欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (5): 1341-1350.doi: 10.3724/SP.J.1006.2024.34147

• 研究简报 • 上一篇    下一篇

氮钾减量配施对甘薯产量和品质的影响

杨春菊1,2(), 唐道彬1,2, 张凯1,2, 杜康1,2, 黄红1,2, 乔欢欢1,2, 王季春1,2,*(), 吕长文1,2,*()   

  1. 1西南大学农学与生物科技学院, 重庆 400715
    2薯类生物学与遗传育种重庆市重点实验室, 重庆 400715
  • 收稿日期:2023-08-31 接受日期:2024-01-12 出版日期:2024-05-12 网络出版日期:2024-02-09
  • 通讯作者: *吕长文, E-mail: lvcgwn@163.com; 王季春, E-mail: wjchun@swu.edu.cn
  • 作者简介:E-mail: 2270316165@qq.com
  • 基金资助:
    重庆市创新与应用研发重点项目(cstc2021jscx-gksbX0022);中央高校基本科研业务专项(XDJK2020B032);中央高校基本科研业务专项(XDJK2021 F001);重庆市现代农业产业技术体系创新团队项目(CQMAITS202303)

Effect of reducing nitrogen and potassium application on yield and quality in sweet potato

YANG Chun-Ju1,2(), TANG Dao-Bin1,2, ZHANG Kai1,2, DU Kang1,2, HUANG Hong1,2, QIAO Huan-Huan1,2, WANG Ji-Chun1,2,*(), LYU Chang-Wen1,2,*()   

  1. 1College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
    2Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops in Chongqing, Chongqing 400715, China
  • Received:2023-08-31 Accepted:2024-01-12 Published:2024-05-12 Published online:2024-02-09
  • Contact: *E-mail: lvcgwn@163.com; E-mail: wjchun@swu.edu.cn
  • Supported by:
    Technology Innovation and Application Development Key Project of Chongqing(cstc2021jscx-gksbX0022);Fundamental Research Funds for the Central Universities(XDJK2020B032);Fundamental Research Funds for the Central Universities(XDJK2021 F001);Chongqing Modern Agricultural Industry Technology System(CQMAITS202303)

摘要:

基于重庆地区土壤肥力及施肥水平, 在保证作物稳产、优质的情况下, 探讨氮钾减量配施对甘薯产量、品质、养分利用和土壤肥力的影响, 以期确定本地区甘薯是否存在减肥空间以及适宜的减量配施策略。2021—2022年连续2年在重庆市北碚区歇马街道西南大学薯类作物研究所开展田间试验, 采用双因素随机区组试验设计, 氮、钾各三水平, 分别以常规施N量为126.00 kg hm-2 (A1), 减施10% (A2)和20% (A3); 常规施K2O量96.00 kg hm-2 (B1), 减施5% (B2)和10% (B3)。试验结果表明, 一定程度的氮钾减量配施不会造成甘薯产量的显著下降, 氮肥减施达到20% (A3)甘薯单株结薯数显著降低, A3较A1显著减产9.25%。氮肥减施10%和20%分别较A1的块根可溶性糖含量显著增加了0.25%和0.36%, 钾肥减施10%则较B1的可溶性糖含量显著增加了0.47%。但氮钾减量配施对甘薯块根淀粉率和可溶性蛋白含量存在不利影响。综上所述, 相较于本地常规施氮钾量, 减氮10% (A2)配合减钾5% (B2), 即施氮量为119.70 kg hm-2、施钾量为86.40 kg hm-2, 不会降低渝薯198产量和土壤酶活性, 可作为本区域甘薯生产中的推荐施肥量。

关键词: 甘薯, 氮钾肥减量配施, 产量品质, 土壤肥力

Abstract:

Based on the soil fertility and fertilization level in the Chongqing region, to ensure the stable and high-quality crop yields, we explored the effects of reducing nitrogen and potassium application on sweet potato yield, quality, nutrient utilization, and soil fertility, in order to determine whether there is any space for reducing fertilizer application in sweet potatoes in this area and propose the appropriate reduction application strategy. Field experiments were conducted in two consecutive years from 2021 to 2022 at the base of the Potato Crops Research Institute of Southwest University in Xiema Street, Beibei District, Chongqing. Double factor randomized block experimental design was adopted with three levels of nitrogen and potassium applied in this study. The conventional N application rate was 126.00 kg hm-2 (A1), the N application rate was reduced by 10% (A2) and 20% (A3), respectively. The conventional application amount of K2O was 96.00 kg hm-2 (B1), the application amount of K2O was reduced by 5% (B2) and 10% (B3), respectively. The results showed that moderate N and K2O reduction combined application would not significantly reduce the yield of sweet potato, but reducing N by 20% significantly reduced the number of sweet potato per plant, and the yield of A3 significantly reduced by 9.25% compared to A1. Compared to the control, the soluble sugar content of A2 and A3 significantly increased by 0.25% and 0.36%, respectively, while B3 significantly increased by 0.47% compared to B1. However, it was unfavorable to the starch content and soluble protein content of sweet potato. Therefore, compared with local conventional N and K2O fertilizer application, both reducing N by 10% (A2, 119.70 kg hm-2) and K2O by 5% (B2, 86.40 kg hm-2) did not significantly decrease the yield of Yushu-198 and soil enzyme activity, which could be recommended as the appropriate fertilization recommendation for sweet potato production in this region.

Key words: sweet potato, reducing nitrogen and potassium fertilizer application, yield and quality, soil fertility

表1

2021-2022年歇马试验点土壤基础养分含量"

年份
Year
pH 速效钾
Available
potassium
(mg kg-1)
有效磷
Available
phosphorus
(mg kg-1)
碱解氮
Alkaline
nitrogen
(mg kg-1)
有机质
Organic
matter
(g kg-1)
全氮
Total
nitrogen
(g kg-1)
全磷
Total
phosphorus
(g kg-1)
全钾
Total
potassium
(g kg-1)
2021 7.41 85.87 13.15 94.00 32.49 0.55 0.62 10.11
2022 7.21 74.13 7.54 81.45 27.66 0.27 0.54 12.03

图1

2021-2022年歇马试验点甘薯生长季温度和降雨量"

表2

氮钾减量配施处理组合"

处理组合
Treatment
氮肥N
(kg hm-2)
钾肥K2O
(kg hm-2)
处理组合
Treatment
氮肥N
(kg hm-2)
钾肥K2O
(kg hm-2)
处理组合
Treatment
氮肥N
(kg hm-2)
钾肥K2O
(kg hm-2)
A1B1 126.0 96.0 A2B1 119.7 96.0 A3B1 113.4 96.0
A1B2 126.0 86.4 A2B2 119.7 86.4 A3B2 113.4 86.4
A1B3 126.0 76.8 A2B3 119.7 76.8 A3B3 113.4 76.8

表3

氮钾减量配施对甘薯产量及其构成因素的影响"

年份
Year
处理
Treatment
单株结薯数
Storage root number of single plant
单薯重
Single storage root weight (g)
薯块产量
Storage root yield (kg hm-2)
2021 A1 B1 4.35±0.09 a 162.32±12.26 a 40,355.84±2489.23 abc
B2 4.41±0.27 a 176.85±10.29 a 43,448.77±1786.38 a
B3 4.18±0.31 abcd 171.31±7.43 a 38,903.20±928.77 bcd
A2 B1 4.39±0.38 a 169.17±10.90 a 41,734.60±2185.27 ab
B2 4.21±0.17 abc 176.79±26.86 a 41,698.06±3448.07 ab
B3 4.10±0.01 abcde 179.50±12.46 a 41,401.37±2403.09 ab
A3 B1 3.93±0.21 bcdef 171.51±3.30 a 39,250.72±1648.10 bcd
B2 3.70±0.01 f 172.91±12.71 a 36,464.05±1774.07 de
B3 3.81±0.23 def 174.47±22.67 a 34,181.48±1726.77 e
2022 A1 B1 4.45±0.04 a 166.59±11.20 a 40,714.52±1631.35 ab
B2 4.48±0.30 a 183.84±12.81 a 43,692.41±1158.56 a
B3 4.11±0.11 abcd 175.43±8.54 a 40,213.09±2077.34 abc
A2 B1 4.42±0.09 a 172.92±11.22 a 41,998.58±2569.42 ab
B2 4.30±0.16 ab 179.34±26.17 a 40,524.95±2300.87 ab
B3 4.11±0.05 abcd 184.60±14.60 a 41,916.87±3028.84 ab
A3 B1 3.88±0.09 cdef 175.32±7.96 a 39,257.54±3010.52 bcd
B2 3.76±0.02 ef 174.63±13.72 a 37,098.51±1035.90 cde
B3 3.89±0.09 cdef 177.02±23.32 a 35,904.19±1694.56 e
平均值
Average
A1 4.33±0.15 a 172.72±7.69 a 41,221.31±1921.66 a
A2 4.26±0.14 a 177.05±5.43 a 41,545.74±541.21 a
A3 3.83±0.09 b 174.31±1.91 a 39,931.04±2609.86 b
B1 4.24±0.26 a 169.64±4.68 b 40,551.97±1176.86 a
B2 4.14±0.33 a 177.39±3.84 a 40,487.79±3104.22 a
B3 4.03±0.15 a 177.06±4.59 a 39,931.04±2609.86 a
F
F-value
年份Year (Y) 0.58 1.31 0.54
A 33.95** 0.56 36.86**
B 4.13* 2.24 5.18*
Y × A 0.04 0.04 0.30
Y × B 0.03 0 0.42
A × B 1.58 0.75 5.43**
Y × A × B 0.18 0.03 0.17

表4

氮钾减量配施对块根品质的影响"

年份
Year
处理
Treatment
淀粉率
Starch content (%)
可溶性糖
Soluble sugar content (%)
可溶性蛋白
Soluble protein content (mg g-1 FW)
2021 A1 B1 22.35±0.00 a 7.80±0.14 d 53.88±2.54 a
B2 19.74±0.87 cd 8.01±0.49 cd 52.54±3.09 ab
B3 20.90±0.50 bc 8.16±0.23 bc 51.43±2.48 ab
A2 B1 21.19±0.50 ab 8.11±0.11 bcd 52.75±1.41 ab
B2 21.19±0.50 ab 8.15±0.04 bc 50.55±4.16 ab
B3 19.74±0.87 cd 8.51±0.46 a 49.54±2.04 ab
A3 B1 20.90±0.50 bc 8.45±0.44 ab 52.28±2.76 ab
B2 19.74±0.00 cd 8.14±0.07 bc 49.59±2.05 ab
B3 19.45±1.33 d 8.52±0.40 a 48.58±1.72 b
2022 A1 B1 22.40±0.04 a 7.85±0.16 e 54.37±2.47 a
B2 19.77±0.85 cd 8.08±0.51 de 53.07±2.86 abc
B3 20.94±0.51 bc 8.22±0.26 abcd 52.05±2.41 abc
A2 B1 21.24±0.48 ab 8.14±0.11 de 53.35±1.57 ab
B2 21.23±0.51 ab 8.20±0.07 bcde 51.03±3.84 abc
B3 19.77±0.86 cd 8.56±0.49 a 49.98±1.77 bc
A3 B1 20.93±0.51 bc 8.50±0.47 abc 52.92±2.85 abc
B2 19.78±0.01 cd 8.17±0.09 cde 50.11±2.12 abc
B3 19.47±1.31 d 8.53±0.39 ab 48.81±1.74 c
平均值
Average
A1 21.02±1.17 a 8.02±0.17 b 52.89±1.11 a
A2 20.73±0.75 a 8.28±0.21 a 51.20±1.53 ab
A3 20.05±0.69 a 8.39±0.18 a 50.38±1.81 b
B1 21.50±0.69 a 8.14±0.29 b 53.26±0.77 a
B2 20.24±0.75 b 8.13±0.07 b 51.15±1.38 b
B3 20.05±0.69 b 8.42±0.18 a 50.07±1.40 b
F
F-value
年份Year (Y) 0.04 0.79 0.74
A 10.79** 19.82** 6.26**
B 27.03** 15.01** 10.12**
Y × A 0 0.03 0
Y × B 0 0 0
A × B 8.28** 4.12** 0.24
Y × A × B 0 0.01 0.01

表5

氮钾减量配施处理对土壤酶活性的影响"

年份
Year
处理
Treatment
脲酶
Urease (mg g-1 d-1)
蔗糖酶
Saccharase (mg g-1 d-1)
过氧化氢酶
Catalase (mg g-1 h-1)
2021 A1 B1 4.38±0.30 c 2.71±0.13 ab 2.53±0.61 a
B2 4.62±0.13 bc 3.88±1.54 a 2.27±0.23 ab
B3 3.13±0.20 d 2.91±1.02 ab 2.67±0.23 a
A2 B1 4.51±1.65 bc 3.72±0.11 ab 2.80±0.69 a
B2 6.12±0.47 a 3.66±0.40 ab 1.60±0.00 bc
B3 5.71±0.39 ab 3.67±1.00 ab 2.67±0.83 a
A3 B1 5.00±0.41 abc 2.35±0.19 ab 2.00±0.40 abc
B2 4.44±0.67 c 2.10±1.26 b 2.13±0.23 abc
B3 4.52±0.22 bc 2.93±0.76 ab 1.33±0.23 c
2022 A1 B1 5.29±0.30 bc 4.12±1.54 a 2.61±0.61 ab
B2 5.23±0.13 bc 4.13±0.01 a 2.35±0.23 abc
B3 4.50±0.03 cde 3.25±1.02 abcde 2.95±0.2 3a
A2 B1 4.22±1.65 de 3.76±0.11 abcd 1.68±0.00 c
B2 5.53±0.47 a 3.90±0.40 ab 2.88±0.69 a
B3 5.12±0.39 bcd 4.01±1.00 a 2.95±0.83 a
A3 B1 5.21±0.41 bc 2.39±0.19 e 2.08±0.40 bc
B2 4.35±0.67 cde 2.34±1.26 e 2.21±0.23 bc
B3 4.43±0.22 cde 3.27±0.76 abcde 2.31±0.07 abc
平均值
Average
A1 4.53±0.78 a 3.50±0.63 a 2.56±0.24 a
A2 5.20±0.73 a 3.79±0.14 a 2.43±0.62 ab
A3 4.66±0.36 a 2.56±0.44 b 2.01±0.35 b
B1 4.77±0.46 a 3.18±0.78 a 2.28±0.43 a
B2 5.05±0.70 a 3.34±0.88 a 2.24±0.41 a
B3 4.57±0.86 a 3.34±0.43 a 2.33±0.61 a
F
F-value
年份Year (Y) 0.20 0.82 1.40
A 5.84** 8.73** 34.18**
B 0.51 0.57 0.16
Y×A 4.15** 0.06 0.09
Y×B 0.34 0.15 0.29
A×B 4.09** 1.01 3.47**
Y×A×B 0 0.05 0.07

表6

氮钾减量配施处理对土壤速效养分的影响"

年份
Year
处理
Treatment
碱解氮
Alkaline nitrogen (mg kg-1)
有效磷
Available phosphorus (mg kg-1)
速效钾
Available potassium (mg kg-1)
2021 A1 B1 57.00±7.00 a 217.33±15.39 a 17.69±0.13 a
B2 53.00±7.00 ab 205.74±3.56 ab 16.07±4.17 a
B3 55.00±0.00 ab 204.42±12.43 ab 16.99±4.14 a
A2 B1 47.50±7.00 abc 206.62±12.02 ab 12.70±0.96 a
B2 44.67±5.35 bcd 203.97±14.93 ab 11.09±1.34 a
B3 44.83±4.04 bcd 188.27±10.25 bc 12.30±8.64 a
A3 B1 38.17±8.81 cde 202.37±4.22 ab 10.50±2.30 a
B2 32.83±2.02 e 201.82±4.97 ab 10.08±5.66 a
B3 34.00±7.00 de 170.88±8.87 c 12.33±1.96 a
2022 A1 B1 47.44±10.87 a 213.98±19.93 a 17.14±5.51 ab
B2 43.94±10.42 a 210.76±3.76 a 20.43±2.29 a
B3 47.88±2.50 a 196.82±20.39 ab 15.49±7.44 ab
A2 B1 38.71±9.65 ab 209.78±6.99 a 18.53±1.28 a
B2 35.79±5.13 abcd 192.96±15.75 a 15.03±3.08 ab
B3 37.18±5.11 abc 189.54±14.37 a 17.27±1.89 ab
A3 B1 25.90±7.48 cde 205.83±9.49 a 11.04±3.65 b
B2 24.00±3.67 de 201.77±18.86 a 10.21±7.34 ab
B3 21.90±8.23 e 189.56±19.47 a 12.70±4.54 b
平均值
Average
A1 50.71±5.05 a 208.16±7.39 a 17.30±1.72 a
A2 41.45±4.82 b 198.52±9.37 ab 14.49±2.96 b
A3 29.47±6.44 c 195.37±13.22 b 11.14±1.12 c
B1 42.45±10.66 a 209.32±5.55 a 14.60±3.59 a
B2 39.04±10.26 a 202.84±5.87 a 13.82±4.12 a
B3 40.13±10.33 a 189.92±11.17 b 14.51±2.35 a
F
F-value
年份Year (Y) 0.13 0.39 0.97
A 24.99** 5.60** 5.00**
B 1.10 8.74** 0.30
Y×A 0.23 0.09 0.71
Y×B 0.06 0.18 0.04
A×B 0.05 1.40 0.08
Y×A×B 0.08 0.16 0.19

表7

甘薯产量品质与肥效及土壤肥力性状的相关性"

性状
Trait
SRY SRNSP STRW SC SSC SPC Ua Sa Ca AN APh APo
SRY
SRNSP 0.83**
STRW 0.22 -0.09
SC 0.30 0.52* -0.68**
SSC -0.38 -0.62** 0.55* -0.60**
SPC 0.61** 0.70** -0.47* 0.74** -0.66**
Ua 0.37 0.13 0.41 0.06 0.16 -0.03
Sa 0.69** 0.78** 0.38 0.09 -0.18 0.22 0.39
Ca 0.36 0.32 0.08 0.19 -0.15 0.19 -0.05 0.31
AN 0.58** 0.71** -0.35 0.48* -0.61** 0.53* -0.12 0.36 0.33
APh 0.53* 0.54* -0.47* 0.64** -0.77** 0.84** -0.09 0.03 0.14 0.43
APo 0.58** 0.77** 0.06 0.27 -0.44 0.53* -0.18 0.63** 0.34 0.55* 0.36
[1] 段文学, 张海燕, 解备涛, 汪宝卿, 张立明. 甘薯氮素营养研究进展. 西北农业学报, 2015, 24(12): 14-23.
Duan W X, Zhang H Y, Xie B T, Wang B Q, Zhang L M. Research progress on nitrogen nutrition of sweet potatoes. Acta Agric Boreali-Occident Sin, 2015, 24(12): 14-23 (in Chinese with English abstract).
[2] 安建刚, 敬夫, 丁祎, 肖怡, 尚浩浩, 李宏利, 杨晓璐, 唐道彬, 王季春. 氮肥分期运筹对套作甘薯产量、品质及氮素效率的影响. 作物学报, 2018, 44: 1858-1866.
doi: 10.3724/SP.J.1006.2018.01858
An J G, Jing F, Ding Y, Xiao Y, Shang H H, Li H L, Yang X L, Tang D B, Wang J C. Effects of nitrogen fertilizer staging on yield, quality and nitrogen efficiency of interplanted sweet potato. Acta Agron Sin, 2018, 44: 1858-1866 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.01858
[3] 孙哲, 田昌庚, 陈路路, 王红霞, 郑建利, 赵丰玲. 氮钾配施对甘薯茎叶生长、产量形成及干物质分配的影响. 中国土壤与肥料, 2021, (4): 186-191.
Sun Z, Tian C G, Chen L L, Wang H X, Zheng J L, Zhao F L. Effects of nitrogen and potassium fertilization on the growth, yield formation, and dry matter distribution of sweet potato stems and leaves. Soils Fert Sci China, 2021, (4): 186-191 (in Chinese with English abstract).
[4] 周奕廷, 李俊良, 梁斌, 商美新, 房增国. 种植密度与钾肥对鲜食甘薯产量、品质及钾肥利用率的影响. 山东农业科学, 2020, 52(7): 60-66.
Zhou Y T, Li J L, Liang B, Shang M X, Fang Z G. The effects of planting density and potassium fertilizer on the yield, quality, and potassium fertilizer utilization efficiency of fresh sweet potatoes. Shandong Agric Sci, 2020, 52(7): 60-66 (in Chinese with English abstract).
[5] 赵庆鑫, 江燕, 史春余, 司成成, 史文卿, 王新建, 柳洪鹃, 史衍玺. 氮钾互作对甘薯氮钾元素吸收、分配和利用的影响及与块根产量的关系. 植物生理学报, 2017, 53: 889-895.
Zhao Q X, Jiang Y, Shi C Y, Si C C, Shi W Q, Wang X J, Liu H J, Shi Y X. The effect of nitrogen and potassium interaction on the absorption, distribution and utilization of nitrogen and potassium in sweet potato and its relationship with root tuber yield. Plant Physiol J, 2017, 53: 889-895 (in Chinese with English abstract).
[6] 王秋媛, 田江梅, 韩叙, 黄廷荣, 杨庆飞, 唐道彬, 王季春. 磷对淀粉型甘薯产量及养分吸收利用的影响. 植物营养与肥料学报, 2015, 21: 1252-1260.
Wang Q Y, Tian J M, Han X, Huang T R, Yang Q F, Tang D B, Wang J C. The effect of phosphorus on the yield and nutrient absorption and utilization of starch type sweet potatoes. J Plant Nutr Fert, 2015, 21: 1252-1260 (in Chinese with English abstract).
[7] 尚杰, 尹晓宇. 中国化肥面源污染现状及其减量化研究. 生态经济, 2016, 32(5): 196-199.
Shang J, Yin X Y. Research on the current situation and reduction of non-point source pollution of fertilizers in China. Ecol Econ, 2016, 32(5): 196-199 (in Chinese with English abstract).
[8] 严如玉, 甘国渝, 赵希梅, 殷大聪, 李燕丽, 金慧芳, 朱海, 李继福. 我国水稻优势产区生产格局及施肥现状研究. 中国稻米, 2023, 29(3): 1-8.
doi: 10.3969/j.issn.1006-8082.2023.03.001
Yan R Y, Gan G Y, Zhao X M, Yin D C, Li Y L, Jin H F, Zhu H, Li J F. Study on the production pattern and fertilization status of dominant rice production areas in China. China Rice, 2023, 29(3): 1-8 (in Chinese with English abstract).
[9] 许海敏, 虞鹏程, 冯敏谢. 不同化肥减量模式对甬优1540产量和肥料利用率的影响. 浙江农业科学, 2023, 64: 138-1441.
Xu H M, Yu P C, Feng M X. The impact of different fertilizer reduction models on the yield and fertilizer utilization efficiency of Yongyou 1540. Zhejiang Agric Sci, 2023, 64: 138-1441 (in Chinese with English abstract).
[10] 张斯梅, 顾克军, 张传辉, 顾东祥, 段增强. 麦秸全量还田下减氮施肥对粳稻产量形成和氮素吸收利用的影响. 江苏农业学报, 2023, 39: 360-367.
Zhang S M, Gu K J, Zhang C H, Gu D X, Duan Q Q. The effect of nitrogen reduction and fertilization under full wheat straw return on yield formation and nitrogen absorption and utilization of japonica rice. Jiangsu J Agric Sci, 2023, 39: 360-367 (in Chinese with English abstract).
[11] 吴春红, 刘庆, 孔凡美, 李欢, 史衍玺. 氮肥施用量对不同紫甘薯品种产量和氮素效率的影响. 作物学报, 2016, 42: 113-122.
doi: 10.3724/SP.J.1006.2016.00113
Wu C H, Liu Q, Kong F M, Li H, Shi Y X. Effects of nitrogen fertilizer application on yield and nitrogen efficiency of different purple sweet potato varieties. Acta Agron Sin, 2016, 42: 113-122 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2016.00113
[12] 吴磊, 陈展宇, 张治安, 凌凤楼. 不同旱稻品种灌浆期抗旱生理适应性的研究. 干旱地区农业研究, 2008, 26(4): 163-166.
Wu L, Chen Z Y, Zhang Z A, Ling F L. Study on the physiological adaptability of drought resistance of different upland rice varieties during filling stage. Agric Res Arid Areas, 2008, 26(4): 163-166 (in Chinese with English abstract).
[13] 邹琦, 许长成, 赵世杰, 孟庆伟. 午间强光胁迫下SOD对大豆叶片光合机构的保护作用. 植物生理学报, 1995, 21: 397-401.
Zou Q, Xu C C, Zhao S J, Meng Q W. Protective effect of SOD on photosynthetic apparatus of soybean leaves under midday strong light stress. Plant Physiol J, 1995, 21: 397-401 (in Chinese with English abstract).
[14] 鲁如坤, 时正元, 赖庆旺. 红壤养分退化研究: Ⅲ. 土壤和植株的养分淋失. 土壤通报, 2000, 31: 156-158.
Lu R K, Shi Z Y, Lai Q W. Research on nutrient degradation in red soil. III: Nutrient leaching from soil and plants. Chin J Soil Sci, 2000 31: 156-158 (in Chinese with English abstract).
[15] 段兴武, 谢云, 冯艳杰, 王晓岚, 高晓飞. 东北黑土区土壤生产力评价方法研究. 中国农业科学, 2009, 42: 1656-1664.
Duan X W, Xie Y, Feng Y J, Wang X L, Gao X F. Study on the evaluation method of soil productivity in the black soil area of northeast China. Sci Agric Sin, 2009, 42: 1656-1664 (in Chinese with English abstract).
[16] 李小婉. 不同氮肥施用量对不同水稻品种产量及食味品质的影响. 北方水稻, 2023, 53(2): 30-32.
Li X W. The effect of different nitrogen fertilizer application rates on yield and taste quality of different rice varieties. North Rice, 2023, 53(2): 30-32 (in Chinese with English abstract).
[17] 罗忠伟. 减施氮肥对马铃薯产量的影响. 特种经济动植物, 2022, 25(8) :16-17.
Luo Z W. The effect of reducing nitrogen fertilizer application on potato yield. Special Econom Anim Plant, 2022, 25(8): 16-17 (in Chinese).
[18] 崔晓萌. 减量施氮对小麦产量和品质的影响. 特种经济动植物, 2023, 26(5): 50-51.
Cui X M. The effect of reducing nitrogen application on wheat yield and quality. Special Econom Anim Plant, 2023, 26(5): 50-51 (in Chinese).
[19] 肖强, 刘东生, 刘建斌, 武凤霞, 衣文平. 减氮条件下配施控释尿素对冬小麦-夏玉米氮素利用及产量的影响. 华北农学报, 2023, 38(2): 160-169.
doi: 10.7668/hbnxb.20193572
Xiao Q, Liu D S, Liu J B, Wu F X, Yi W P. The effect of applying controlled release urea under nitrogen reduction conditions on nitrogen utilization and yield of winter wheat summer maize. Acta Agric Boreali-Sin, 2023, 38(2): 160-169 (in Chinese with English abstract).
[20] 周苏玫, 张珂珂, 张嫚, 李磊, 张春丽, 尹钧, 贺德先. 减氮适墒提高冬小麦旗叶光合潜力和籽粒产量. 作物学报, 2016, 42: 1677-1688 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2016.01677
Zhou S M, Zhang K K, Zhang M, Li L, Zhang C L, Yin J, He D X. Reducing nitrogen and suitable soil moisture can improve the photosynthetic potential of winter wheat flag leaves and grain yield. Acta Agron Sin, 2016, 42: 1677-1688 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2016.01677
[21] Bai M J, Xu D, Zhang S H, Li Y N. Spatial-temporal distribution characteristics of water-nitrogen and performance evaluation for basin irrigation with conventional fertilization and fertigation methods. Agric Water Manag, 2013, 126: 75-84.
doi: 10.1016/j.agwat.2013.05.006
[22] 兰孟焦, 张辉, 肖满秋, 潘皓, 侯隆英, 张永春, 吴问胜. 不同施肥处理对甘薯产量及土壤肥力与氮素利用的影响. 西北农业学报, 2023, 32(1): 44-52.
Lan M J, Zhang H, Xiao M Q, Pan H, Hou L Y, Zhang Y C, Wu W S. Effects of different fertilization treatments on sweet potato yield, soil fertility and nitrogen utilization. Acta Agric Boreali-Occident Sin, 2023, 32(1): 44-52 (in Chinese with English abstract).
[23] 杜祥备, 刘小平. 氮肥减量分施促进甘薯根系分化与块根膨大. 植物营养与肥料学报, 2019, 25: 1702-1709.
Du X B, Liu X P. Reducing and applying nitrogen fertilizer to promote root differentiation and root expansion in sweet potatoes. J Plant Nutr Fert, 2019, 25: 1702-1709 (in Chinese with English abstract).
[24] 张海燕, 董顺旭, 解备涛, 汪宝卿, 张立明, 段文学. 钾肥用量对瘠薄地甘薯产量和钾肥利用率的影响. 核农学报, 2020, 34: 2299-2306.
doi: 10.11869/j.issn.100-8551.2020.10.2299
Zhang H Y, Dong S X, Xie B T, Wang B Q, Zhang L M, Duan W X. The effect of potassium fertilizer dosage on sweet potato yield and potassium fertilizer utilization efficiency in barren and thin land. J Nucl Agric Sci, 2020, 34: 2299-2306 (in Chinese with English abstract).
[25] 张彬彬, 史春余, 柳洪鹃, 任国博, 孙哲. 钾肥基施利于甘薯块根产量的形成. 植物营养与肥料学报, 2017, 23: 208-216.
Zhang B B, Shi C Y, Liu H J, Ren G B, Sun Z. Potassium fertilizer application is beneficial for the formation of sweet potato root tuber yield. J Plant Nutr Fert, 2017, 23: 208-216 (in Chinese with English abstract).
[26] Xu M G, Liu H B, Huang S M, Wang B R, Yang X Y, Duan Y H, Gao S D. Nitrogen use efficiency in a wheat-corn cropping system from 15 years of manure and fertilizer applications. Field Crops Res, 2014, 157: 47-56.
doi: 10.1016/j.fcr.2013.12.012
[27] 姚海兰, 张立明, 史春余, 张超, 柳洪鹃, 张海峰. 施钾时期对甘薯植株性状及产量的影响. 西北农业学报, 2010, 19(4): 82-85.
Yao H L, Zhang L M, Shi C Y, Zhang C, Liu H J, Zhang H F. The effect of potassium application period on sweet potato plant traits and yield. Acta Agric Boreali-Occident Sin, 2010, 19(4): 82-85 (in Chinese with English abstract).
[28] 贾赵东, 边小峰, 马佩勇, 郭小丁, 谢一芝. 不同土壤肥力对甘薯干物质积累与分配的影响. 西南农业学报, 2015, 28: 1175-1181.
Jia Z D, Bian X F, Ma P Y, Guo X D, Xie Y Z. Effects of different soil fertility on dry matter accumulation and distribution of sweet potato. Southwest China J Agric Sci, 2015, 28: 1175-1181 (in Chinese with English abstract).
[29] 王瑜, 赵庆雷, 信彩云, 陈博聪, 刘奇华, 陈靖雨. 氮肥减施对麦茬机插水稻产量及氮肥利用的影响. 农业与技术, 2023, 43(1): 6-8.
Wang Y, Zhao Q L, Xin C Y, Chen B C, Liu Q H, Chen J Y. The effect of reducing nitrogen fertilizer application on the yield and nitrogen fertilizer utilization of wheat stubble mechanically inserted rice. Agric Technol, 2023, 43(1): 6-8 (in Chinese).
[30] 管冠. 施肥模式对稻麦产量、养分吸收及土壤生物学性状的影响研究. 华中农业大学博士学位论文, 湖北武汉, 2012.
Guan G. Effects of Fertilizer Application Modes on Yield and Nutrient Uptake of Rice and Wheat and Soil Biological Properties. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2012 (in Chinese with English abstract).
[31] 张志勇, 于旭昊, 熊淑萍, 马新明, 刘洋, 闫广轩, 李永革. 耕作方式与氮肥减施对黄褐土麦田土壤酶活性及温室气体排放的影响. 农业环境科学学报, 2020, 39: 418-428.
Zhang Z Y, Yu X H, Xiong S P, Ma X M, Wang X C, Liu Y, Yan G X, Li Y G. Effects of tillage methods and nitrogen fertilizer reduction on soil enzyme activities and greenhouse gas emissions of wheat yellow cinnamon soil. J Agro-Environ Sci, 2020, 39: 418-428 (in Chinese with English abstract).
[1] 王龙, 李静, 钱晨, 林国冰, 李亦扬, 杨光, 左青松. 盐胁迫对油菜生理特征和菜籽产量品质的影响[J]. 作物学报, 2024, 50(6): 1597-1607.
[2] 孙一鸣, 田侠, 王少霞, 刘庆. 不同施磷水平对甘薯硒吸收、分配和转化的影响[J]. 作物学报, 2024, 50(6): 1608-1615.
[3] 朱晓亚, 张强强, 赵鹏, 刘明, 王静, 靳容, 于永超, 唐忠厚. 叶面喷施丹参碳点缓解甘薯低磷胁迫的转录组与代谢组学分析[J]. 作物学报, 2024, 50(2): 383-393.
[4] 杨毅, 何志强, 林佳慧, 李洋, 陈飞, 吕长文, 唐道彬, 周全卢, 王季春. 椰糠施用量对土壤理化性状和甘薯产量的影响[J]. 作物学报, 2023, 49(9): 2517-2527.
[5] 苏一钧, 赵路宽, 唐芬, 戴习彬, 孙亚伟, 周志林, 刘亚菊, 曹清河. 378份甘薯引进种遗传多样性及群体结构分析[J]. 作物学报, 2023, 49(9): 2582-2593.
[6] 贾瑞雪, 陈伊航, 张荣, 唐朝臣, 王章英. 超高效液相色谱法同时测定甘薯中13种类胡萝卜素的含量[J]. 作物学报, 2023, 49(8): 2259-2274.
[7] 李荣, 勉有明, 侯贤清, 李培富, 王西娜. 施氮对还田秸秆腐解及养分释放、土壤肥力与玉米产量的影响[J]. 作物学报, 2023, 49(7): 2012-2022.
[8] 王雁楠, 陈金金, 卞倩倩, 胡琳琳, 张莉, 尹雨萌, 乔守晨, 曹郭郑, 康志河, 赵国瑞, 杨国红, 杨育峰. 转录组与代谢组联合分析揭示遮阴胁迫下甘薯的代谢响应途径[J]. 作物学报, 2023, 49(7): 1785-1798.
[9] 梅玉琴, 刘意, 王崇, 雷剑, 朱国鹏, 杨新笋. 甘薯PHB基因家族的全基因组鉴定和表达分析[J]. 作物学报, 2023, 49(6): 1715-1725.
[10] 张小红, 彭琼, 鄢铮. 盐胁迫下不同甘薯品种的转录组测序分析[J]. 作物学报, 2023, 49(5): 1432-1444.
[11] 陈伊航, 唐朝臣, 张雄坚, 姚祝芳, 江炳志, 王章英. 基于表型性状和SSR分子标记构建甘薯核心种质[J]. 作物学报, 2023, 49(5): 1249-1261.
[12] 刘明, 范文静, 赵鹏, 靳容, 张强强, 朱晓亚, 王静, 李强. 甘薯耐低钾基因型苗期筛选及综合评价[J]. 作物学报, 2023, 49(4): 926-937.
[13] 吴世雨, 陈匡稷, 吕尊富, 徐锡明, 庞林江, 陆国权. 施氮量对甘薯块根膨大过程中淀粉含量及特性的影响[J]. 作物学报, 2023, 49(4): 1090-1101.
[14] 赵冬兰, 赵凌霄, 刘洋, 张安, 戴习彬, 周志林, 曹清河. 基于RNA-seq的甘薯芽变株系类胡萝卜素基因代谢差异分析[J]. 作物学报, 2023, 49(12): 3239-3249.
[15] 靖小菁, 杨新笋, 靳晓杰, 刘意, 雷剑, 王连军, 柴沙沙, 张文英, 焦春海. 甘薯蔓割病(Fusarium oxysporum f. sp. batatas)相关基因IbMAPKK9的克隆与特性分析[J]. 作物学报, 2023, 49(12): 3289-3301.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .