欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (4): 957-968.doi: 10.3724/SP.J.1006.2024.34080

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

一种绿豆柱头外露突变体的转录组分析

宋梦媛1,2(), 郭中校1, 苏禹霏1,2, 邓昆鹏1, 兰天娇1, 程钰鑫1, 包淑英1, 王桂芳1, 窦金光1, 姜泽锴1,2, 王明海1,*(), 徐宁1,*()   

  1. 1吉林省农业科学院作物资源研究所 / 作物种质资源吉林省实验室, 吉林公主岭 136100
    2吉林农业大学农学院, 吉林长春 130118
  • 收稿日期:2023-05-09 接受日期:2023-09-13 出版日期:2024-04-12 网络出版日期:2023-10-07
  • 通讯作者: * 徐宁, E-mail: xunig2008@163.com;王明海, E-mail: shiyongdou@163.com
  • 作者简介:E-mail: smyuan2023@163.com
  • 基金资助:
    吉林省农业科技创新工程项目(CXGC2021ZY131);吉林省农业科技创新工程项目(CXGC2021TD111);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-08-Z8)

Transcriptome analysis of a stigma exsertion mutant in mungbean

SONG Meng-Yuan1,2(), GUO Zhong-Xiao1, SU Yu-Fei1,2, DENG Kun-Peng1, LAN Tian-Jiao1, CHENG Yu-Xin1, BAO Shu-Ying1, WANG Gui-Fang1, DOU Jin-Guang1, JIANG Ze-Kai1,2, WANG Ming-Hai1,*(), XU Ning1,*()   

  1. 1Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences / Jilin Provincial Laboratory of Crop Germplasm Resources, Gongzhuling 136100, Jilin, China
    2College of Agronomy, Jilin Agricultural University, Changchun 130118, Jilin, China
  • Received:2023-05-09 Accepted:2023-09-13 Published:2024-04-12 Published online:2023-10-07
  • Contact: * E-mail: xunig2008@163.com; E-mail: shiyongdou@163.com
  • Supported by:
    Agricultural Science and Technology Innovation Program of Jilin Province(CXGC2021ZY131);Agricultural Science and Technology Innovation Program of Jilin Province(CXGC2021TD111);China Agriculture Research System of MOF and MARA(CARS-08-Z8)

摘要:

柱头外露作为提高作物异交率、制种纯度和降低制种成本的优良性状, 在杂交制种中得到了广泛的利用。绿豆是一种闭花授粉的作物, 被报道的柱头外露突变体很少。通过对冀绿7号的化学诱变, 发现了1个柱头外露突变体se2, 为明确该突变体柱头外露的分子机制, 对该突变体及其野生型冀绿7号即将开放的花蕾进行了转录组测序(RNA-seq)分析。根据差异倍数|log2 (Fold Change)|≥1, P≤0.05的标准筛选, 在se2中共得到572个差异表达基因(differentially expressed genes, DEGs), 其中262个DEGs上调, 310个DEGs下调。在基因本体(gene ontology, GO)数据库中, 差异表达基因显著富集到代谢和生物合成等生物过程, 定位在质外体和细胞壁、细胞膜等区域, 与结合、氧化还原等分子功能有关。在京都基因与基因组百科全书(kyoto encyclopedia of genes and genome, KEGG)数据库中, 差异表达基因显著富集在植物激素信号传导、次生代谢物生物合成等通路。功能注释发现许多有关细胞壁合成和代谢、细胞分裂和细胞扩张、植物激素相关的基因, 因此推测se2突变体中龙骨瓣的细胞分裂、细胞扩张以及植物激素信号传导过程受到影响, 从而导致了柱头外露。本研究为今后探究绿豆柱头外露的分子机制以及该性状在绿豆杂种优势中的利用奠定了基础。

关键词: 绿豆, 柱头外露, 突变体, 转录组, 高通量测序, 杂种优势

Abstract:

Stigma exsertion has been widely used in hybrid breeding as an excellent trait to improve crop outcrossing rate, seed purity, and seed production cost. As a closed-pollinated crop, few stigma exsertion mutants have been reported in mungbean. A stigma exsertion mutant se2 was discovered in mungbean variety Jilyu 7 after chemical mutagination. In order to clarify the molecular mechanism of stigma exsertion, transcription-sequencing (RNA-seq) analysis was conducted on the next day's opening buds of se2 and its wild type Jilyu 7. A total of 572 differentially expressed genes (DEGs) were obtained in se2, among which 262 DEGs were up-regulated and 310 DEGs were down-regulated, based on the screening criteria of difference multiplier |log2(Fold Change)| ≥1 and P ≤ 0.05. In GO database, differentially expressed genes were significantly enriched in biological processes such as metabolism and biosynthesis, and localized in regions such as apoplast, cell walls, and membranes, and mainly associated with molecular functions such as binding and redox. In the kyoto encyclopedia of genes and genome (KEGG) database, differentially expressed genes were significantly enriched in plant hormone signal transduction and biosynthesis of secondary metabolites. Functional annotation revealed many genes related to cell wall synthesis and metabolism, cell division and cell expansion, and plant hormones. Therefore, we hypothesized that cell division, cell expansion, and plant hormone signaling processes of the keel flap in se2 mutants were affected, leading to stigma exsertion. This study laid a foundation for future investigations into the molecular mechanism of stigma exsertion in mungbean and its application in heterosis.

Key words: mungbean, stigma exsertion, mutant, transcriptome, high-throughput sequencing, heterosis

图1

柱头外露突变体se2和冀绿7号(WT)花蕾的表型比较 A: 柱头外露突变体se2; B: 冀绿7号(WT)。"

表1

qRT-PCR所用引物"

基因编号
Gene ID
正向引物序列
Forward sequence (5'-3')
反向引物序列
Reverse sequence (5'-3')
jg12155 CTTGGATACCATACCTGCGGACATG CACGAACATCGGCAATTCTGAATGG
jg15370 TGTGGAGCAAGGAGCATCAACAAC CTTAGCCAAATCCATGTCCCTTCCC
jg17957 CCCGGTGTTGCAACTTCTCT CATAAGCTTGCGGTGATGCC
novel.24 TGTGTGGTGTCGCAGGTTGTTC AGCAGTGAGGAGTGGTCCAAGAG
jg25789 CACCTCCCTCTACTTTGCCG AGCGCCGAGAATCATGTCAA
VrActin GGCATCCACGAGACAACA AGCCTCCAATCCAGACAC

表2

转录组测序相关数据"

样本
Sample
测序总读数
Total reads number
质控后读数
Clean reads number
错误率
Error rate (%)
总比对率
Mapped ratio (%)
Q20碱基百分比
Q20 base
percentage (%)
Q30碱基百分比
Q30 base
percentage (%)
WT1 44719486 43961678 0.02 96.79 98.10 94.43
WT2 46637862 45775686 0.02 96.86 98.05 94.23
WT3 43888030 42753792 0.03 96.68 97.97 94.08
SE2-1 47065416 46312622 0.02 96.97 98.10 94.33
SE2-2 47644132 46668574 0.02 96.67 98.20 94.61
SE2-3 45688950 44977346 0.03 96.99 98.00 94.11

图2

样本基因表达分布及相关性分析 A: 各样本基因表达分布; B: 样本间相关性。"

图3

差异基因火山图 Up: 上调基因; Down: 下调基因; Not significant: 无显著差异基因。"

图4

se2和冀绿7号(WT)部分差异表达基因的相对表达水平"

图5

se2和冀绿7号(WT)差异表达基因的GO富集分析 BP: 生物过程; MF: 分子功能; CC: 细胞组分。"

图6

se2和冀绿7号(WT)差异表达基因KEGG富集分析"

表3

细胞分裂和细胞扩张相关的差异表达基因"

基因编号
Gene ID
上调/下调
Up/down
基因名称
Gene name
描述
Description
jg13552 Down Laccase-15 漆酶15 Laccase-15
jg12507 Down Laccase-2 漆酶2 Laccase-2
jg17193 Down Laccase-4 漆酶4 Laccase-4
jg15432 Down callose synthase 8 推测的胼胝质合酶8 Putative callose synthase 8
jg25641 Down PE6/PME6 可能的果胶甲酯酶6/抑制剂6 Probable pectinesterase/pectinesterase inhibitor 6
jg33131 Up PMEI 18/PME4 果胶甲酯酶/果胶甲酯酶抑制剂18 Pectinesterase/pectinesterase inhibitor 18
jg11460 Down NAO 乙酰鸟氨酸脱酰基酶 Acetylornithine deacetylase
jg13187 Up CEL1 纤维素酶1 Cellulase 1
jg21473 Down XTH-7 木葡聚糖内转糖苷酶/水解酶7 XTH-7
jg24723 Up XTH-16 木葡聚糖内转糖苷酶/水解酶16 XTH-16
jg20410 Down XTH-22 木葡聚糖内转糖苷酶/水解酶22 XTH-22
jg20409 Down XTH-22 木葡聚糖内转糖苷酶/水解酶22 XTH-22
jg20407 Down XTH-23 木葡聚糖内转糖苷酶/水解酶23 XTH-23
jg20408 Down XTH-23 木葡聚糖内转糖苷酶/水解酶23 XTH-23
jg12255 Up XTH-31 木葡聚糖内转糖苷酶/水解酶31 XTH-31
jg11149 Down GDP-fucose protein O-fucosyltransferase GDP-fucose O-岩藻糖基转移酶
GDP-fucose protein O-fucosyltransferase
jg9115 Up MYB46 转录因子MYB46 Transcription factor MYB46
jg17738 Down GDPDL4 甘油磷酸二酯磷酸二酯酶GDPDL4
Glycerophosphodiester phosphodiesterase-like 4
jg23957 Down 1,3-beta-glucanase 7 1,3-β-葡聚糖内水解酶7 1,3-beta-glucan endohydrolase 7
jg9059 Up Beta-glucosidase 12 β-葡萄糖苷酶12 Beta-glucosidase 12
jg16663 Up Beta-1,3-endoglucanase 8 β-1.3内切葡聚糖酶8 Beta-1,3-endoglucanase 8
jg23043 Down RAY1 β-阿拉伯呋喃糖基转移酶 Beta-arabinofuranosyltransferase RAY1
jg36915 Down Cell wall beta-fructosidase 1 细胞壁β-果糖苷酶1 Cell wall beta-fructosidase 1
jg21315 Up Probable aspartyl protease 可能的天冬氨酰蛋白酶At4g16563 Probable aspartyl protease At4g16563
jg17593 Down Aspartyl protease family protein 2 天冬氨酰蛋白酶家族蛋白2 Aspartyl protease family protein 2
jg39446 Down LRX/Extensin 6 富含亮氨酸重复延伸蛋白样蛋白6 Leucine-rich repeat extensin-like protein 6
jg15038 Down IRX14H β-1,4-木糖基转移酶IRX14H Probable beta-1,4-xylosyltransferase IRX14H
jg12968 Down EXPLA2 扩展蛋白EXPLA2 Expansin-like A2
jg19405 Down EXORDIUM 蛋白EXORDIUM Protein EXORDIUM
jg19402 Down EXORDIUM 蛋白EXORDIUM Protein EXORDIUM
jg19404 Down EXORDIUM 蛋白EXORDIUM Protein EXORDIUM
jg20020 Down COBRA-Like protein 7 COBRA样蛋白7 COBRA-like protein 7
jg29779 Down Sec3b 囊泡转运复合体亚基Sec3B Exocyst complex component SEC3B
jg15257 Down KIN-6 驱动蛋白KIN-6 Kinesin-like protein KIN-6
jg15248 Down KIN-6 驱动蛋白KIN-6 Kinesin-like protein KIN-6
jg35033 Down KIN-7M 驱动蛋白KIN-7M Kinesin-like protein KIN-7M
jg14893 Up KIN-5C 驱动蛋白KIN-5C Kinesin-like protein KIN-5C
jg33119 Down DUF1005 未知功能蛋白DUF1005 Protein of unknown function DUF1005
jg33683 Up BTB/POZ domain BTB/POZ结构域蛋白 BTB/POZ domain-containing protein
jg15199 Down PICKLE/CHR5 CHD3型染色质重塑因子PICKLE
CHD3-type chromatin-remodeling factor PICKLE
jg15252 Down PICKLE/CHR6 CHD3型染色质重塑因子PICKLE
CHD3-type chromatin-remodeling factor PICKLE
jg2927 Up EBP1 ERBB3结合蛋白1 ERBB-3 BINDING PROTEIN 1
jg13226 Down CCR4 丝氨酸/苏氨酸蛋白激酶样蛋白CCR4
Serine/threonine-protein kinase-like protein CCR4
jg15053 Down PAS1 肽基脯氨酰顺反异构酶 Peptidyl-prolyl cis-trans isomerase PASTICCINO1
jg15144 Up SLAH3 S型阴离子通道3 S-type anion channel SLAH3
jg19729 Down SLAH1 S型阴离子通道1 S-type anion channel SLAH1
jg25789 Down SKOR 外向整流K+通道SKOR Stelar K(+) outward rectifying channel
jg17957 Down CLC-e 氯离子通道蛋CLC-e Chloride channel protein CLC-e

表4

植物激素相关的差异表达基因"

基因编号
Gene ID
上调/下调
Up/down
基因名称
Gene name
描述
Description
jg16675 Down AUX1-like protein 1 生长素输入载体AUX1 Auxin transporter-like protein 1
jg2587 Down PIN-Likes 1 生长素输出蛋白PIN-Likes 1 Protein PIN-Likes 1
jg20452 Up VAN3-binding VAN3结合蛋白 VAN3-binding protein
jg12839 Up ARG7 生长素相应蛋白ARG7 Auxin responsive protein
jg28855 Up SAUR71 生长素响应蛋白SAUR71 Auxin-responsive protein SAUR71
jg13096 Down CKX6/CKO6 细胞分裂素脱氢酶/氧化酶6 Cytokinin dehydrogenase/oxidase 6
jg33851 Up ATHB-40 HD-ZIP蛋白ATHB-40 HD-ZIP protein ATHB-40
jg638 Up ATHB-12 HD-ZIP蛋白 ATHB-12 HD-ZIP protein ATHB-12
jg1095 Up GA 20-oxidase 2 赤霉素20氧化酶2 Gibberellin 20 oxidase 2
jg18873 Up GA 20-oxidase 2 赤霉素20氧化酶2 Gibberellin 20 oxidase 2
jg36069 Up ETR2 乙烯受体ETR2 Ethylene receptor 2
jg36578 Up ERF106 乙烯响应转录因子ERF106 Ethylene-responsive transcription factor ERF106
jg4916 Up ERF034 乙烯响应转录因子ERF034 Ethylene-responsive transcription factor ERF034
jg37484 Up ERF1B 乙烯响应转录因子ERF1B Ethylene-responsive transcription factor 1B
jg38226 Down PP2C 可能的蛋白磷脂酶 PP2C 49 Probable protein phosphatase 2C 49
jg545 Up MARD1/SAG102 ABA调节的休眠介质1/衰老相关蛋白SAG102
Mediator of ABA-regulated dormancy1/Senescence-associated protein SAG102
jg20855 Up AFP3 ABI5结合蛋白3 ABI5-binding protein 3
jg27356 Up ABR1 乙烯响应因子ABR1 Ethylene-responsive transcription factor ABR1
jg29371 Up AOS2/P450 74A 丙二烯氧化物合酶2 Allene oxide synthase 2/Cytochrome P450 74A
jg35914 Down TGA7 转录因子TGA7 Transcription factor TGA7
jg15164 Down OPP21 双组分响应调节子ORR21 Two-component response regulator ORR21
jg25674 Down ARR14 双组分响应调节子ARR14 Two-component response regulator ARR14
jg27911 Up ARR17 双组分响应调节子ARR17 Two-component response regulator ARR17
jg14455 Down SAP12 锌指结构域应激相关蛋白12
Zinc finger AN1 domain-containing stress-associated protein 12 SAP12
jg14454 Down SAP12 锌指结构域应激相关蛋白12
Zinc finger AN1 domain-containing stress-associated protein 12 SAP12
[26] 胡育玮. 烟草细胞质遗传柱头外露发生机制研究. 河南农业大学硕士学位论文, 河南郑州, 2019.
Hu Y W. Study on the Stigma Exsertion Formation Mechanism in Cytoplasmic Inheritance of Stigma Exsertion Tobacco. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2018. (in Chinese with English abstract)
[27] Li J X, Li M, Wang W M, Wang D, Hu Y W, Zhang Y Y, Zhang X Q. Morphological and physiological mechanism of cytoplasmic inheritance stigma exsertion trait expression in tobacco (Nicotiana tabacu). Plant Sci, 2023, 326: 111528.
doi: 10.1016/j.plantsci.2022.111528
[28] Smyczynski C, Roudier F, Gissot L, Vaillant E, Grandjean O, Morin H, Masson T, Bellec Y, Geelen D, Faure J D. The C terminus of the immunophilin pasticcino1 is required for plant development and for interaction with a NAC-like transcription factor. J Biol Chem, 2006, 281: 25475-25484.
doi: 10.1074/jbc.M601815200 pmid: 16803883
[29] Garcia M A, Koonrugsa N, Toda T. Two kinesin-like KIN I family proteins in fission yeast regulate the establishment of metaphase and the onset of anaphase A. Curr Biol, 2002, 12: 610-621.
doi: 10.1016/s0960-9822(02)00761-3 pmid: 11967147
[30] Becraft P W, Stinard P S, McCarty D R. Crinkly4: a tnfr-like receptor kinase involved in maize epidermal differentiation. Science, 1996, 273: 1406-1409.
doi: 10.1126/science.273.5280.1406 pmid: 8703079
[31] Kang S G, Lee H J, Suh S G. The maize Crinkly4 gene is expressed spatially in vegetative and floral organs. Plant Biol, 2002, 45: 219-224.
[32] Pu C X, Ma Y, Wang J, Zhang Y C, Jiao X W, Hu Y H, Wang L L, Zhu Z G, Sun D, Sun Y. Crinkly4 receptor-like kinase is required to maintain the interlocking of the palea and lemma, and fertility in rice, by promoting epidermal cell differentiation. Plant J, 2012, 70: 940-953.
doi: 10.1111/tpj.2012.70.issue-6
[33] Cosgrove D J. Growth of the plant cell wall. Nat Rev Mol Cell Biol, 2005, 6: 850-861.
[34] Chen K Y, Cong B, Wing R, Vrebalov J, Tanksley S D. Changes in regulation of a transcription factor lead to autogamy in cultivated tomatoes. Science, 2007, 318: 643-645.
doi: 10.1126/science.1148428
[35] Cheng M, Gong C, Zhang B, Qu W, Qi H, Chen X, Wang X, Zhang Y, Liu J, Ding X, Qiu Y, Wang A. Morphological and anatomical characteristics of exserted stigma sterility and the location and function of SLLST (Solanum lycopersicum long styles) gene in tomato. Theor Appl Genet, 2021, 134: 505-518.
doi: 10.1007/s00122-020-03710-0 pmid: 33140169
[36] Guo N, Wang Y, Chen W, Tang S, An R, Wei X, Hu S, Tang S, Shao G, Jiao G, Xie L, Wang L, Sheng Z, Hu P. Fine mapping and target gene identification of QSE4, a QTL for stigma exsertion rate in rice (Oryza sativa L.). Front Plant Sci, 2022, 13: 959859.
doi: 10.3389/fpls.2022.959859
[37] Zhao M, Han Y, Feng Y, Li F, Wang W. Expansins are involved in cell growth mediated by abscisic acid and indole-3-acetic acid under drought stress in wheat. Plant Cell Rep, 2012, 31: 671-685.
doi: 10.1007/s00299-011-1185-9
[38] Pan C, Yang D, Zhao X, Jiao C, Yan Y, Lamin-Samu A T, Wang Q, Xu X, Fei Z, Lu G. Tomato stigma exsertion induced by high temperature is associated with the jasmonate signalling pathway. Plant Cell Environ, 2019, 42: 1205-1221.
doi: 10.1111/pce.v42.4
[39] Cheng H, Qin L, Lee S, Fu X, Richards D E, Cao D, Luo D, Harberd N P, Peng J. Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development, 2004, 131: 1055-1064.
doi: 10.1242/dev.00992 pmid: 14973286
[40] 王燕, 潘长田, 王洁, 秦力, 邹滔, 卢钢. 赤霉素对亚高温胁迫下番茄花柱外露及相关基因表达的影响. 浙江大学学报(农业与生命科学版), 2015, 41: 449-457.
Wang Y, Pan C T, Wang J, Qin L, Zou T, Lu G. Effects of gibberellin on tomato stigma exsertion and hormone-related gene expression under moderate heat stress. J Zhejiang Univ (Agric Life Sci Edn), 2015, 41: 449-457. (in Chinese with English abstract)
[41] Carrera E, Ruiz-Rivero O, Peres L E P, Atares A, Garcia-Martinez J L. Characterization of the procera tomato mutant shows novel functions of the sldella protein in the control of flower morphology, cell division and expansion, and the auxin-signaling pathway during fruit-set and development. Plant Physiol, 2012, 160: 1581-1596.
doi: 10.1104/pp.112.204552 pmid: 22942390
[42] Rieu I, Ruiz R O, Fernandez G N, Griffiths J, Powers S J, Gong F, Linhartova T, Eriksson S, Nilsson O, Thomas S G, Phillips A L, Hedden P. The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J, 2008, 53: 488-504.
doi: 10.1111/j.1365-313X.2007.03356.x pmid: 18069939
[43] Brioudes F, Joly C, Szécsi J, Varaud E, Leroux J, Bellvert F, Bertrand C, Bendahmane M. Jasmonate controls late development stages of petal growth in Arabidopsis thaliana. Plant J, 2009, 60: 1070-1080.
doi: 10.1111/tpj.2009.60.issue-6
[44] Dong S, Tarkowska D, Sedaghatmehr M, Welsch M, Gupta S, Mueller-Roeber B, Balazadeh S. The HB40-JUB1 transcriptional regulatory network controls gibberellin homeostasis in Arabidopsis. Mol Plant, 2022, 15: 322-339.
[45] Son O, Hur Y S, Kim Y K, Lee H J, Kim S, Kim M R, Nam K H, Lee M S, Kim B Y, Park J, Park J, Lee S C, Hanada A, Yamaguchi S, Lee I J, Kim S K, Yun D J, Söderman E, Cheon C I. ATHB12, an ABA-inducible homeodomain-leucine zipper (HD- Zip) protein of Arabidopsis, negatively regulates the growth of the inflorescence stem by decreasing the expression of a gibberellin 20-oxidase gene. Plant Cell Physiol, 2010, 51: 1537-1547.
doi: 10.1093/pcp/pcq108
[1] 郑卓杰. 中国食用豆类学. 北京: 中国农业出版社, 1997. pp 141-166.
Zheng Z J. Food Legumes in China. Beijing: China Agriculture Press, 1995. pp 141-166. (in Chinese)
[2] 田静, 程须珍, 范保杰, 王丽侠, 刘建军, 刘长友, 王素华, 曹志敏, 陈红霖, 王彦, 王珅. 我国绿豆品种现状及发展趋势. 作物杂志, 2021, (6): 15-21.
Tian J, Cheng X J, Fan B J, Wang L X, Liu J J, Liu C Y, Wang S H, Cao Z M, Chen H L, Wang Y, Wang K. Current situation and development trend of mungbean varieties in China. Crops, 2021, (6): 15-21. (in Chinese with English abstract)
[3] 王丽侠, 程须珍, 王素华. 绿豆种质资源、育种及遗传研究进展. 中国农业科学, 2009, 42: 1519-1527.
Wang L X, Cheng X Z, Wang S H. Advances in research on genetic resources, breeding and genetics of mungbean (Vigna radiata L.). Sci Agric Sin, 2009, 42: 1519-1527. (in Chinese with English abstract)
[4] 黄穗兰, 郭宝德, 冀丽霞, 牛永章, 姜艳丽. 棉花种间杂交长柱头种质系TY35的培育与应用. 山西农业科学, 2015, 43: 777-779.
Huang S L, Guo B D, Ji L X, Niu Y Z, Jiang Y L. The selection and application of germplasm line TY35 with long stigma from interspecific crossing in cotton. J Shanxi Agric Sci, 2015, 43: 777-779. (in Chinese with English abstract)
[5] 杨保汉. 不育系柱头外露率及其结实率研究. 杂交水稻, 1997, (1): 15-17.
Yang B H. Studies on stigma exsertion rate and outcrossing rate of CMS Lines in rice. Hybrid Rice, 1997, (1): 15-17. (in Chinese)
[6] 崔贵梅, 牛天堂, 张福耀, 袁爱萍, 孙毅. 谷子(Setaria italica Beauv.)高异交结实雄性不育系“81-16”的柱头性状观察. 作物学报, 2007, 33: 149-153.
Cui G M, Niu T T, Zhang F Y, Yuan A P, Sun Y. The stigma observation on foxtail millet (Setaria italica Beauv.) male-sterile line “81-16” with high outcross seed setting. Acta Agron Sin, 2007, 33: 149-153. (in Chinese with English abstract)
[7] Lin Y, Laosatit K, Chen J, Yuan X, Wu R, Amkul K, Chen X, Somta P. Mapping and functional characterization of stigma exposed 1, a DUF1005 gene controlling petal and stigma cells in mungbean (Vigna radiata). Front Plant Sci, 2020, 11: 575922.
doi: 10.3389/fpls.2020.575922
[8] Yan H, Zhang B, Zhang Y, Chen X, Xiong H, Matsui T, Tian X. High temperature induced glume closure resulted in lower fertility in hybrid rice seed production. Front Plant Sci, 2017, 7: 1960.
[9] Elshamey E A Z, Hamad H S, Alshallash K S, Alghuthaymi M A, Ghazy M I, Sakran R M, Selim M E, ElSayed M A A, Abdelmegeed T M, Okasha S A, Behiry S I, Boudiar R, Mansour E. Growth regulators improve outcrossing rate of diverse rice cytoplasmic male sterile lines through affecting floral traits. Plants (Basel), 2022, 11: 1291.
doi: 10.3390/plants11101291
[10] Matthias Benoit. From non-self to self: stepwise mutations in transcription factors promote the transition to self-pollination in tomato. Plant Cell, 2021, 10: 3183-3184.
[11] Riccini A, Picarella M E, De Angelis F, Mazzucato A. Bulk RNA-Seq analysis to dissect the regulation of stigma position in tomato. Plant Mol Biol, 2021, 105: 263-285.
doi: 10.1007/s11103-020-01086-9 pmid: 33104942
[12] Pan C, Ye L, Zheng Y, Wang Y, Yang D, Liu X, Chen L, Zhang Y, Fei Z, Lu G. Identification and expression profiling of micrornas involved in the stigma exsertion under high-temperature stress in tomato. BMC Genomics, 2017, 18: 843.
doi: 10.1186/s12864-017-4238-9 pmid: 29096602
[13] Mortazavi A, Williams B A, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods, 2008, 5: 621-628.
doi: 10.1038/nmeth.1226 pmid: 18516045
[14] Trapnell C, Williams B A, Pertea G, Mortazavi A, Kwan G, van Baren M J, Salzberg S L, Wold B J, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol, 2010, 28: 511-515.
doi: 10.1038/nbt.1621 pmid: 20436464
[15] Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol, 2014, 15: 550.
doi: 10.1186/s13059-014-0550-8
[16] Bashline L, Lei L, Li S, Gu Y. Cell wall, cytoskeleton, and cell expansion in higher plants. Mol Plant, 2014, 7: 586-600.
doi: 10.1093/mp/ssu018 pmid: 24557922
[17] Tsabary G, Shani Z, Roiz L, Levy I, Riov J, Shoseyov O. Abnormal ‘wrinkled’ cell walls and retarded development of transgenic Arabidopsis thaliana plants expressing endo-1,4-β-glucanase (cell) antisense. Plant Mol Biol, 2003, 51: 213-224.
pmid: 12602880
[18] Herger A, Dünser K, Kleine-Vehn J, Ringli C. Leucine-rich repeat extensin proteins and their role in cell wall sensing. Curr Biol, 2019, 29: 851-858.
doi: S0960-9822(19)30884-X pmid: 31505187
[19] Fendrych M, Synek L, Pečenková T, Toupalová H, Cole R, Drdová E, Nebesářová J, Šedinová M, Hála M, Fowler J E, Žárský V. The Arabidopsis exocyst complex is involved in cytokinesis and cell plate maturation. Plant Cell, 2010, 22: 3053-3065.
doi: 10.1105/tpc.110.074351
[20] Wen T J, Hochholdinger F, Sauer M, Bruce W, Schnable P S. The roothairless1 gene of maize encodes a homolog of sec3, which is involved in polar exocytosis. Plant Physiol, 2005, 138: 1637-1643.
doi: 10.1104/pp.105.062174
[21] To J P C, Haberer G, Ferreira F J, Deruère J, Mason M G, Schaller G E, Alonso J M, Ecker J R, Kieber J J. Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell, 2004, 16: 658-671.
doi: 10.1105/tpc.018978
[22] 吴健, 孙玥, 张融雪, 李军玲, 王晓静, 闫双勇, 马忠友, 孙林静, 苏京平, 王胜军, 刘学军. 水稻柱头外露率相关性状的调查及高柱头外露率不育系的创制. 天津农业科学, 2017, 23(11): 55-60.
Wu J, Sun Y, Zhang R X, Li J L, Wang X J, Yan S Y, Ma Z Y, Sun L J, Su J P, Wang S J, Liu X J. Investigation of characters related to stigma exserted rate in rice and establishment of male sterile line with high stigma exposure. Tianjin Agric Sci, 2017, 23(11): 55-60. (in Chinese with English abstract)
[23] Shang L, Song J, Yu H, Wang X, Yu C, Wang Y, Li F, Lu Y, Wang T, Ou-Yang B, Zhang J, Larkin R M, Ye Z, Zhang Y. A mutation in a C2H2-type zinc finger transcription factor contributed to the transition toward self-pollination in cultivated tomato. Plant Cell, 2021, 33: 3293-3308.
doi: 10.1093/plcell/koab201
[24] 张栩佳, 胡灵芝, 陈哲皓, 李颖, 王利琳. 花器官大小调控机制的研究进展. 植物生理学报, 2014, 50: 691-697.
Zhang X J, Hu L Z, Chen Z H, Li Y, Wang L L. Research progress in regulation mechanism of floral organ size. Plant Physiol J, 2014, 50: 691-697. (in Chinese with English abstract)
[25] 张鋆鋆. 烟草细胞质遗传柱头外露性状发育特征研究. 河南农业大学硕士学位论文, 河南郑州, 2018.
Zhang Y Y. Study on the Developmental Characteristic of Cytoplasmic Inheritance of Tobacco Stigma Exsertion. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2018. (in Chinese with English abstract)
[1] 苗龙, 舒阔, 李娟, 黄茹, 王业杏, Soltani Muhammad yousof, 许竞好, 吴传磊, 李佳佳, 王晓波, 邱丽娟. 大豆根茎过渡区弯曲突变体Mrstz的鉴定与基因定位[J]. 作物学报, 2024, 50(5): 1091-1103.
[2] 曹松, 姚敏, 任睿, 贾元, 向星汝, 李文, 何昕, 刘忠松, 官春云, 钱论文, 熊兴华. 转录组结合区域关联分析挖掘油菜含油量积累的候选基因[J]. 作物学报, 2024, 50(5): 1136-1146.
[3] 齐学礼, 李莹, 李春盈, 韩留鹏, 赵明忠, 张建周. 基于转录组探究外源水杨酸对条锈菌侵染小麦幼苗的缓解效应及差异表达基因分析[J]. 作物学报, 2024, 50(4): 1080-1090.
[4] 李阳阳, 吴丹, 许军红, 陈倬永, 徐昕媛, 徐金盼, 唐钟林, 张娅茹, 朱丽, 严卓立, 周清元, 李加纳, 刘列钊, 唐章林. 基于QTL和转录组测序鉴定甘蓝型油菜耐旱候选基因[J]. 作物学报, 2024, 50(4): 820-835.
[5] 张慧, 张欣雨, 袁旭, 陈伟达, 杨婷. 烟草叶片响应镉胁迫的差异表达基因鉴定及分析[J]. 作物学报, 2024, 50(4): 944-956.
[6] 王亚琪, 徐海风, 李曙光, 傅蒙蒙, 余希文, 赵志鑫, 杨加银, 赵团结. 大豆类病变皱叶突变体NT301遗传分析和2对基因定位[J]. 作物学报, 2024, 50(4): 808-819.
[7] 王瑞, 张福耀, 詹鹏杰, 楚建强, 晋敏姗, 赵威军, 程庆军. 基于RNA-Seq筛选高粱低氮胁迫相关候选基因[J]. 作物学报, 2024, 50(3): 669-685.
[8] 李世宽, 洪慧龙, 付佳祺, 谷勇哲, 孙如建, 邱丽娟. BSA-Seq结合RNA-Seq技术挖掘大豆叶片提前黄化衰老基因[J]. 作物学报, 2024, 50(2): 294-309.
[9] 陈天, 李昱樱, 荣二花, 吴玉香. 棉属人工异源四倍体后代性状鉴定及花器转录组学分析[J]. 作物学报, 2024, 50(2): 325-339.
[10] 朱晓亚, 张强强, 赵鹏, 刘明, 王静, 靳容, 于永超, 唐忠厚. 叶面喷施丹参碳点缓解甘薯低磷胁迫的转录组与代谢组学分析[J]. 作物学报, 2024, 50(2): 383-393.
[11] 李艳, 方宇辉, 王永霞, 彭超军, 华夏, 齐学礼, 胡琳, 许为钢. 不同磷胁迫处理转OsPHR2小麦的转录组学分析[J]. 作物学报, 2024, 50(2): 340-353.
[12] 王菲菲, 张胜忠, 胡晓辉, 崔凤高, 钟文, 赵立波, 张天雨, 郭进涛, 于豪谅, 苗华荣, 陈静. 比较转录组分析花生种子休眠调控网络[J]. 作物学报, 2023, 49(9): 2446-2461.
[13] 胡鑫, 罗正英, 李纯佳, 吴转娣, 李旭娟, 刘新龙. 基于二代和三代转录组测序揭示甘蔗重要亲本对黑穗病菌侵染的响应机制[J]. 作物学报, 2023, 49(9): 2412-2432.
[14] 宋兆建, 冯紫旖, 屈天歌, 吕品苍, 杨晓璐, 湛明月, 张献华, 何玉池, 刘育华, 蔡得田. 四倍体水稻回复二倍体品系的籼粳属性鉴定和杂种优势利用初探[J]. 作物学报, 2023, 49(8): 2039-2050.
[15] 王娟, 徐相波, 张茂林, 刘铁山, 徐倩, 董瑞, 刘春晓, 关海英, 刘强, 汪黎明, 何春梅. 一个新的玉米Miniature1基因等位突变体的鉴定与遗传分析[J]. 作物学报, 2023, 49(8): 2088-2096.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .