作物学报 ›› 2024, Vol. 50 ›› Issue (4): 969-980.doi: 10.3724/SP.J.1006.2024.34115
鲁清(), 刘浩, 李海芬, 王润风, 黄璐, 梁炫强, 陈小平, 洪彦彬, 刘海燕, 李少雄()
LU Qing(), LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, LIANG Xuan-Qiang, CHEN Xiao-Ping, HONG Yan-Bin, LIU Hai-Yan, LI Shao-Xiong()
摘要:
花生含油量对单位面积产油量至关重要。该性状受多个微效基因控制, 但可用的紧密连锁标记十分有限, 传统的分子标记辅助选择育种准确性不高。全基因组选择作为一种新的育种方法, 可实现对数量性状的早期预测; 近红外光谱分析可对作物品质性状(如含油量等)进行无损检测。通过两者优势互补, 建立花生含油量全基因组选择和近红外光谱筛选联合的育种技术, 探讨影响花生含油量全基因组选择预测准确性的因素, 为花生分子育种奠定理论基础。本研究以216个重组自交系为材料构建训练群体; 分别以139、464和505株F2、F3和F4为材料构建育种群体; 利用自主开发的“PeanutGBTS40K”液相芯片进行基因分型, 开展含油量全基因组选择育种模型分析; 通过联合全基因组选择和近红外光谱筛选技术, 开展花生含油量性状的育种应用, 并评价其育种效果。结果显示, 对训练群体进行基因分型后, 总共获得30,355个高质量SNPs, 并用于11个全基因组预测的模型选择分析。含油量预测准确性最高的模型为rrBLUP, 其次是randomforest和svmrbf。以重组自交系为预测群体, F2、F3和F4各世代含油量的预测准确性分别为0.116、0.128和0.119; 以重组自交系叠加上一轮的育种群体为预测群体, 各世代含油量的预测准确性分别为0.116、0.131和0.160。全基因组选择联合近红外筛选要比单独的全基因组选择对各世代的含油量选择效果提高1.8%、2.7%和3.4%; 与单独的近红外筛选相比, 差异不显著(0.10%、0.06%和0.07%); 而近红外筛选与全基因组选择相比, 含油量可显著提高1.7%、2.6%和3.3%。通过联合全基因组选择和近红外光谱筛选育种, F3和F4分别比F2的含油量提高1.2%和1.0%。F4总共获得16个入选改良株系, 有10个株系含油量≥55.0%, 其中2个株系(SF4_201和SF4_379)的理论产量分别比对照增产7.0%和11.1%。本研究通过建立花生含油量性状的全基因组选择-近红外光谱筛选联合育种技术, 可有效实现花生含油量性状的遗传改良。
[1] | 廖伯寿. 我国花生生产发展现状与潜力分析. 中国油料作物学报, 2020, 42: 161-166. |
Liao B S. A review on progress and prospects of peanut industry in China. Chin J Oil Crop Sci, 2020, 42: 161-166. (in Chinese with English abstract)
doi: 10.19802/j.issn.1007-9084.2020115 |
|
[2] | 廖伯寿. 中国花生油脂产业竞争力浅析. 花生学报, 2003, 32(增刊1): 11-15. |
Liao B S. Analysis on the competitiveness of peanut oil industry in China. J Peanut Sci, 2003, 32(S1): 11-15. (in Chinese with English abstract) | |
[3] | 宋江春, 李拴柱, 王建玉, 张秀阁, 朱雪峰, 乔建礼, 向臻. 我国高油花生育种研究进展. 作物杂志, 2018, (3): 25-31. |
Song J C, Li S Z, Wang J Y, Zhang X G, Zhu X F, Qiao J L, Xiang Z. Advances in breeding of high oil peanut in China. Crops, 2018, (3): 25-31. (in Chinese with English abstract) | |
[4] | 鲁清, 李少雄, 陈小平, 周桂元, 洪彦彬, 李海芬, 梁炫强. 我国南方产区花生育种现状、存在问题及育种建议. 中国油料作物学报, 2017, 39: 556-566. |
Lu Q, Li S X, Chen X P, Zhou G Y, Hong Y B, Li H F, Liang X Q. Current situation, problems and suggestions of peanut breeding in southern China. Chin J Oil Crop Sci, 2017, 39: 556-566. (in Chinese with English abstract)
doi: 10.7505/j.issn.1007-9084.2017.04.019 |
|
[5] | 李少雄, 洪彦彬, 陈小平, 梁炫强. 广东花生生产、育种和种业现状与发展对策. 广东农业科学, 2020, 47(11): 78-83. |
Li S X, Hong Y B, Chen X P, Liang X Q. Present situation and development strategies of peanut production, breeding and seed industry in Guangdong. Guangdong Agric Sci, 2020, 47(11): 78-83. (in Chinese with English abstract) | |
[6] |
杜普旋, 刘军, 陈荣华, 吴柔贤, 范呈根, 郭丹丹, 鲁清. 广东省花生种质资源收集与鉴定评价. 植物遗传资源学报, 2023, 24: 671-679.
doi: 10.13430/j.cnki.jpgr.20221010001 |
Du P X, Liu J, Chen R H, Wu R X, Fan C G, Guo D D, Lu Q. Systematic collection, identification and evaluation of peanut germplasm resources in Guangdong province. J Plant Genet Resour, 2023, 24: 671-679. (in Chinese with English abstract) | |
[7] | 姜慧芳, 段乃雄, 任小平, 孙大容. 花生种质资源的性状鉴定及综合评价进展. 花生科技, 1999, 38(增刊1): 144-147. |
Jiang H F, Duan N X, Ren X P, Sun D R. Progress in character identification and comprehensive evaluation of peanut germplasm resources. Peanut Sci Technol, 1999, 38(S1): 144-147. (in Chinese with English abstract) | |
[8] | 姜慧芳, 任小平, 王圣玉, 黄家权, 雷永, 廖伯寿. 野生花生高油基因资源的发掘与鉴定. 中国油料作物学报, 2010, 32: 30-34. |
Jiang H F, Ren X P, Wang S Y, Huang J Q, Lei Y, Liao B S. Identification and evaluation of high oil content in wild Arachis species. Chin J Oil Crop Sci, 2010, 32: 30-34. (in Chinese with English abstract) | |
[9] |
苗利娟, 张新友, 黄冰艳, 董文召, 汤丰收, 刘娟, 张俊, 刘华, 齐飞艳. 河南省花生农家品种资源农艺和品质性状分析. 植物遗传资源学报, 2016, 17: 854-860.
doi: 10.13430/j.cnki.jpgr.2016.05.009 |
Miao L J, Zhang X Y, Huang B Y, Dong W Z, Tang F S, Liu J, Zhang J, Liu H, Qi F Y. Evaluation of agronomic and quality traits in peanut (Aarchis hypogaea L.) landraces of Henan province. J Plant Genet Resour, 2016, 17: 854-860. (in Chinese with English abstract) | |
[10] |
Moose S P, Mumm R H. Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol, 2008, 147: 969-977.
doi: 10.1104/pp.108.118232 pmid: 18612074 |
[11] |
Heffner E L, Sorrells M E, Jannink J L. Genomic selection for crop improvement. Crop Sci, 2009, 49: 1-12.
doi: 10.2135/cropsci2008.08.0512 |
[12] |
Moreau L, Charcosset A, Hospital F, Gallais A. Marker-assisted selection efficiency in populations of finite size. Genetics, 1998, 148: 1353-1365.
doi: 10.1093/genetics/148.3.1353 pmid: 9539448 |
[13] |
Meuwissen T H, Hayes B J, Goddard M E. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 2001, 157: 1819-1829.
doi: 10.1093/genetics/157.4.1819 pmid: 11290733 |
[14] | Bhat J A, Ali S, Salgotra R K, Mir Z A, Dutta S, Jadon V, Tyagi A, Mushtaq M, Jain N, Singh P K, Singh G P, Prabhu K V. Genomic selection in the era of next generation sequencing for complex traits in plant breeding. Front Genet, 2016, 7: 221. |
[15] |
Wong C K, Bernardo R. Genome wide selection in oil palm: increasing selection gain per unit time and cost with small populations. Theor Appl Genet, 2008, 116: 815-824.
doi: 10.1007/s00122-008-0715-5 pmid: 18219476 |
[16] |
Shikha M, Kanika A, Rao A R, Mallikarjuna M G, Gupta H S, Nepolean T. Genomic selection for drought tolerance using genome-wide SNPs in maize. Front Plant Sci, 2017, 8: 550.
doi: 10.3389/fpls.2017.00550 pmid: 28484471 |
[17] |
Guo P, Zhu B, Xu L, Niu H, Wang Z, Guan L, Liang Y, Ni H, Guo Y, Chen Y, Zhang L, Gao X, Gao H, Li J. Genomic prediction with parallel computing for slaughter traits in Chinese Simmental beef cattle using high-density genotypes. PLoS One, 2017, 12: e0179885.
doi: 10.1371/journal.pone.0179885 |
[18] |
Yang R, Xu Z, Wang Q, Zhu D, Bian C, Ren J, Huang Z, Zhu X, Tian Z, Wang Y, Jiang Z, Zhao Y, Zhang D, Li N, Hu X. Genome-wide association study and genomic prediction for growth traits in yellow-plumage chicken using genotyping-by-sequencing. Genet Sel Evol, 2021, 53: 82.
doi: 10.1186/s12711-021-00672-9 |
[19] |
Ros-Freixedes R, Johnsson M, Whalen A, Chen C Y, Valente B D, Herring W O, Gorjanc G, Hickey J M. Genomic prediction with whole-genome sequence data in intensely selected pig lines. Genet Sel Evol, 2022, 54: 65.
doi: 10.1186/s12711-022-00756-0 pmid: 36153511 |
[20] |
Toda Y, Wakatsuki H, Aoike T, Kajiya-Kanegae H, Yamasaki M, Yoshioka T, Ebana K, Hayashi T, Nakagawa H, Hasegawa T, Iwata H. Predicting biomass of rice with intermediate traits: Modeling method combining crop growth models and genomic prediction models. PLoS One, 2020, 15: e0233951.
doi: 10.1371/journal.pone.0233951 |
[21] |
Bartholomé J, Prakash P T, Cobb J N. Genomic prediction: progress and perspectives for rice improvement. Methods Mol Biol, 2022, 2467: 569-617.
doi: 10.1007/978-1-0716-2205-6_21 pmid: 35451791 |
[22] |
Atanda S A, Steffes J, Lan Y, Al Bari M A, Kim J H, Morales M, Johnson J P, Saludares R, Worral H, Piche L, Ross A, Grusak M, Coyne C, McGee R, Rao J, Bandillo N. Multi-trait genomic prediction improves selection accuracy for enhancing seed mineral concentrations in pea. Plant Genome, 2022, 15: e20260.
doi: 10.1002/tpg2.v15.4 |
[23] |
Aono A H, Francisco F R, Souza L M, Gonçalves P S, Scaloppi Junior E J, Le Guen V, Fritsche-Neto R, Gorjanc G, Quiles M G, de Souza A P. A divide-and-conquer approach for genomic prediction in rubber tree using machine learning. Sci Rep, 2022, 12: 18023.
doi: 10.1038/s41598-022-20416-z pmid: 36289298 |
[24] |
Freeman J S, Slavov G T, Butler J B, Frickey T, Graham N J, Klápště J, Lee J, Telfer E J, Wilcox P, Dungey H S. High density linkage maps, genetic architecture, and genomic prediction of growth and wood properties in Pinus radiata. BMC Genomics, 2022, 23: 731.
doi: 10.1186/s12864-022-08950-6 pmid: 36307760 |
[25] |
Misztal I, Aguilar I, Lourenco D, Ma L, Steibel J P, Toro M. Emerging issues in genomic selection. J Anim Sci, 2021, 99: skab092.
doi: 10.1093/jas/skab092 |
[26] |
纪红昌, 邱晓臣, 柳文浩, 胡畅丽, 孔铭, 胡晓辉, 黄建斌, 杨雪, 唐艳艳, 张晓军, 王晶珊, 乔利仙. 花生籽仁含油量近红外模型的构建及其应用. 中国油料作物学报, 2022, 44: 1089-1097.
doi: 10.19802/j.issn.1007-9084.2021205 |
Ji H C, Qiu X C, Liu W H, Hu C L, Kong M, Hu X H, Huang J B, Yang X, Tang Y Y, Zhang X J, Wang J S, Qiao L X. Construction and application of near infrared ray model for oil content prediction in peanut kernel. Chin J Oil Crop Sci, 2022, 44: 1089-1097. (in Chinese with English abstract) | |
[27] |
Chen X, Li H, Pandey M K, Yang Q, Wang X, Garg V, Li H, Chi X, Doddamani D, Hong Y, Upadhyaya H, Guo H, Khan A W, Zhu F, Zhang X, Pan L, Pierce G J, Zhou G, Krishnamohan K A, Chen M, Zhong N, Agarwal G, Li S, Chitikineni A, Zhang G Q, Sharma S, Chen N, Liu H, Janila P, Li S, Wang M, Wang T, Sun J, Li X, Li C, Wang M, Yu L, Wen S, Singh S, Yang Z, Zhao J, Zhang C, Yu Y, Bi J, Zhang X, Liu Z J, Paterson A H, Wang S, Liang X, Varshney R K, Yu S. Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis, and allergens. Proc Natl Acad Sci USA, 2016, 113: 6785-6790.
doi: 10.1073/pnas.1600899113 pmid: 27247390 |
[28] |
Bertioli D J, Cannon S B, Froenicke L, Huang G, Farmer A D, Cannon E K, Liu X, Gao D, Clevenger J, Dash S, Ren L, Moretzsohn M C, Shirasawa K, Huang W, Vidigal B, Abernathy B, Chu Y, Niederhuth C E, Umale P, Araújo A C, Kozik A, Kim K D, Burow M D, Varshney R K, Wang X, Zhang X, Barkley N, Guimarães P M, Isobe S, Guo B, Liao B, Stalker H T, Schmitz R J, Scheffler B E, Leal-Bertioli S C, Xun X, Jackson S A, Michelmore R, Ozias-Akins P. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet, 2016, 48: 438-446.
doi: 10.1038/ng.3517 pmid: 26901068 |
[29] |
Lu Q, Li H, Hong Y, Zhang G, Wen S, Li X, Zhou G, Li S, Liu H, Liu H, Liu Z, Varshney R K, Chen X, Liang X. Genome sequencing and analysis of the peanut B-genome progenitor (Arachis ipaensis). Front Plant Sci, 2018, 9: 604.
doi: 10.3389/fpls.2018.00604 |
[30] | Yin D, Ji C, Ma X, Li H, Zhang W, Li S, Liu F, Zhao K, Li F, Li K, Ning L, He J, Wang Y, Zhao F, Xie Y, Zheng H, Zhang X, Zhang Y, Zhang J. Genome of an allotetraploid wild peanut Arachis monticola: a de novo assembly. Gigascience, 2018, 7: giy066. |
[31] |
Chen X, Lu Q, Liu H, Zhang J, Hong Y, Lan H, Li H, Wang J, Liu H, Li S, Pandey M K, Zhang Z, Zhou G, Yu J, Zhang G, Yuan J, Li X, Wen S, Meng F, Yu S, Wang X, Siddique K H M, Liu Z J, Paterson A H, Varshney R K, Liang X. Sequencing of cultivated peanut, Arachis hypogaea, yields insights into genome evolution and oil improvement. Mol Plant, 2019, 12: 920-934.
doi: 10.1016/j.molp.2019.03.005 |
[32] |
Bertioli D J, Jenkins J, Clevenger J, Dudchenko O, Gao D, Seijo G, Leal-Bertioli S C M, Ren L, Farmer A D, Pandey M K, Samoluk S S, Abernathy B, Agarwal G, Ballén-Taborda C, Cameron C, Campbell J, Chavarro C, Chitikineni A, Chu Y, Dash S, El Baidouri M, Guo B, Huang W, Kim K D, Korani W, Lanciano S, Lui C G, Mirouze M, Moretzsohn M C, Pham M, Shin J H, Shirasawa K, Sinharoy S, Sreedasyam A, Weeks N T, Zhang X, Zheng Z, Sun Z, Froenicke L, Aiden E L, Michelmore R, Varshney R K, Holbrook C C, Cannon E K S, Scheffler B E, Grimwood J, Ozias-Akins P, Cannon S B, Jackson S A, Schmutz J. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat Genet, 2019, 51: 877-884.
doi: 10.1038/s41588-019-0405-z pmid: 31043755 |
[33] |
Zhuang W, Chen H, Yang M, Wang J, Pandey M K, Zhang C, Chang W C, Zhang L, Zhang X, Tang R, Garg V, Wang X, Tang H, Chow C N, Wang J, Deng Y, Wang D, Khan A W, Yang Q, Cai T, Bajaj P, Wu K, Guo B, Zhang X, Li J, Liang F, Hu J, Liao B, Liu S, Chitikineni A, Yan H, Zheng Y, Shan S, Liu Q, Xie D, Wang Z, Khan S A, Ali N, Zhao C, Li X, Luo Z, Zhang S, Zhuang R, Peng Z, Wang S, Mamadou G, Zhuang Y, Zhao Z, Yu W, Xiong F, Quan W, Yuan M, Li Y, Zou H, Xia H, Zha L, Fan J, Yu J, Xie W, Yuan J, Chen K, Zhao S, Chu W, Chen Y, Sun P, Meng F, Zhuo T, Zhao Y, Li C, He G, Zhao Y, Wang C, Kavikishor P B, Pan R L, Paterson A H, Wang X, Ming R, Varshney R K. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nat Genet, 2019, 51: 865-876.
doi: 10.1038/s41588-019-0402-2 pmid: 31043757 |
[34] |
Pandey M K, Agarwal G, Kale S M, Clevenger J, Nayak S N, Sriswathi M, Chitikineni A, Chavarro C, Chen X, Upadhyaya H D, Vishwakarma M K, Leal-Bertioli S, Liang X, Bertioli D J, Guo B, Jackson S A, Ozias-Akins P, Varshney R K. Development and evaluation of a high density genotyping ‘Axiom_Arachis’ array with 58 K SNPs for accelerating genetics and breeding in groundnut. Sci Rep, 2017, 7: 40577.
doi: 10.1038/srep40577 |
[35] |
Zhao C, Qiu J, Agarwal G, Wang J, Ren X, Xia H, Guo B, Ma C, Wan S, Bertioli D J, Varshney R K, Pandey M K, Wang X. Genome-wide discovery of microsatellite markers from diploid progenitor species, Arachis duranensis and A. ipaensis, and their application in cultivated peanut (A. hypogaea). Front Plant Sci, 2017, 8: 1209.
doi: 10.3389/fpls.2017.01209 |
[36] |
Lu Q, Hong Y, Li S, Liu H, Li H, Zhang J, Lan H, Liu H, Li X, Wen S, Zhou G, Varshney R K, Jiang H, Chen X, Liang X. Genome-wide identification of microsatellite markers from cultivated peanut (Arachis hypogaea L.). BMC Genomics, 2019, 20: 799.
doi: 10.1186/s12864-019-6148-5 |
[37] |
Elshire R J, Glaubitz J C, Sun Q, Poland J A, Kawamoto K, Buckler E S, Mitchell S E. A robust, simple genotyping-by- sequencing (GBS) approach for high diversity species. PLoS One, 2011, 6: e19379.
doi: 10.1371/journal.pone.0019379 |
[38] |
徐云碧, 杨泉女, 郑洪建, 许彦芬, 桑志勤, 郭子锋, 彭海, 张丛, 蓝昊发, 王蕴波, 吴坤生, 陶家军, 张嘉楠. 靶向测序基因型检测(GBTS)技术及其应用. 中国农业科学, 2020, 53: 2983-3004.
doi: 10.3864/j.issn.0578-1752.2020.15.001 |
Xu Y B, Yang Q N, Zheng H J, Xu Y F, Sang Z Q, Guo Z F, Peng H, Zhang C, Lan H F, Wang Y B, Wu K S, Tao J J, Zhang J N. Genotyping by target sequencing (GBTS) and its applications. Sci Agric Sin, 2020, 53: 2983-3004 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2020.15.001 |
|
[39] |
Guo Z F, Wang H W, Tao J J, Ren Y H, Xu C, Wu K S, Zou C, Zhang J A, Xu Y B. Development of multiple SNP marker panels affordable to breeders through genotyping by target sequencing (GBTS) in maize. Mol Breed, 2019, 39: 37-49.
doi: 10.1007/s11032-019-0940-4 |
[40] |
Endelman J B. Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome, 2011, 4: 250-255.
doi: 10.3835/plantgenome2011.08.0024 |
[41] |
Yang J, Lee S H, Goddard M E, Visscher P M. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet, 2011, 88: 76-82.
doi: 10.1016/j.ajhg.2010.11.011 pmid: 21167468 |
[42] | Karatzoglou A, Smola A, Hornik K, Zeileis A. Kernlab: an S4 package for kernel methods in R. J Statist Software, 2004, 11: 721-729. |
[43] |
Breiman L. Random forests. Mach Learn, 2001, 45: 5-32.
doi: 10.1023/A:1010933404324 |
[44] |
Perez P, de los Campos G. Genome-wide regression and prediction with the BGLR statistical package. Genetics, 2014, 198: 483-495.
doi: 10.1534/genetics.114.164442 pmid: 25009151 |
[45] | 何红中, 周瑞洲. 中国作物育种技术发展的回望与思考. 科学, 2016, 68(4): 32-36. |
He H Z, Zhou R Z. Reflecting on the development of crop breeding technology in China. Science, 2016, 68(4): 32-36. (in Chinese with English abstract) | |
[46] | 刘忠松. 作物遗传育种研究进展: V.表型选择与基因型选择. 作物研究, 2014, 28: 780-784. |
Liu Z S. Research progress in crop genetics and breeding: V.Phenotypic selection and genotype selection. Crop Res, 2014, 28: 780-784. (in Chinese with English abstract) | |
[47] |
Bernardo R. Testcross additive and dominance effects in best linear unbiased prediction of maize single-cross performance. Theor Appl Genet, 1996, 93: 1098-1102.
doi: 10.1007/BF00230131 pmid: 24162487 |
[48] |
Stuber C W, Goodman M M, Moll R H. Improvement of yield and ear number resulting from selection at allozyme loci in a maize population. Crop Sci, 1982, 22: 737-740.
doi: 10.2135/cropsci1982.0011183X002200040010x |
[49] |
Bernardo R, Yu J M. Prospects for genome wide selection for quantitative traits in maize. Crop Sci, 2007, 47: 1082-1090.
doi: 10.2135/cropsci2006.11.0690 |
[50] |
Hospital F, Moreau L, Lacoudre F, Charcosset A, Gallais A. More on the efficiency of marker-assisted selection. Theor Appl Genet, 1997, 95: 1181-1189.
doi: 10.1007/s001220050679 |
[51] |
Xu Y, Crouch J H. Marker-assisted selection in plant breeding: from publications to practice. Crop Sci, 2008, 48: 391-407.
doi: 10.2135/cropsci2007.04.0191 |
[52] | 江建华, 肖美华, 王晓帅, 于欢欢, 管叔琪, 倪皖莉. 花生含油量研究进展. 中国农学通报, 2012, 28(33): 1-6. |
Jiang J H, Xiao M H, Wang X S, Yu H H, Guan S Q, Ni W L. Recent progress in oil content of Arachis hypogaea L. Chin Agric Sci Bull, 2012, 28(33): 1-6. (in Chinese with English abstract) | |
[53] | 马岩松, 刘章雄, 文自翔, 魏淑红, 杨春明, 王会才, 杨春燕, 卢为国, 徐冉, 张万海, 吴纪安, 胡国华, 栾晓燕, 付亚书, 王曙明, 韩天富, 张孟臣, 张磊, 苑保军, 郭勇, Reif J C, 江勇, 李文滨, 王德春, 邱丽娟. 群体构成方式对大豆百粒重全基因组选择预测准确度的影响. 作物学报, 2018, 44: 43-52. |
Ma Y S, Liu Z X, Wen Z X, Wei S H, Yang C M, Wang H C, Yang C Y, Lu W G, Xu R, Zhang W H, Wu J A, Hu G H, Luan X Y, Fu Y S, Wang S M, Han T F, Zhang M C, Zhang L, Yuan B J, Guo Y, Reif J C, Jiang Y, Li W B, Wang D C, Qiu L J. Effect of population structure on prediction accuracy of soybean 100-seed weight by genomic selection. Acta Agron Sin, 2018, 44: 43-52. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00043 |
|
[54] | 唐友, 郑萍, 王嘉博, 张继成. 对比Bayesian B等多种方法的大豆全基因组选择应用研究. 大豆科学, 2018, 37: 353-358. |
Tang Y, Zheng P, Wang J B, Zhang J C. Application research for soybean genomics selection by comparing Bayesian B and other methods. Soybean Sci, 2018, 37: 353-358. (in Chinese with English abstract) | |
[55] | 孙强, 任姣姣, 徐晓明, 李宗泽, 黄博文, 陈占辉, 吴鹏昊. 玉米株高和穗位高QTL定位和全基因组选择探究. 玉米科学, 2022, 30(4): 40-47. |
Sun Q, Ren J J, Xu X M, Li Z Z, Huang B W, Chen Z H, Wu P H. QTL mapping and genomic selection for plant height and ear height in maize. J Maize Sci, 2022, 30(4): 40-47. (in Chinese with English abstract) | |
[56] |
许加波, 吴鹏昊, 黄博文, 陈占辉, 马月虹, 任姣姣. 利用F2:3家系来源单倍体定位玉米雄穗相关性状QTL及全基因组选择. 作物学报, 2023, 49: 622-633.
doi: 10.3724/SP.J.1006.2023.23024 |
Xu J B, Wu P H, Huang B W, Chen Z H, Ma Y H, Ren J J. QTL locating and genomic selection for tassel-related traits using F2:3 lineage haploids. Acta Agron Sin, 2023, 49: 622-633. (in Chinese with English abstract) | |
[57] | 邱树青, 陆青, 喻辉辉, 倪雪梅, 张耕耘, 何航, 谢为博, 周发松. 水稻全基因组选择育种技术平台构建与应用. 生命科学, 2018, 30: 1120-1128. |
Qiu S Q, Lu Q, Yu H H, Nix M, Zhang G Y, He H, Xie W B, Zhou F S. The development and application of rice whole genome selection breeding platform. Chin Bull Life Sci, 2018, 30: 1120-1128. (in Chinese with English abstract) | |
[58] |
Wang X, Yang Z, Xu C. A comparison of genomic selection methods for breeding value prediction. Sci Bull, 2015, 60: 925-935.
doi: 10.1007/s11434-015-0791-2 |
[59] |
Hayes B J, Bowman P J, Chamberlain A J, Goddard M E. Invited review: genomic selection in dairy cattle: progress and challenges. J Dairy Sci, 2009, 92: 433-443. (in Chinese with English abstract)
doi: 10.3168/jds.2008-1646 pmid: 19164653 |
[60] |
Habier D, Fernando R L, Dekkers J C. Genomic selection using low-density marker panels. Genetics, 2009, 182: 343-353.
doi: 10.1534/genetics.108.100289 pmid: 19299339 |
[61] |
Vinayan M T, Seetharam K, Babu R, Zaidi P H, Blummel M, Nair S K. Genome wide association study and genomic prediction for stover quality traits in tropical maize (Zea mays L.). Sci Rep, 2021, 11: 686.
doi: 10.1038/s41598-020-80118-2 pmid: 33436870 |
[62] |
Michel S, Kummer C, Gallee M, Hellinger J, Ametz C, Akgöl B, Epure D, Güngör H, Löschenberger F, Buerstmayr H. Improving the baking quality of bread wheat by genomic selection in early generations. Theor Appl Genet, 2018, 131: 477-493.
doi: 10.1007/s00122-017-2998-x pmid: 29063161 |
[63] |
Kumar S, Chagné D, Bink M C, Volz R K, Whitworth C, Carlisle C. Genomic selection for fruit quality traits in apple (Malus × domestica Borkh.). PLoS One, 2012, 7: e36674.
doi: 10.1371/journal.pone.0036674 |
[64] |
Rao Y, Xiang B, Zhou X, Wang Z, Xie S, Xu J. Quantitative and qualitative determination of acid value of peanut oil using near-infrared spectrometry. J Food Eng, 2009, 93: 249-252.
doi: 10.1016/j.jfoodeng.2009.01.023 |
[65] |
胡美玲, 郅晨阳, 薛晓梦, 吴洁, 王瑾, 晏立英, 王欣, 陈玉宁, 康彦平, 王志慧, 淮东欣, 姜慧芳, 雷永, 廖伯寿. 单粒花生蔗糖含量近红外预测模型的建立. 作物学报, 2023, 49: 2498-2504.
doi: 10.3724/SP.J.1006.2023.24241 |
Hu M L, Zhi C Y, Xue X M, Wu J, Wang J, Yan L Y, Wang X, Chen Y N, Kang Y P, Wang Z H, Huai D X, Jiang H F, Lei Y, Liao B S. Establishment of near-infrared reflectance spectroscopy model for predicting sucrose content of single seed in peanut. Acta Agron Sin, 2023, 49: 2498-2504. (in Chinese with English abstract) | |
[66] | Eynard S E, Croiseau P, Laloë D, Fritz S, Calus M P L, Restoux G. Which individuals to choose to update the reference population? Minimizing the loss of genetic diversity in animal genomic selection programs. G3: Genes Genom Genet, 2018, 8: 113-121. |
[1] | 曹松, 姚敏, 任睿, 贾元, 向星汝, 李文, 何昕, 刘忠松, 官春云, 钱论文, 熊兴华. 转录组结合区域关联分析挖掘油菜含油量积累的候选基因[J]. 作物学报, 2024, 50(5): 1136-1146. |
[2] | 李海芬, 鲁清, 刘浩, 温世杰, 王润风, 黄璐, 陈小平, 洪彦彬, 梁炫强. 花生赤霉素3-β-双加氧酶(AhGA3ox)基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(4): 932-943. |
[3] | 张月, 王志慧, 淮东欣, 刘念, 姜慧芳, 廖伯寿, 雷永. 花生含油量的遗传基础与QTL定位研究进展[J]. 作物学报, 2024, 50(3): 529-542. |
[4] | 聂晓玉, 李真, 王天尧, 周元委, 徐正华, 王晶, 汪波, 蒯婕, 周广生. 种植密度对角果期弱光胁迫油菜籽粒油脂积累的影响[J]. 作物学报, 2024, 50(2): 493-505. |
[5] | 郅晨阳, 薛晓梦, 吴洁, 李雄才, 王瑾, 晏立英, 王欣, 陈玉宁, 康彦平, 王志慧, 淮东欣, 洪彦彬, 姜慧芳, 雷永, 廖伯寿. 花生籽仁蔗糖含量遗传模型分析[J]. 作物学报, 2024, 50(1): 32-41. |
[6] | 胡美玲, 郅晨阳, 薛晓梦, 吴洁, 王瑾, 晏立英, 王欣, 陈玉宁, 康彦平, 王志慧, 淮东欣, 姜慧芳, 雷永, 廖伯寿. 单粒花生蔗糖含量近红外预测模型的建立[J]. 作物学报, 2023, 49(9): 2498-2504. |
[7] | 王菲菲, 张胜忠, 胡晓辉, 崔凤高, 钟文, 赵立波, 张天雨, 郭进涛, 于豪谅, 苗华荣, 陈静. 比较转录组分析花生种子休眠调控网络[J]. 作物学报, 2023, 49(9): 2446-2461. |
[8] | 徐扬, 张岱, 康涛, 温赛群, 张冠初, 丁红, 郭庆, 秦斐斐, 戴良香, 张智猛. 盐胁迫对花生幼苗离子动态及耐盐基因表达的影响[J]. 作物学报, 2023, 49(9): 2373-2384. |
[9] | 黄莉, 陈伟刚, 李威涛, 喻博伦, 郭建斌, 周小静, 罗怀勇, 刘念, 雷永, 廖伯寿, 姜慧芳. 花生根部结瘤性状QTL定位[J]. 作物学报, 2023, 49(8): 2097-2104. |
[10] | 李星, 杨会, 骆璐, 李华东, 张昆, 张秀荣, 李玉颖, 于海洋, 王天宇, 刘佳琪, 王瑶, 刘风珍, 万勇善. 栽培种花生单仁重QTL定位分析[J]. 作物学报, 2023, 49(8): 2160-2170. |
[11] | 陶顺玉, 吴贝, 刘念, 罗怀勇, 黄莉, 周小静, 陈伟刚, 郭建斌, 喻博伦, 雷永, 廖伯寿, 姜慧芳. 花生InDel标记开发及其在含油量QTL定位中的应用[J]. 作物学报, 2023, 49(5): 1222-1230. |
[12] | 孙全喜, 苑翠玲, 牟艺菲, 闫彩霞, 赵小波, 王娟, 王奇, 孙慧, 李春娟, 单世华. 花生SWEET基因全基因组鉴定及表达分析[J]. 作物学报, 2023, 49(4): 938-954. |
[13] | 许加波, 吴鹏昊, 黄博文, 陈占辉, 马月虹, 任姣姣. 利用F2:3家系来源单倍体定位玉米雄穗相关性状QTL及全基因组选择[J]. 作物学报, 2023, 49(3): 622-633. |
[14] | 纪红昌, 胡畅丽, 邱晓臣, 吴兰荣, 李晶晶, 李鑫, 李晓婷, 刘雨函, 唐艳艳, 张晓军, 王晶珊, 乔利仙. 花生籽仁品质性状高通量表型分析模型的构建[J]. 作物学报, 2023, 49(3): 869-876. |
[15] | 刘俊华, 吴正锋, 党彦学, 于天一, 郑永美, 万书波, 王才斌, 李林. 密度对不同株型花生单粒精播群体质量及产量的影响[J]. 作物学报, 2023, 49(2): 459-471. |
|