corridor. J Arid Meteorol, 2013, 31: 303-308 (in Chinese with English abstract). | |
[49] | 刘政, 陈晓杰, 胡银岗. 春化及光周期基因的等位变异及其对冬小麦光合及产量性状的影响. 麦类作物学报, 2016, 36: 714-720. |
Liu Z, Chen X J, Hu Y G. Alleles of vernalization and photoperiod genes and their effects on photosynthesis and yield traits in winter wheat. J Triticeae Crops, 2016, 36: 714-720 (in Chinese with English abstract). |
[1] | 王海琪, 王荣荣, 蒋桂英, 尹豪杰, 晏世杰, 车子强. 施氮量对滴灌春小麦叶片光合生理性状的影响[J]. 作物学报, 2023, 49(1): 211-224. |
[2] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[3] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[4] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[5] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[6] | 李静, 王洪章, 刘鹏, 张吉旺, 赵斌, 任佰朝. 夏玉米不同栽培模式花后叶片光合性能的差异[J]. 作物学报, 2021, 47(7): 1351-1359. |
[7] | 张矞勋, 齐拓野, 孙源, 璩向宁, 曹媛, 吴梦瑶, 刘春虹, 王磊. 高分六号遥感影像植被特征及其在冬小麦苗期LAI反演中的应用[J]. 作物学报, 2021, 47(12): 2532-2540. |
[8] | 崔颖, 蔺宏宏, 谢云, 刘素红. AquaCrop模型在东北黑土区作物产量预测中的应用研究[J]. 作物学报, 2021, 47(1): 159-168. |
[9] | 侯慧芝, 张绪成, 方彦杰, 于显枫, 王红丽, 马一凡, 张国平, 雷康宁. 全膜微垄沟播对寒旱区春小麦苗期土壤水热环境及光合作用的影响[J]. 作物学报, 2020, 46(9): 1398-1407. |
[10] | 李宗飞,苏继霞,费聪,李阳阳,刘宁宁,戴宇祥,张开祥,王开勇,樊华,陈兵. 基于高光谱数据的滴灌甜菜叶片全氮含量估算[J]. 作物学报, 2020, 46(4): 557-570. |
[11] | 马明生, 郭贤仕, 柳燕兰. 全生物降解地膜覆盖对旱地土壤水分状况及春小麦产量和水分利用效率的影响[J]. 作物学报, 2020, 46(12): 1933-1944. |
[12] | 侯红乾,林洪鑫,刘秀梅,冀建华,刘益仁,蓝贤瑾,吕真真,周卫军. 长期施肥处理对双季晚稻叶绿素荧光特征及籽粒产量的影响[J]. 作物学报, 2020, 46(02): 280-289. |
[13] | 郭丽丽,张茜茜,郝立华,乔雅君,陈文娜,卢云泽,李菲,曹旭,王清涛,郑云普. 大气CO2倍增条件下冬小麦气体交换对高温干旱及复水过程的响应[J]. 作物学报, 2019, 45(6): 949-956. |
[14] | 茹晓雅,李广,陈国鹏,张统帅,闫丽娟. 不同降水年型下水氮调控对小麦产量及生物量的影响[J]. 作物学报, 2019, 45(11): 1725-1734. |
[15] | 李菲,刘亮,张浩,王清涛,郭丽丽,郝立华,张茜茜,曹旭,梁伟佳,郑云普. CO2浓度对大豆叶片气孔特征和气体交换参数的影响[J]. 作物学报, 2018, 44(8): 1212-1220. |
|