欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (5): 1271-1286.doi: 10.3724/SP.J.1006.2024.34134

• 耕作栽培·生理生化 • 上一篇    下一篇

外源物质浸种对迟播油菜越冬期抗寒性及产量的影响

王先领(), 姜岳, 雷贻忠, 肖胜男, 厍惠洁, 段圣省, 黄铭, 蒯婕, 汪波, 王晶, 赵杰, 徐正华*(), 周广生   

  1. 华中农业大学植物科学技术学院 / 农业农村部长江中游作物生理生态与耕作重点实验室, 湖北武汉 430070
  • 收稿日期:2023-08-05 接受日期:2024-01-12 出版日期:2024-05-12 网络出版日期:2024-02-09
  • 通讯作者: 徐正华, E-mail: xzh@mail.hzau.edu.cn
  • 作者简介:E-mail: xlwang@webmail.hzau.edu.cn
  • 基金资助:
    湖北省重点研发计划项目(2023BBB028);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-12)

Effects of seed soaking with exogenous substances on late-seeded rapeseed cold resistance of during overwintering period and yield

WANG Xian-Ling(), JIANG Yue, LEI Yi-Zhong, XIAO Sheng-Nan, SHE Hui-Jie, DUAN Sheng-Xing, HUANG Ming, KUAI Jie, WANG Bo, WANG Jing, ZHAO Jie, XU Zheng-Hua*(), ZHOU Guang-Sheng   

  1. College of Plant Science and Technology, Huazhong Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System for the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China
  • Received:2023-08-05 Accepted:2024-01-12 Published:2024-05-12 Published online:2024-02-09
  • Contact: E-mail: xzh@mail.hzau.edu.cn
  • Supported by:
    Key Research and Development Plan of Hubei Province(2023BBB028);China Agriculture Research System of MOF and MARA(CARS-12)

摘要:

确保迟播油菜产量是压减长江流域双季稻区冬闲田的关键, 提高越冬期抗寒性、促进冬前干物质积累是增加迟播油菜产量的有效途径。播前外源物质浸种是提高越冬期抗寒性, 促进冬前快速生长的有效措施。试验选用早熟品种华油杂137, 设置清水(CK), 0.01 mmol L-1、0.05 mmol L-1、0.10 mmol L-1的甜菜碱(T1-1、T1-2、T1-3), 0.1 mmol L-1、0.5 mmol L-1、1.0 mmol L-1的脯氨酸(T2-1、T2-2、T2-3), 0.03%、0.15%、0.30%的过氧化氢(T3-1、T3-2、T3-3), 0.001 mmol L-1、0.01 mmol L-1、0.05 mmol L-1的苹果酸(T4-1、T4-2、T4-3), 25 mg L-1、100 mg L-1、300 mg L-1的氧化纳米锌(T5-1、T5-2、T5-3), 0.5 mmol L-1、1.0 mmol L-1的多胺(T6-1、T6-2)浸种处理后, 于2021—2023年开展田间试验, 研究不同外源物质及浓度浸种对迟播油菜越冬期抗寒性及产量的影响。结果表明, 不同外源物质和不同浓度浸种处理影响迟播油菜出苗率, 部分处理如T3-3、T4-2、T5-3与CK相比显著提高, 提高幅度分别达到19.2%、15.3%、17.3%。部分外源物质浸种也显著提高了迟播油菜抗寒性, 其机制一方面是提高抗氧化系统中过氧化物酶、过氧化氢酶活性和谷胱甘肽含量, 减少活性氧、过氧化氢及丙二醛含量, 另一方面是增加可溶性糖、脯氨酸、苹果酸、多胺、甘露醇等渗透调节物质含量, 提高膜联冷应答蛋白激酶含量从而提高抗寒性。叶片抗寒性的增加有利于越冬期叶片生物量的积累, 有效分枝数增加, 单株角果数增加, 从而促进产量的提高。另外, 对筛选出的9个正向指标和3个负向抗寒性指标进行综合评价, 结果表明, 2年平均产量排序和抗寒性综合评价值排序结果基本一致, 产量较高、抗寒性较强的浸种处理为T5-3、T5-2、T2-3、T1-2。该研究可为长江流域迟播油菜冬前壮苗培育、提高越冬期抗寒性提供理论与技术支撑, 为迟播油菜抗逆稳产、促进冬闲田开发利用提供依据。

关键词: 油菜, 迟播, 抗寒性, 外源物质, 浸种

Abstract:

In double-cropping rice areas in the Yangtze River Basin (YRB), ensuring the yield of late-seeded rapeseed is essential to reduce the winter fallow fields. Additionally, promoting the accumulation of dry matter before winter and improving cold resistance during the overwintering period are effective ways to increase the yield of late-seeded rapeseed. Soaking seeds with exogenous substances is an effective measure to improve the cold resistance during the overwintering period and promote the rapid growth before winter. In this experiment, the early maturing rapeseed variety Huayouza 137 was selected, while soaking-seed treatments of water (CK); 0.01 mmol L-1, 0.05 mmol L-1, 0.10 mmol L-1 betaine (T1-1, T1-2, T1-3); 0.1 mmol L-1, 0.5 mmol L-1, 1.0 mmol L-1 proline (T2-1, T2-2, T2-3); 0.03%, 0.15%, 0.30% hydrogen peroxide (T3-1, T3-2, T3-3); 0.001 mmol L-1, 0.01 mmol L-1, 0.05 mmol L-1 malic acid (T4-1, T4-2, T4-3); 25 mg L-1, 100 mg L-1, 300 mg L-1 nano zinc oxide (T5-1, T5-2, T5-3); 0.5 mmol L-1, 1.0 mmol L-1 polyamines (T6-1, T6-2) were conducted between 2021 and 2023 rapeseed growing season. We studied the effects of soaking seeds with different exogenous substances and their levels on the cold resistance in winter and yield of late-seeded rapeseed. The results showed that the different exogenous substances and their levels of soaking seeds affected the germination rate of late-seeded rapeseed, and part of them, such as T3-3, T4-2, and T5-3, significantly increased by 19.2%, 15.3%, and 17.3% versus CK. Soaking seeds with some exogenous substances significantly improved the cold resistance of late-seeded rapeseed in winter. On the one hand, the activities of peroxidase, catalase, and the content of glutathione were improved, and the contents of hydrogen peroxide, active oxygen and MDA reduced; on the other hand, the contents of soluble sugar, proline, malic acid, polyamine, and mannitol were increased; at the same time, the content of membrane cold response protein kinase was increased. The increase of leaf cold resistance was beneficial to the accumulation of leaf biomass and the increase of effective branches and pod number per plant, thus promoting yield. In addition, 9 positive and 3 negative cold resistance indicators were comprehensively evaluated. The results showed that the two-year average yield ranking and the comprehensive evaluation value ranking of cold resistance were basically the same over the two years. While the soaking-seed treatments with the best yield and cold resistance were T5-3, T5-2, T2-3, and T1-2. These results of this study provide theoretical and technical support for the cultivation of late-seeded rapeseed seedlings before winter and the improvement of cold resistance in the YRB, and provide a basis for the stress resistance and stable production of late-seeded rapeseed and the development and utilization of winter fallow fields.

Key words: rapeseed, late-seeded, cold resistance, exogenous substance, soaking seeds

表1

用于迟播油菜浸种的不同外源物质及浓度"

浓度
Concentration
对照
Contrast
(CK)
甜菜碱
Betaine
(T1)
脯氨酸
Proline
(T2)
过氧化氢
Hydrogen peroxide (T3)
苹果酸
Malic acid
(T4)
氧化纳米锌
Nano zinc oxide
(T5)
多胺
Polyamine
(T6)
浓度-1
Concentration-1
0.01 mmol L-1 0.1 mmol L-1 0.03% 0.001 mmol L-1 25 mg L-1 0.5 mmol L-1
浓度-2
Concentration-2
0.05 mmol L-1 0.5 mmol L-1 0.15% 0.01 mmol L-1 100 mg L-1 1.0 mmol L-1
浓度-3
Concentration-3
0.10 mmol L-1 1.0 mmol L-1 0.30% 0.05 mmol L-1 300 mg L-1

图1

2021-2022生长季(a)和2022-2023生长季(b)的主要气象因子 Tmin和Tmax分别代表日最低温和日最高温。"

图2

不同外源物质浸种对迟播油菜2021-2022 (a)和2022-2023 (b)生长季出苗率的影响 不同小写字母表示不同外源物质浸种处理间差异达显著水平(P < 0.05)。处理同表1。"

表2

不同外源物质浸种对迟播油菜产量及产量构成的影响"

年份
Year
外源物质
Exogenous
substance
浓度
Concentration
单株角果数
Pod number per plant
每角粒数
Seed number per pod
千粒重1000-seed weight (g) 单株产量
Yield
per plant (g)
成株率Survival rate (%) 产量
Yield
(kg hm-2)
2021-
2022
对照CK CK 128.7 ef 17.40 bc 3.55 ab 7.95 bc 45.27 d 2347.1 gh
甜菜碱
Betaine (T1)
T1-1 125.1 ef 17.84 a 3.40 abc 7.61 bc 47.56 bcd 2112.9 i
T1-2 145.8 cde 17.31 c 3.60 a 9.09 ab 46.95 bcd 2558.7 abc
T1-3 146.3 cde 17.68 ab 3.44 abc 8.89 abc 47.33 bcd 2549.6 abc
脯氨酸
Proline (T2)
T2-1 139.8 cdef 17.66 ab 3.51 abc 8.66 abc 47.18 bcd 2563.1 abc
T2-2 178.7 a 17.48 abc 3.37 bc 10.53 a 49.68 abc 2571.5 abc
T2-3 163.4 abc 17.42 bc 3.43 abc 9.75 ab 49.81 abc 2591.8 abc
过氧化氢
Hydrogen
peroxide (T3)
T3-1 114.5 f 17.34 bc 3.45 abc 6.87 c 49.82 abc 1771.8 j
T3-2 126.7 ef 17.69 ab 3.52 abc 7.89 bc 47.17 bcd 2321.5 h
T3-3 134.1 def 17.46 abc 3.34 c 7.83 bc 47.58 bcd 2430.2 efg
苹果酸
Malic acid (T4)
T4-1 136.1 def 17.26 c 3.47 abc 8.13 bc 49.65 abc 2444.2 ef
T4-2 141.5 cdef 17.38 bc 3.48 abc 8.57 abc 49.92 abc 2451.6 def
T4-3 138.4 cdef 17.66 ab 3.51 abc 8.56 abc 44.65 d 2419.8 fg
氧化纳米锌
Nano zinc oxide (T5)
T5-1 159.8 abcd 17.32 bc 3.48 abc 9.66 ab 45.74 cd 2536.1 bcd
T5-2 163.8 abc 17.53 abc 3.34 c 9.60 ab 52.43 a 2603.6 ab
T5-3 171.7 ab 17.45 abc 3.51 abc 10.52 a 50.00 ab 2635.1 a
多胺
Polyamine (T6)
T6-1 148.8 bcde 17.39 bc 3.44 abc 8.90 abc 47.21 bcd 2451.3 def
T6-2 135.1 def 17.67 ab 3.44 abc 8.20 bc 47.15 bcd 2510.4 cde
2022-
2023
对照CK CK 126.0 de 17.19 b 3.54 ab 7.66 cde 47.09 ab 2280.0 e
甜菜碱
Betaine (T1)
T1-1 122.0 de 17.44 ab 3.37 bc 7.20 de 50.45 a 2050.5 f
T1-2 139.4 cd 17.73 a 3.58 a 8.85 abcd 48.46 ab 2508.4 a
T1-3 141.9 bcd 17.67 a 3.33 bc 8.37 bcde 45.45 ab 2449.9 abcd
脯氨酸
Proline (T2)
T2-1 133.0 d 17.16 b 3.47 abc 7.90 cde 50.05 ab 2482.5 abc
T2-2 174.2 a 17.52 ab 3.45 abc 10.54 a 46.19 ab 2488.5 ab
T2-3 160.7 abc 17.62 ab 3.31 c 9.38 abc 48.96 ab 2532.2 a
2022-
2023
过氧化氢
Hydrogen
peroxide (T3)
T3-1 108.3 e 17.44 ab 3.50 ab 6.62 e 46.27 ab 1671.1 g
T3-2 123.7 de 17.64 ab 3.50 ab 7.63 cde 46.81 ab 2261.2 e
T3-3 129.4 de 17.74 a 3.30 c 7.56 cde 48.36 ab 2366.2 bcde
苹果酸
Malic acid (T4)
T4-1 129.5 de 17.39 ab 3.53 ab 7.97 cde 47.89 ab 2355.1 de
T4-2 134.1 d 17.56 ab 3.53 ab 8.33 bcde 47.61 ab 2359.4 cde
T4-3 134.7 d 17.57 ab 3.48 abc 8.21 bcde 49.18 ab 2339.2 de
氧化纳米锌
Nano zinc oxide (T5)
T5-1 157.2 abc 17.37 ab 3.45 abc 9.44 abc 50.37 ab 2453.1 abcd
T5-2 159.2 abc 17.48 ab 3.48 abc 9.70 abc 47.66 ab 2525.9 a
T5-3 164.1 ab 17.55 ab 3.52 ab 10.14 ab 47.83 ab 2575.0 a
多胺
Polyamine (T6)
T6-1 146.8 bcd 17.44 ab 3.44 abc 8.81 abcd 48.40 ab 2358.4 cde
T6-2 129.6 de 17.36 ab 3.51 abc 7.89 cde 45.10 b 2454.8 abcd
方差分析 ANOVA
年份 Year * ns ns ns ns **
处理 Treatment ** ns ns ** ns **
年份×处理 Year×Treatment ns ns ns ns ns ns

表3

不同外源物质浸种对迟播油菜成熟期关健农艺性状的影响"

年份
Year
外源物质
Exogenous
substance
浓度
Concentration
株高
Plant
height (cm)
有效分枝数Effective branch number 根颈粗
Root-crown
diameter (mm)
地上部干重
Shoot
biomass (g)
抗折力
Bending
resistance (N)
2021-2022 对照CK CK 164.1 ab 4.6 bcd 10.8 bcd 23.6 abc 79.2 g
甜菜碱
Betaine (T1)
T1-1 171.5 ab 4.5 bcd 11.4 abcd 22.6 bc 64.2 h
T1-2 170.8 ab 5.9 a 10.0 d 29.7 abc 96.4 cd
T1-3 168.6 ab 5.6 abc 11.9 abcd 29.7 abc 95.4 cd
2021-2022 脯氨酸
Proline (T2)
T2-1 174.6 a 5.6 ab 12.1 abc 30.0 abc 96.4 cd
T2-2 164.2 ab 5.1 abcd 11.1 abcd 30.7 ab 91.8 de
T2-3 170.4 ab 5.4 abcd 12.7 ab 31.1 ab 115.6 a
过氧化氢
Hydrogen
peroxide (T3)
T3-1 166.8 ab 4.8 abcd 11.4 abcd 20.7 c 82.4 efg
T3-2 172.3 ab 5.3 abcd 12.8 a 23.5 abc 91.6 de
T3-3 157.8 b 5.2 abcd 11.1 abcd 24.7 abc 102.2 bc
苹果酸
Malic acid (T4)
T4-1 173.1 a 5.5 abc 12.5 ab 24.8 abc 81.4 fg
T4-2 166.9 ab 4.9 abcd 12.2 abc 26.3 abc 94.4 cd
T4-3 169.6 ab 4.7 bcd 10.5 cd 24.7 abc 92.6 cd
氧化纳米锌
Nano zinc oxide (T5)
T5-1 170.5 ab 4.4 cd 11.1 abcd 29.1 abc 81.4 fg
T5-2 170.3 ab 4.2 d 10.5 cd 32.4 a 94.4 cd
T5-3 166.3 ab 4.3 d 11.2 abcd 32.5 a 92.6 cd
多胺
Polyamine (T6)
T6-1 173.7 a 5.5 abc 12.2 abc 27.2 abc 107.0 ab
T6-2 170.8 ab 4.8 abcd 11.1 abcd 27.6 abc 89.4 def
2022-2023 对照CK CK 166.3 ab 4.8 bcd 10.4 abc 22.6 abc 69.2 g
甜菜碱
Betaine (T1)
T1-1 164.6 ab 4.4 d 10.3 bc 22.2 abc 54.2 h
T1-2 172.0 ab 4.5 cd 11.0 abc 20.9 bc 86.4 bcd
T1-3 171.4 ab 6.0 a 9.4 c 29.0 ab 85.4 cd
脯氨酸
Proline (T2)
T2-1 169.1 ab 5.7 abc 11.2 abc 28.7 ab 86.4 bcd
T2-2 175.0 a 5.7 ab 11.5 ab 28.6 ab 81.8 de
T2-3 164.7 ab 5.2 abcd 10.6 abc 30.8 a 95.6 ab
过氧化氢
Hydrogen
peroxide (T3)
T3-1 171.0 ab 5.5 abcd 12.3 a 29.5 ab 72.4 efg
T3-2 166.9 ab 4.9 abcd 10.5 abc 19.4 c 81.6 de
T3-3 172.5 ab 5.4 abcd 12.1 ab 22.5 abc 92.2 abc
苹果酸
Malic acid (T4)
T4-1 158.3 b 5.3 abcd 10.7 abc 23.9 abc 71.4 fg
T4-2 173.7 ab 5.6 abc 11.8 ab 23.7 abc 84.4 cd
T4-3 167.4 ab 4.9 abcd 11.6 ab 25.7 abc 82.6 cd
氧化纳米锌
Nano zinc oxide (T5)
T5-1 170.2 ab 4.8 abcd 10.1 bc 23.7 abc 71.4 fg
T5-2 170.9 ab 4.5 cd 10.3 bc 28.0 abc 84.4 cd
T5-3 170.5 ab 4.3 d 10.2 bc 27.9 abc 82.6 cd
多胺
Polyamine (T6)
T6-1 166.9 ab 4.3 d 10.6 abc 31.6 a 97.0 a
T6-2 174.4 a 5.6 abc 11.7 ab 25.7 abc 79.4 def
方差分析 ANOVA
年份 Year ns ns ** ns **
处理 Treatment ns ** ns ** **
年份×处理 Year×Treatment ** ns ** ns ns

表4

不同外源物质浸种对迟播油菜越冬期关键农艺性状及叶片生物量的影响"

年份
Year
外源物质
Exogenous
substance
浓度
Concentration
株高
Plant
Height (cm)
根长
Root
length (cm)
根颈粗
Root-crown
diameter (mm)
叶面积
Leaf
area (cm2)
叶片生物量
Leaf
biomass (g)
2021-
2022
对照CK CK 22.4 b 12.2 abc 2.80 cde 436.6 de 1.24 gh
甜菜碱
Betaine (T1)
T1-1 21.8 bc 11.9 bc 2.71 de 423.6 e 1.13 h
T1-2 21.0 bc 13.4 abc 3.43 abcd 487.9 bcde 1.63 cd
T1-3 21.0 bc 12.8 abc 3.37 abcde 481.1 bcde 1.55 de
脯氨酸
Proline (T2)
T2-1 20.1 bc 14.1 a 3.57 abc 498.3 bcd 1.71 bc
T2-2 20.8 bc 12.8 abc 3.58 abc 506.9 bc 1.73 bc
T2-3 21.6 bc 12.9 abc 3.63 abc 507.1 bc 1.82 ab
过氧化氢
Hydrogen
peroxide (T3)
T3-1 21.4 bc 12.6 abc 2.57 e 326.0 f 0.77 i
T3-2 21.7 bc 13.3 abc 2.80 cde 426.2 e 1.24 gh
T3-3 22.0 bc 12.9 abc 2.99 bcde 448.7 cde 1.38 efg
苹果酸
Malic acid (T4)
T4-1 23.9 a 12.6 abc 3.07 abcde 460.6 cde 1.41 ef
T4-2 20.2 bc 13.1 abc 3.14 abcde 470.7 cde 1.46 e
T4-3 21.4 bc 11.9 bc 2.91 bcde 446.2 cde 1.27 fgh
氧化纳米锌
Nano zinc oxide (T5)
T5-1 19.6 c 12.7 abc 3.27 abcde 476.0 bcde 1.49 e
T5-2 20.6 bc 13.6 abc 3.69 ab 537.0 ab 1.89 a
T5-3 21.1 bc 14.0 ab 3.84 a 571.7 a 1.93 a
多胺
Polyamine (T6)
T6-1 20.7 bc 12.0 abc 3.10 abcde 470.1 cde 1.43 e
T6-2 20.8 bc 11.4 c 3.23 abcde 473.3 bcde 1.48 e
2022-
2023
对照CK CK 22.3 ab 12.4 bc 2.95 abc 435.7 cd 1.16 de
甜菜碱
Betaine (T1)
T1-1 21.3 abc 12.3 bc 2.84 bc 413.6 d 1.02 e
T1-2 20.3 bcd 14.3 abc 3.49 abc 481.2 bcd 1.46 bc
T1-3 20.8 bcd 13.2 abc 3.50 abc 473.0 bcd 1.49 bc
脯氨酸
Proline (T2)
T2-1 19.5 cd 14.9 a 3.68 abc 488.9 bc 1.63 ab
T2-2 20.1 bcd 13.5 abc 3.78 ab 501.6 bc 1.61 ab
T2-3 21.2 abcd 13.2 abc 3.73 ab 493.5 bc 1.72 a
过氧化氢
Hydrogen
peroxide (T3)
T3-1 21.0 bcd 13.1 abc 2.73 c 318.5 e 0.69 f
T3-2 21.4 abc 13.5 abc 2.89 bc 416.8 d 1.16 de
T3-3 21.5 abc 13.3 abc 3.17 abc 439.9 cd 1.21 de
苹果酸
Malic acid (T4)
T4-1 23.1 a 12.8 abc 3.16 abc 446.5 cd 1.29 cd
T4-2 20.0 bcd 13.6 abc 3.22 abc 454.9 bcd 1.34 cd
T4-3 20.9 bcd 12.5 bc 3.08 abc 438.0 cd 1.15 de
氧化纳米锌
Nano zinc oxide (T5)
T5-1 18.9 d 13.2 abc 3.33 abc 471.3 bcd 1.38 cd
T5-2 20.3 bcd 14.0 abc 3.79 ab 521.2 ab 1.75 a
T5-3 20.9 bcd 14.4 ab 3.93 a 559.9 a 1.77 a
多胺
Polyamine (T6)
T6-1 20.2 bcd 12.3 bc 3.23 abc 459.1 bcd 1.32 cd
T6-2 20.4 bcd 12.0 c 3.41 abc 464.8 bcd 1.32 cd
方差分析 ANOVA
年份 Year ** ** * ns **
处理 Treatment ** ** ** ** **
年份×处理 Year×Treatment ns ns ns ns ns

图3

产量与越冬期迟播油菜(a)根颈粗、(b)叶面积和(c)叶片生物量的相关性分析"

表5

不同外源物质浸种对迟播油菜越冬期叶片活性氧及抗氧化系统的影响"

外源物质
Exogenous
substance
浓度
Concentration
MDA
(nmol g-1)
H2O2
(μmol g-1)
O2-
(μg g-1)
·OH
(ng g-1)
SOD
(U)
POD
(U)
CAT
(U)
APX
(U)
对照CK CK 184.3 a 0.983 b 5.56 b 7.37 a 1730.1 g 2.64 def 589.3 d 0.86 e
甜菜碱
Betaine (T1)
T1-1 190.2 a 1.014 b 6.29 a 7.85 a 1727.4 g 2.48 f 569.8 d 1.17 cd
T1-2 121.7 cde 0.682 cd 5.48 bc 5.08 cd 2463.3 cd 3.52 bc 968.2 b 1.10 d
T1-3 128.6 cd 0.741 c 4.95 bcde 5.24 c 2319.4 cde 3.41 c 937.1 b 0.94 e
脯氨酸
Proline (T2)
T2-1 116.6 cde 0.614 d 4.74 cde 4.69 cde 2485.1 cd 3.72 abc 969.1 b 0.91 e
T2-2 115.8 cde 0.589 d 5.33 bc 4.69 cde 2585.5 c 3.80 ab 982.7 b 1.35 ab
T2-3 115.3 cde 0.589 d 4.49 def 4.67 cde 2938.6 b 3.83 ab 1002.2 b 1.43 a
过氧化氢
Hydrogen
peroxide (T3)
T3-1 192.8 a 1.123 a 4.43 ef 7.96 a 1091.9 h 1.59 g 561.1 d 0.85 e
T3-2 185.4 a 1.002 b 3.94 f 7.40 a 1730.1 g 2.56 ef 589.3 d 0.98 e
T3-3 177.9 a 0.968 b 5.18 bcd 7.16 a 1855.0 fg 2.84 def 681.6 cd 0.97 e
苹果酸
Malic acid (T4)
T4-1 157.3 b 0.937 b 3.97 f 6.37 b 1998.9 efg 2.93 de 740.8 c 1.26 bc
T4-2 155.3 b 0.918 b 6.17 a 6.29 b 2069.6 defg 2.95 de 772.9 c 1.12 cd
T4-3 183.3 a 0.969 b 4.60 def 7.25 a 1768.1 fg 2.69 def 613.5 d 0.95 e
氧化纳米锌
Nano zinc oxide (T5)
T5-1 134.2 c 0.773 c 5.50 bc 5.27 c 2210.8 cdef 3.08 d 917.6 b 0.98 e
T5-2 108.1 de 0.570 d 6.45 a 4.30 de 3047.2 ab 4.00 a 1013.8 b 1.15 cd
T5-3 105.4 e 0.561 d 6.23 a 4.14 e 3313.4 a 4.11 a 1122.6 a 0.90 e
多胺
Polyamine (T6)
T6-1 138.5 c 0.891 b 5.33 bc 6.19 b 2199.9 cdef 3.00 de 780.6 c 1.21 cd
T6-2 135.2 c 0.781 c 4.77 cde 5.44 c 2191.8 cdef 3.00 de 891.4 b 1.15 cd

表6

不同外源物质浸种对迟播油菜越冬期叶片非酶促清除系统的影响"

外源物质
Exogenous substance
浓度
Concentration
抗坏血酸
ASA (μmol g-1)
类胡萝卜素
Carnosine (pmol g-1)
谷胱甘肽
GSH (mg g-1)
对照CK CK 6.91 b 1.22 def 4.06 d
甜菜碱
Betaine (T1)
T1-1 5.76 c 1.19 ef 3.46 e
T1-2 9.13 a 1.03 gh 4.88 bc
T1-3 7.14 b 0.96 h 4.84 bc
脯氨酸
Proline (T2)
T2-1 7.66 b 1.17 f 5.07 ab
T2-2 5.57 c 1.53 ab 5.14 ab
T2-3 9.42 a 1.29 cde 5.23 ab
过氧化氢
Hydrogen peroxide (T3)
T3-1 8.88 a 1.10 fg 3.28 e
T3-2 8.73 a 1.12 fg 3.47 e
T3-3 6.86 b 1.33 cd 4.34 cd
苹果酸
Malic acid (T4)
T4-1 5.90 c 1.37 c 4.37 cd
T4-2 5.51 c 1.29 cde 4.44 cd
T4-3 7.22 b 1.51 ab 4.11 d
氧化纳米锌
Nano zinc oxide (T5)
T5-1 7.31 b 1.35 cd 4.83 bc
T5-2 8.65 a 1.42 bc 5.48 a
T5-3 5.84 c 1.30 cde 5.56 a
多胺
Polyamine (T6)
T6-1 6.86 b 1.38 c 4.79 bc
T6-2 9.77 a 1.56 a 4.81 bc

表7

不同外源物质浸种对迟播油菜越冬期叶片渗透调节物质的影响"

外源物质
Exogenous
substance
浓度
Concentration
可溶性糖
Soluble sugar
(mg g-1)
脯氨酸
Proline
(ng g-1)
苹果酸
Malate
(μg g-1)
甜菜碱
Betaine
(pg g-1)
多胺
Polyamine
(mg g-1)
甘露醇
Mannitol
(ng g-1)
对照CK CK 4.28 k 268.5 b 3.71 f 398.6 cd 5.69 ef 126.7 e
甜菜碱
Betaine (T1)
T1-1 4.11 l 211.7 c 3.40 f 475.9 ab 5.45 ef 125.0 e
T1-2 5.15 ef 319.3 a 5.03 bcd 365.0 cde 9.24 ab 181.8 bcd
T1-3 5.13 ef 308.8 a 4.82 cd 523.3 a 8.99 abc 177.6 bcd
脯氨酸
Proline (T2)
T2-1 5.27 d 318.0 a 5.06 bcd 319.2 e 9.31 ab 184.4 bcd
T2-2 5.23 de 321.8 a 5.17 bc 338.5 de 9.71 a 186.4 bc
T2-3 5.39 c 318.7 a 5.42 bc 383.0 cde 9.32 ab 187.9 bc
过氧化氢
Hydrogen
peroxide (T3)
T3-1 4.05 l 256.6 b 2.89 g 488.2 ab 5.01 f 70.4 f
T3-2 4.27 k 303.8 a 3.48 f 492.7 ab 5.52 ef 125.5 e
T3-3 4.42 j 264.7 b 3.78 f 483.7 ab 5.97 ef 159.2 cd
苹果酸
Malic acid (T4)
T4-1 4.55 i 215.0 c 3.81 f 354.4 de 6.10 ef 161.4 cd
T4-2 4.72 h 253.0 b 4.06 ef 473.0 ab 7.91 d 162.9 cd
T4-3 4.41 j 267.7 b 3.67 f 325.8 e 5.79 ef 153.6 d
氧化纳米锌
Nano zinc oxide (T5)
T5-1 5.04 f 300.0 a 4.77 cd 388.4 cde 8.12 cd 177.1 bcd
T5-2 5.60 b 330.9 a 5.59 ab 428.4 bc 10.02 a 201.8 ab
T5-3 6.31 a 322.8 a 6.00 a 369.1 cde 10.04 a 215.5 a
多胺
Polyamine (T6)
T6-1 4.84 g 323.3 a 4.15 ef 513.9 a 6.61 e 165.8 cd
T6-2 5.04 f 264.7 b 4.45 de 512.7 a 8.45 bcd 168.7 cd

图4

不同外源物质浸种对迟播油菜越冬期叶片膜联冷应答蛋白激酶和Ca2+通道蛋白的影响 不同小写字母表示不同外源物质浸种处理间差异达显著水平(P < 0.05)。MRPK: 膜联冷应答蛋白激酶; VGCC: Ca2+通道蛋白。处理同表1。"

图5

抗寒性生理指标的主成分分析 Y: 产量; LA: 叶面积; LB: 叶片生物量; POD: 过氧化物酶; SOD: 超氧化物歧化酶; CAT: 过氧化氢酶; GSH: 谷胱甘肽; MRPK: 膜联冷应答蛋白激酶; Mal: 苹果酸; Pol: 多胺; Man: 甘露醇; ASA: 抗坏血酸; Car: 类胡萝卜素; O2?-: 超氧阴离子自由基; SS: 可溶性糖; Pro: 脯氨酸; Bet: 甜菜碱; VGCC: Ca2+通道蛋白; APX: 抗坏血酸过氧化物酶; H2O2: 过氧化氢; ?OH: 羟自由基; MDA: 丙二醛。"

表8

迟播油菜外源物质浸种抗寒性Topsis综合评价及平均产量排序结果"

外源物质
Exogenous
substance
评价对象
Evaluation
object
正理想解距离D+
Positive ideal solution distance D+
负理想解距离D- Negative ideal solution distance D- 相对接近度C Relative
proximity C
排序结果Sorting
result
平均产量排序结果
Average yield
Sorting result
对照CK CK 2.618 1.350 0.340 15 15
甜菜碱
Betaine (T1)
T1-1 3.111 0.882 0.221 17 17
T1-2 0.908 2.890 0.761 6 4
T1-3 1.079 2.705 0.715 7 7
脯氨酸
Proline (T2)
T2-1 0.733 3.068 0.807 5 6
T2-2 0.642 3.168 0.832 4 5
T2-3 0.581 3.219 0.847 3 3
过氧化氢
Hydrogen
peroxide (T3)
T3-1 3.659 0.377 0.093 18 18
T3-2 2.765 1.349 0.328 16 16
T3-3 2.340 1.624 0.410 13 13
苹果酸
Malic acid (T4)
T4-1 2.236 1.741 0.438 12 12
T4-2 1.904 1.942 0.505 11 10
T4-3 2.505 1.493 0.373 14 14
氧化纳米锌
Nano zinc oxide (T5)
T5-1 1.258 2.527 0.668 8 8
T5-2 0.335 3.496 0.913 2 2
T5-3 0.068 3.724 0.982 1 1
多胺
Polyamine (T6)
T6-1 1.737 2.192 0.558 10 11
T6-2 1.445 2.365 0.621 9 9
[1] 刘成, 冯中朝, 肖唐华, 马晓敏, 周广生, 黄凤洪, 李加纳, 王汉中. 我国油菜产业发展现状、潜力及对策. 中国油料作物学报, 2019, 41: 485-489.
doi: 10.7505/j.issn.1007-9084.2019.04.001
Liu C, Feng Z C, Xiao T H, Ma X M, Zhou G S, Huang F H, Li J N, Wang H Z. Development, potential and adaptation of Chinese rapeseed industry. Chin J Oil Crop Sci, 2019, 41: 485-489 (in Chinese with English abstract).
doi: 10.7505/j.issn.1007-9084.2019.04.001
[2] Food and Agriculture Organization FAO of the United Nations.FAO Statistical Databases in 2023. [2023-04-25]. http://www.fao.org.
[3] 李勤, 刘小焱, 盛紫微, 曲昭杰, 罗涛, 王晶, 蒯婕, 汪波, 李俊, 徐正华, 周广生. 我国油菜适合机械化收获关键农艺性状研究进展. 中国油料作物学报, 2023, 45: 1053-1061.
doi: 10.19802/j.issn.1007-9084.2022194
Li Q, Liu X Y, Sheng Z W, Qu Z J, Luo T, Wang J, Kuai J, Wang B, Li J, Xu Z H, Zhou G S. Research progress on target agronomic traits for mechanized harvesting of rapeseed in China. Chin J Oil Crop Sci, 2023, 45: 1053-1061 (in Chinese with English abstract).
doi: 10.19802/j.issn.1007-9084.2022194
[4] 张顺凯, 王端, 陶雨佳, 江海东. H2O2浸种对晚直播油菜生长及产量的影响. 中国油料作物学报, 2019, 41: 559-567.
doi: 10.7505/j.issn.1007-9084.2019.04.010
Zhang S K, Wang D, Tao Y J, Jiang H D. Effects of seeds soaking with hydrogen peroxide on growth and yield of rapeseed at different sowing dates. Chin J Oil Crop Sci, 2019, 41: 559-567 (in Chinese with English abstract).
[5] 张钰钦, 杨之帆, 李越, 李银水, 胡小加, 秦璐, 廖星. 外源海藻糖浸种对低温胁迫油菜种子萌发及幼苗生长的影响. 中国油料作物学报, 2022, 44: 376-384.
doi: 10.19802/j.issn.1007-9084.2020317
Zhang Y Q, Yang Z F, Li Y, Li Y S, Hu X J, Qin L, Liao X. Effect of exogenous trehalose on seed germination and seedling growth of rapeseed under low temperature. Chin J Oil Crop Sci, 2022, 44: 376-384 (in Chinese with English abstract).
[6] 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用. 作物学报, 2022, 48: 2016-2027.
doi: 10.3724/SP.J.1006.2022.12041
Zhu C Q, Wei Q Q, Xiang X J, Hu W J, Xu Q S, Cao X C, Zhu L F, Kong Y L, Liu J, Jin Q Y, Zhang J H. Regulation effects of seedling raising by melatonin and methyl jasmonate substrate on low temperature stress tolerance in rice. Acta Agron Sin, 2022, 48: 2016-2027 (in Chinese with English abstract).
[7] 刘自刚, 张长生, 孙万仓, 杨宁宁, 王月, 何丽, 赵彩霞, 武军艳, 方彦, 曾秀存. 不同生态区冬前低温下白菜型冬油菜不同抗寒品种(系)的比较. 作物学报, 2014, 40: 346-354.
doi: 10.3724/SP.J.1006.2014.00346
Liu Z G, Zhang C S, Sun W C, Yang N N, Wang Y, He L, Zhao C X, Wu J Y, Fang Y, Zeng X C. Comparison of winter rapeseed varieties (lines) with different cold resistance planted in the northern-extending regions in China under low temperature before winter. Acta Agron Sin, 2014, 40: 346-354 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2014.00346
[8] 蒲媛媛, 赵玉红, 武军艳, 刘丽君, 白静, 马骊, 牛早霞, 金姣姣, 方彦, 李学才, 孙万仓. 北方强冬性甘蓝型冬油菜品种(系)抗寒性评价. 中国农业科学, 2019, 52: 3291-3308.
doi: 10.3864/j.issn.0578-1752.2019.19.002
Pu Y Y, Zhao Y H, Wu J Y, Liu L J, Bai J, Ma L, Niu Z X, Jin J J, Fang Y, Li X C, Sun W C. Comprehensive assessment on cold tolerance of the strong winter Brassica napus L. cultivated in northern China. Sci Agric Sin, 2019, 52: 3291-3308 (in Chinese with English abstract).
[9] 曾韶西, 王以柔. 低温胁迫对黄瓜子叶抗坏血酸过氧化物酶活性和谷胱甘肽含量的影响. 植物生理学报, 1990, 16: 37-42.
Zeng S X, Wang Y R. Effects of low temperature stress on ascorbic acid peroxidase activity and glutathione content in cucumber cotyledons. Acta Phytophy Sin, 1990, 16: 37-42 (in Chinese).
[10] Chung S W, Rho H, Lim C K, Jeon M K, Kim S, Jang Y J, An H J. Photosynthetic response and antioxidative activity of ‘Hass’ avocado cultivar treated with short-term low temperature. Sci Rep, 2022, 12: 11593.
doi: 10.1038/s41598-022-15821-3 pmid: 35804002
[11] He H, Lei Y, Yi Z, Raza A, Zeng L, Yan L, Ding X Y, Yong C, Zou X L. Study on the mechanism of exogenous serotonin improving cold tolerance of rapeseed (Brassica napus L.) seedlings. Plant Growth Regul, 2021, 94: 161-170.
doi: 10.1007/s10725-021-00700-0
[12] Wang P C, Hsu C C, Du Y Y, Zhu P P, Zhao C Z, Fu X, Zhang C G, Paez J S, Macho A P, Tao W A, Zhu J K. Mapping proteome-wide targets of protein kinases in plant stress responses. Proc Nat Acad Sci USA, 2020, 117: 3270-3280.
doi: 10.1073/pnas.1919901117
[13] Hu S L, Chen Q H, Guo F, Wang M L, Zhao H, Wang Y, Ni D J, Wang P. (Z)-3-Hexen-1-ol accumulation enhances hyperosmotic stress tolerance in Camellia sinensis. Plant Mol Biol, 2020, 103: 287-302.
doi: 10.1007/s11103-020-00992-2
[14] 张曼, 戴蓉, 张顺凯, 江海东. H2O2浸种对油菜种子低温萌发的缓解效应. 南京农业大学学报, 2017, 40: 963-970.
Zhang M, Dai R, Zhang S K, Jiang H D. Alleviation effects of seed soaking with H2O2 on seed germination in rape under low temperature stress. J Nanjing Agric Univ, 2017, 40: 963-970 (in Chinese with English abstract).
[15] 方彦, 武军艳, 孙万仓, 杨晓娟, 韩慧敏, 韩亚伟, 陈亚平. 外源ABA浸种对冬油菜种子萌发及幼苗抗寒性的诱导效应. 干旱地区农业研究, 2014, 32(6): 70-74.
Fang Y, Wu J Y, Sun W C, Yang X J, Han H M, Han Y W, Chen Y P. Inducing effects of exogenous ABA on seed germination and cold tolerance of winter rape seedlings. Agric Res Arid Areas, 2014, 32(6): 70-74 (in Chinese with English abstract).
[16] 黄少华, 王增春, 刘胜环. 不同植物生长调节剂浸种对油菜壮苗的效果比较. 江苏农业科学, 2006, (3): 49-51.
Huang S H, Wang Z C, Liu S H. Comparison of the effect of soaking seeds with different plant growth regulators on rapeseed seedling strengthening. Jiangsu Agric Sci, 2006, (3): 49-51 (in chinese).
[17] 徐家裕, 倪文海. 早中熟甘蓝型油菜播种期研究. 中国油料作物学报, 1987, (2): 41-44.
Xu J Y, Ni W H. Study on sower for early and late maturing Brassica napus L. Chin J Oil Crop Sci, 1987, (2): 41-44 (in Chinese).
[18] 万林. H2O2浸种对直播油菜生长和抗寒性的影响. 南京农业大学硕士学位论文, 江苏南京, 2015.
Wan L. Effect of Seed Soaking with Hydrogen Peroxide on Growth and Chilling Resistance of Direct-seeding Oilrape. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China (in Chinese with English abstract).
[19] Ella E S, Dionisio-Sese M L, Ismail A M. Seed pre-treatment in rice reduces damage, enhances carbohydrate mobilization and improves emergence and seedling establishment under flooded conditions. AoB Plants, 2011, 2011: plr007.
[20] Alabdallah N M, Alzahrani H S. The potential mitigation effect of ZnO nanoparticles on [Abelmoschus esculentus L. Moench] metabolism under salt stress conditions. Saudi J Biol Sci, 2020, 27: 3132-3137.
doi: 10.1016/j.sjbs.2020.08.005 pmid: 33100874
[21] Faizan M, Bhat J A, Hessini K, Yu F, Ahmad P. Zinc oxide nanoparticles alleviates the adverse effects of cadmium stress on Oryza sativa via modulation of the photosynthesis and antioxidant defense system. Ecotoxicol Environ Saf, 2021, 220: 112401.
doi: 10.1016/j.ecoenv.2021.112401
[22] Rameshraddy, Pavithra G J, Reddy B H R, Salimath M, Geetha K N, Shankar A G. Zinc oxide nano particles increases Zn uptake, translocation in rice with positive effect on growth, yield and moisture stress tolerance. Indian J Plant Physiol, 2017, 22: 287-294.
doi: 10.1007/s40502-017-0303-2
[23] Fatima A, Safdar N, Ain N, Yasmin A, Chaudhry G. Abscisic acid-loaded ZnO nanoparticles as drought tolerance inducers in Zea mays L. with physiological and biochemical aAttributes. J Plant Growth Regul, 2023, 42: 7280-7293.
doi: 10.1007/s00344-023-11016-w
[24] 李春燕, 陈思思, 徐雯, 李东升, 顾骁, 朱新开, 郭文善, 封超年. 苗期低温胁迫对扬麦16叶片抗氧化酶和渗透调节物质的影响. 作物学报, 2011, 37: 2293-2298.
doi: 10.3724/SP.J.1006.2011.02293
Li C Y, Chen S S, Xu W, Li D S, Gu X, Zhu X K, Guo W S, Feng C N. Effect of low temperature at seedling stage on antioxidation enzymes and cytoplasmic osmoticum of leaves in wheat cultivar yangmai 16. Acta Agron Sin, 2011, 37: 2293-2298 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2011.02293
[25] Ren Y Q, Guo Y T, Zhao M L. Research progress of response to low temperature stress in Plant. Mol Plant Breed, 2020, 18: 4775-4781.
[26] 吕艳, 黄涌, 邹锡玲, 罗丹, 王小燕, 鲍五洲, 陈建军, 马海清, 程勇. 油菜抗低温的评价指标与分子生理机制研究进展. 中国油料作物学报, 2020, 42: 527-535.
Lyu Y, Huang Y, Zou X L, Luo D, Wang X Y, Bao W Z, Chen J J, Ma H Q, Cheng Y. Reaserches on evaluation, physiological and molecular mechanism of rapeseed low-tempreature resistance. Chin J Oil Crop Sci, 2020, 42: 527-535 (in Chinese with English abstract).
doi: 10.19802/j.issn.1007-9084.2020151
[27] Jahed K R, Saini A K, Sherif S M. Coping with the cold: unveiling cryoprotectants, molecular signaling pathways, and strategies for cold stress resilience. Front Plant Sci, 2023, 14: 1246093.
doi: 10.3389/fpls.2023.1246093
[28] Zuo S Y, Zuo Y T, Gu W R, Wei S, Li J. Exogenous proline optimizes osmotic adjustment substances and active oxygen metabolism of maize embryo under low-temperature stress and metabolomic analysis. Processes, 2022, 10: 1388.
doi: 10.3390/pr10071388
[29] Chen Y, Jiang J F, Chang Q S, Gu C S, Song A P, Chen S M, Dong B, Chen F D. Cold acclimation induces freezing tolerance via antioxidative enzymes, proline metabolism and gene expression changes in two chrysanthemum species. Mol Biol, 2014, 41: 815-822.
[30] Wu H C, Jinn T L. Heat shock-triggered Ca2+ mobilization accompanied by pectin methylesterase activity and cytosolic Ca2+ oscillation are crucial for plant thermotolerance. Plant Signal Behav, 2010, 5: 1252-1256.
doi: 10.4161/psb.5.10.12607
[31] Kang T M, Hilgemann D W. Multiple transport modes of the cardiac Na+/Ca2+ exchanger. Nature, 2004, 427: 544-548.
doi: 10.1038/nature02271
[32] Ren R F, Zhou H, Zhang L L, Jiang X R, Liu Y. Ca2+ participates in programmed cell death by modulating ROS during pollen cryopreservation. Plant Cell Rep, 2022, 41: 1043-1057.
doi: 10.1007/s00299-022-02836-3
[33] Renaut J, Hausman J F, Wisniewski M E. Proteomics and low-temperature studies: bridging the gap between gene expression and metabolism. Physiol Plant, 2006, 126: 97-109.
[34] Breton G, Vazquez-tello A, Danyluk J, Sarhan F. Two novel intrinsic annexins accumulate in wheat membranes in response to low temperature. Plant Cell Physiol, 2000, 41: 177-184.
pmid: 10795312
[35] Wang J C, Liu X, Zhang A, Ren Y L, Wu F Q, Wang G, Xu Y, Lei C L, Zhu S S, Pan T, Wang Y F, Zhang H, Wang F, Tan Y Q, Wang Y P, Jin X, Luo S, Zhou C L, Zhang X, Liu J L, Wang S, Meng L Z, Wang Y H, Chen X, Lin Q B, Zhang X, Guo X P, Cheng Z J, Wang J L, Tian Y L, Liu S J, Jiang L, Wu C Y, Wang E T, Zhou J M, Wang Y F, Wang H Y, Wan J M. A cyclic nucleotide-gated channel mediates cytoplasmic calcium elevation and disease resistance in rice. Cell Res, 2019, 29: 820-831.
doi: 10.1038/s41422-019-0219-7 pmid: 31444468
[36] Subrahmanyam D, Subash N, Haris A, Sikka A K. Influence of water stress on leaf photosynthetic characteristics in wheat cultivars differing in their susceptibility to drought. Photosynthetica, 2006, 44: 125-129.
[37] 刘海卿, 孙万仓, 刘自刚, 武军艳, 钱武, 王志江, 郭仁迪, 马骊, 侯献飞, 刘林波. 北方寒旱区白菜型冬油菜抗寒性与抗旱性评价及其关系. 中国农业科学, 2015, 48: 3743-3756.
doi: 10.3864/j.issn.0578-1752.2015.18.018
Liu H Q, Sun W C, Liu Z G, Wu J Y, Qian W, Wang Z J, Guo R D, Ma L, Hou X F, Liu L B. Evaluation of drought resistance and cold resistance and research of their relationship at seedling stage of winter rapeseed (Brassica campestris L.) in cold and arid regions in North China. Sci Agric Sin, 2015, 48: 3743-3756 (in Chinese with English abstract).
[38] 范军强, 武军艳, 刘丽君, 马骊, 杨刚, 蒲媛媛, 李学才, 孙万仓. 甘蓝型冬油菜气孔特性与抗寒性的关系. 中国农业科学, 2023, 56: 599-619.
doi: 10.3864/j.issn.0578-1752.2023.04.002
Fan J Q, Wu J Y, Liu L J, Ma L, Yang G, Pu Y Y, Li X C, Sun W C. Correlation between stomatal characteristics and cold resistance of Brassica napus L. Sci Agric Sin, 2023, 56: 599-619 (in Chinese with English abstract).
[39] Su H, Sun H, Dong X, Chen P, Zhang X, Tian L, Liu X, Wang J. Did manure improve saline water irrigation threshold of winter wheat? A 3-year field investigation. Agric Water Manag, 2021, 258: 107203.
doi: 10.1016/j.agwat.2021.107203
[1] 王龙, 李静, 钱晨, 林国冰, 李亦扬, 杨光, 左青松. 盐胁迫对油菜生理特征和菜籽产量品质的影响[J]. 作物学报, 2024, 50(6): 1597-1607.
[2] 宁宁, 余新颖, 秦梦倩, 娄洪祥, 王宗铠, 王春云, 贾才华, 徐正华, 王晶, 蒯婕, 汪波, 赵杰, 周广生. 关键栽培措施对菜籽油综合品质的影响研究[J]. 作物学报, 2024, 50(6): 1554-1567.
[3] 钟元, 朱天宇, 戴成, 马朝芝. 耐亚磷酸盐除草剂转基因油菜的创建和抗性评价[J]. 作物学报, 2024, 50(5): 1158-1171.
[4] 曹松, 姚敏, 任睿, 贾元, 向星汝, 李文, 何昕, 刘忠松, 官春云, 钱论文, 熊兴华. 转录组结合区域关联分析挖掘油菜含油量积累的候选基因[J]. 作物学报, 2024, 50(5): 1136-1146.
[5] 周香玉, 徐劲松, 谢伶俐, 许本波, 张学昆. 甘蓝型油菜苗期响应渍害胁迫的生理调控机制[J]. 作物学报, 2024, 50(4): 1015-1029.
[6] 李阳阳, 吴丹, 许军红, 陈倬永, 徐昕媛, 徐金盼, 唐钟林, 张娅茹, 朱丽, 严卓立, 周清元, 李加纳, 刘列钊, 唐章林. 基于QTL和转录组测序鉴定甘蓝型油菜耐旱候选基因[J]. 作物学报, 2024, 50(4): 820-835.
[7] 杨闯, 王玲, 全成滔, 余良倩, 戴成, 郭亮, 傅廷栋, 马朝芝. 甘蓝型油菜盐胁迫响应基因表达谱分析及共表达网络的构建[J]. 作物学报, 2024, 50(1): 237-250.
[8] 宋毅, 李静, 谷贺贺, 陆志峰, 廖世鹏, 李小坤, 丛日环, 任涛, 鲁剑巍. 氮肥用量对冬油菜籽粒产量和品质的影响[J]. 作物学报, 2023, 49(7): 2002-2011.
[9] 唐玉凤, 姚敏, 何昕, 官梅, 刘忠松, 官春云, 钱论文. 甘蓝型油菜SGR基因家族的全基因组鉴定与功能分析[J]. 作物学报, 2023, 49(7): 1829-1842.
[10] 袁大双, 张晓莉, 朱冬鸣, 杨友鸿, 姚梦楠, 梁颖. BnMAPK2 对甘蓝型油菜耐旱性的影响[J]. 作物学报, 2023, 49(6): 1518-1531.
[11] 闫金垚, 宋毅, 陆志峰, 任涛, 鲁剑巍. 磷肥用量对油菜籽产量及品质的影响[J]. 作物学报, 2023, 49(6): 1668-1677.
[12] 杨一丹, 何督, 刘静, 张岩, 陈飞志, 巫燕飞, 杜雪竹. 寄主诱导的基因沉默干扰核盘菌致病基因OAH在甘蓝型油菜抗菌核病中的应用[J]. 作物学报, 2023, 49(6): 1542-1550.
[13] 余新颖, 王春云, 李大双, 王宗铠, 蒯婕, 汪波, 王晶, 徐正华, 周广生. 高产油菜品种稳产性形成机制[J]. 作物学报, 2023, 49(6): 1601-1615.
[14] 陶玥玥, 盛雪雯, 徐坚, 沈园, 王海候, 陆长婴, 沈明星. 长三角水稻-油菜周年两熟温光资源分配与利用特征[J]. 作物学报, 2023, 49(5): 1327-1338.
[15] 杨太桦, 杨福权, 郜耿东, 殷帅, 金庆东, 徐林珊, 蒯婕, 汪波, 徐正华, 葛贤宏, 王晶, 周广生. 初步探究LncRNA在甘蓝型油菜生态型分化中的作用[J]. 作物学报, 2023, 49(5): 1197-1210.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .