欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (6): 1608-1615.doi: 10.3724/SP.J.1006.2024.34158

• 研究简报 • 上一篇    下一篇

不同施磷水平对甘薯硒吸收、分配和转化的影响

孙一鸣(), 田侠, 王少霞, 刘庆*()   

  1. 青岛农业大学资源与环境学院, 山东青岛 266109
  • 收稿日期:2023-09-17 接受日期:2024-01-30 出版日期:2024-06-12 网络出版日期:2024-02-20
  • 通讯作者: * 刘庆, E-mail: qy7271@163.com
  • 作者简介:E-mail: 792572557@qq.com
  • 基金资助:
    财政部和农业农村部国家现代农业产业技术体系建设专项(Sweetpotato, CARS-10)

Effects of phosphorus application levels on selenium absorption, distribution, and transformation in sweet potatoes

SUN Yi-Ming(), TIAN Xia, WANG Shao-Xia, LIU Qing*()   

  1. College of Resources and Environmental Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong, China
  • Received:2023-09-17 Accepted:2024-01-30 Published:2024-06-12 Published online:2024-02-20
  • Contact: * E-mail: qy7271@163.com
  • Supported by:
    China Agriculture Research System of MOF and MARA(Sweetpotato, CARS-10)

摘要:

为了探明叶面喷施硒条件土壤施磷对甘薯(Ipomoea batatas (L.) Lam.)硒吸收、分配和转化的影响, 于2021和2022年在山东莱阳市开展连续2年的田间试验。采用裂区试验设计, 主区纯硒用量分别为0 g hm-2 (Se0)和150 g hm-2 (Se1), 副区P2O5施用量分别为0 kg hm-2 (P0)、75 kg hm-2 (P1)、225 kg hm-2 (P2), 测定甘薯各器官干物质量、总硒和有机硒含量并计算硒利用率。结果表明, 施磷可显著增加甘薯不同器官干物质量, 施硒对不同器官干物质量的影响不显著。施磷可显著提高甘薯块根中硒含量和硒累积量, 与不施磷(P0)相比, 施用低磷(P1)可使施硒条件下块根硒含量和硒累积量平均增加19.54%和27.74%, 施用高磷(P2)可使施硒条件下块根硒含量和硒累积量平均增加40.24%和52.64%。施硒条件下施磷还可提高甘薯块根中的硒分配率和硒利用率, 施用低磷(P1)和施用高磷(P2)块根硒分配率较不施磷(P0)平均提高7.77和12.46个百分点, 硒利用率平均提高1.81和3.36个百分点, 施磷对甘薯全株硒利用率影响不显著。施磷提高了甘薯块根中总硒含量的同时, 还提高了块根中有机硒含量, 但对块根中有机硒占总硒的比例影响不显著。综上所述, 富硒甘薯生产中, 适量增加施磷量可以提高甘薯不同器官干物质量, 增加块根中的总硒和有机硒含量, 提高硒利用率, 但应避免过量施磷带来的环境风险。

关键词: 土壤施磷, 叶面施硒, 吸收利用, 累积分配, 有机硒, 甘薯

Abstract:

To investigate the effects of soil phosphorus application on selenium uptake, distribution, and transformation in sweet potato under selenium foliar spraying conditions, the field experiment were conducted in Laiyang county, Shandong province in 2021 and 2022. The split-plot design was used with pure selenium applications of 0 g hm-2 (Se0) and 150 g hm-2 (Se1) in the main plots, and P2O5 applications of 0 kg hm-2 (P0), 75 kg hm-2 (P1), and 225 kg hm-2 (P2) in the sub-plots, the dry matter weight, total selenium, and organic selenium content in different organs of sweet potato were measured, and the selenium utilization rates were calculated. The results showed that phosphorus application significantly increased the dry matter quality of different organs in sweet potato, but the effect of selenium application on the dry matter quality was not significant difference on the dry matter quality of different organs. Phosphorus application significantly increased the selenium content and accumulation in sweet potato root tubers. Compared with no phosphorus application (P0), the selenium content and accumulation in root tubers with low phosphorus application (P1) increased by 19.54% and 27.74% on average under seleniium application under selenium application conditions, respectively, while high phosphorus application (P2) increased selenium content and selenium accumulation in root tubers by 40.24% and 52.64% on average, respectively. Phosphorus application can also improve the selenium distribution and utilization rates in root tubers under selenium applications. The selenium distribution rate increased by 7.77% and 12.46%, and the selenium utilization rate increased by 1.81% and 3.36% in root tubers applied with low phosphorus (P1) and high phosphorus (P2) respectively, while the effect of phosphorus application on selenium utilization of the whole plant of sweet potato was not significant. Phosphorus application not only increased the total selenium content in sweet potato tubers, but also increased the organic selenium content in tubers. However, the effect on the proportion of organic selenium to the total selenium in tubers was not significant. In summary, proper increase of phosphorus application can appropriately increase the dry matter quality of different organs of sweet potato, increase the content of total selenium and organic selenium of root tubers, and improve selenium utilization rate, but the environmental risks caused by excessive phosphorus application should be avoided.

Key words: soil phosphorus application, foliar selenium application, absorption and utilization, accumulation and distribution, organic selenium, sweet potato

表1

不同试验处理下甘薯不同器官干物质量"

年度
Year
处理
Treatment
干物质量 Dry matter weight
块根 Root tuber 茎 Stem 叶 Leaf
2021 Se0 P0 7.05±0.155 b 1.66±0.045 b 1.49±0.031 b
P1 7.57±0.183 ab 1.74±0.029 ab 1.56±0.037 ab
P2 7.69±0.201 a 1.81±0.036 a 1.62±0.026 a
Se1 P0 7.10±0.174 b 1.62±0.040 b 1.50±0.030 c
P1 7.62±0.149 a 1.66±0.062 b 1.57±0.046 b
P2 7.80±0.213 a 1.78±0.055 a 1.65±0.061 a
F P * ** **
F-value Se ns ns ns
P×Se ns ns ns
2022 Se0 P0 7.40±0.144 b 1.67±0.012 b 1.54±0.034 b
P1 7.84±0.204 a 1.73±0.034 a 1.63±0.033 ab
P2 7.95±0.137 a 1.78±0.021 a 1.70±0.054 a
Se1 P0 7.45±0.211 b 1.63±0.049 b 1.53±0.040 b
P1 7.93±0.228 ab 1.68±0.065 b 1.60±0.044 b
P2 8.04±0.256 a 1.87±0.045 a 1.71±0.026 a
F P * ** *
F-value Se ns ns ns
P×Se ns * ns

表2

不同处理下甘薯各器官中硒含量"

年度
Year
试验处理
Treatment
各器官含硒量Selenium content in different organs (µg kg-1 DW)
块根 Root tuber 茎 Stem 叶 Leaf
2021 Se0 P0 46.47±0.97 c 82.83±1.93 c 74.36±2.63 c
P1 52.06±0.86 b 86.07±1.40 b 92.28±1.38 b
P2 76.42±1.59 a 90.58±1.46 a 112.71±7.52 a
Se1 P0 1273.01±44.00 c 4092.78±36.65 a 4792.01±62.94 a
P1 1496.09±26.86 b 3519.79±56.65 b 4455.34±38.71 b
P2 1818.93±35.43 a 3296.36±30.59 c 3924.99±38.56 c
F P ** ** *
F-value Se ** ** **
P×Se ** ** **
2022 Se0 P0 65.72±3.42 c 79.57±2.83 c 88.48±3.23 c
P1 75.24±3.40 b 91.75±1.71 b 106.14±4.08 b
P2 86.39±1.59 a 98.72±1.96 a 119.94±5.29 a
Se1 P0 1435.41±55.49 c 4365.28±82.64 a 5388.41±30.30 a
P1 1744.91±42.73 b 3706.01±33.57 b 5057.56±70.85 b
P2 1975.18±51.87 a 3476.00±42.36 c 4695.05±34.79 c
F P ** ns *
F-value Se ** ** **
P×Se ns ** **

表3

不同处理下甘薯各器官中硒累积量"

年度
Year
试验处理
Treatment
各器官硒累积量Selenium content in organs (mg hm-2 DW)
块根 Root tubers 茎 Stem 叶 Leaf
2021 Se0 P0 327.43±14.88 c 137.69±0.51 c 110.63±6.23 c
P1 394.03±20.84 b 149.72±3.29 b 144.24±3.08 b
P2 587.54±25.66 a 164.00±6.37 a 182.22±12.75 a
Se1 P0 9049.46±599.78 c 6617.66±187.43 a 7186.81±70.59 a
P1 11, 403.30±502.60 b 5845.16±258.93 b 6995.13±187.27 a
P2 14, 191.81±882.76 a 5857.92±202.09 b 6491.19±258.74 b
F P ** * **
F-value Se ** ** **
P × Se ns ** **
2022 Se0 P0 486.99±36.83 c 132.63±5.26 c 136.66±7.93 c
P1 590.61±39.46 b 158.47±5.65 b 174.50±8.06 b
P2 686.41±19.30 a 176.09±5.44 a 203.26±4.99 a
Se1 P0 10,685.45±275.34 c 7097.72±69.77 a 8226.28±182.95 a
P1 13,834.02±351.87 b 6212.65±169.36 b 8092.95±243.05 a
P2 15,862.04±511.05 a 6512.61±184.91 b 8043.92±119.12 a
F P ** ** **
F-value Se ** ** **
P × Se ns ** **

表4

硒在甘薯块根中的分配率和甘薯硒利用率"

年度
Year
试验处理
Treatment
块根硒分配率
Selenium distribution rate of root tubers
块根硒利用率
Selenium utilization rate of root
tubers
全株硒利用率
Selenium utilization rate of whole plant
2021 Se0 P0 56.84±1.70 b
P1 57.24±0.96 b
P2 62.89±1.62 a
Se1 P0 39.55±1.49 c 5.81±0.38 c 14.85±0.45 b
P1 47.01±1.21 b 7.34±0.34 b 15.70±0.32 b
P2 53.42±1.87 a 9.07±0.57 a 17.07±0.47 a
F P ** ** **
F-value Se **
P × Se **
2022 Se0 P0 64.35±0.66 a
P1 63.88±2.05 a
P2 64.39±0.68 a
Se1 P0 41.08±0.85 c 7.03±0.18 c 16.84±0.07 c
P1 49.15±0.55 b 9.12±0.24 b 18.14±0.29 b
P2 52.13±1.26 a 10.49±0.34 a 19.57±0.22 a
F P ** ** **
F-value Se **
P × Se **

表5

施硒条件下甘薯各器官有机硒含量"

年度
Year
试验处理
Treatment
有机硒含量
Organic selenium content (µg kg-1 DW)
有机硒占比
Proportion of organic
selenium (%)
2021 Se1P0 883.19±19.97 c 69.45±3.56 a
Se1P1 1046.25±30.52 b 69.95±1.59 a
Se1P2 1268.52±45.57 a 69.76±3.02 a
2022 Se1P0 991.51±66.22 c 69.08±0.46 a
Se1P1 1200.07±52.72 b 68.83±1.82 a
Se1P2 1387.92±71.02 a 70.24±1.71 a
[1] 李柳, 刘庆华, 尹春英. 植物硒生物强化及微生物在其中的应用潜力. 植物生态学报, 2023, 47: 756-769.
Li L, Liu Q H, Yin C Y. Selenium biofortification in plants and application potential of microorganisms in selenium biofortification. Chin J Plant Ecol, 2023, 47: 756-769. (in Chinese with English abstract)
[2] Tan J A, Zhu W Y, Wang W Y, Li R B, Hou S F, Wang D C, Yang L S. Selenium in soil and endemic diseases in China. Sci Total Environ, 2002, 284: 227-235.
pmid: 11846167
[3] Sager M. Selenium in agriculture, food, and nutrition. Pure Appl Chem, 2006, 78: 111-133.
[4] 陈铭, 谭见安, 王五一. 环境硒与健康关系研究中的土壤化学与植物营养学. 土壤学进展, 1994, 22(4): 1-10.
Chen M, Tan J A, Wang W Y. Soil chemistry and plant nutrition of environmental selenium and healthy relations. Prog Soil Sci, 1994, 22(4): 1-10. (in Chinese)
[5] 朋玲龙, 王先良, 陈霞, 戴维红, 甘沈娟. 我国硒的环境分布及其健康影响. 安徽预防医学杂志, 2015, 21(1): 33-36.
Peng L L, Wang X L, Chen X, Dai W H, Gan S J. Environmental distribution of selenium and its effect on human health. Anhui J Prev Med, 2015, 21(1): 33-36. (in Chinese with English abstract)
[6] 韩晓霞, 魏洪义. 硒的营养生物学研究进展. 南方农业学报, 2015, 46: 1798-1804.
Han X X, Wei H Y. Research progress in nutritional biology of selenium. J Southern Agric, 2015, 46: 1798-1804. (in Chinese with English abstract)
[7] 陈长兰, 郇丰宁, 孟雪莲, 吕晶. 硒对人体的作用机理及科学补硒方法. 辽宁大学学报(自然科学版), 2016, 43(2): 155-168.
Chen C L, Xun F N, Meng X L, Lyu J. The effects of selenium on human health and diseases and the scientifically supplementation of selenium to human bodies. J Liaoning Univ (Nat Sci Edn), 2016, 43(2): 155-168. (in Chinese with English abstract)
[8] 王永壮, 陈欣, 史奕. 农田土壤中磷素有效性及影响因素. 应用生态学报, 2013, 24: 260-268.
Wang Y Z, Chen X, Shi Y. Phosphorus availability in cropland soils of China and related affecting factors. Chin J Appl Ecol, 2013, 24: 260-268. (in Chinese with English abstract)
[9] 李金峰, 聂兆君, 赵鹏, 高巍, 刘红恩. 土壤—植物系统中硒营养的研究进展. 南方农业学报, 2016, 47: 649-656.
Li J F, Nie Z J, Zhao P, Gao W, Liu H E. Research progress on selenium nutrition in the soil-plant system. J Southern Agric, 2016, 47: 649-656. (in Chinese with English abstract)
[10] Liu Q, Wang D J, Jiang X J, Cao Z H. Effects of the interactions between selenium and phosphorus on the growth and selenium accumulation in rice (Oryza sativa). Environ Geochem Health, 2004, 26: 325-330.
[11] 赵文龙, 胡斌, 王嘉薇, 肖然, 梁东丽. 磷与四价硒的共存对小白菜磷、硒吸收及转运的影响. 环境科学学报, 2013, 33: 2020-2026.
Zhao W L, Hu B, Wang J W, Xiao R, Liang D L. Combined effects of phosphate and selenite on the uptake and translocation of phosphorus and selenium in pakchoi. Acta Sci Circumst, 2013, 33: 2020-2026. (in Chinese with English abstract)
[12] 刘勤, 曹志洪. 磷硒交互作用对水稻硒吸收累积的影响. 扬州大学学报(农业与生命科学版), 2003, 24(4): 67-70.
Liu Q, Cao Z H. Interactions between selenium and phosphorus in paddy soil and its effects on selenium uptake and accumulation in rice. J Yangzhou Univ (Agric Life Sci Edn), 2003, 24(4): 67-70. (in Chinese with English abstract)
[13] Zhang L H, Hu B, Li W, Che R H, Deng K, Li H, Yu F Y, Ling H Q, Li Y J, Chu C C. OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice. New Phytol, 2014, 201: 560-567.
[14] 张立明, 王庆美, 王荫墀. 甘薯的主要营养成分和保健作用. 杂粮作物, 2003, (7): 162-166.
Zhang L M, Wang Q M, Wang Y C. The main nutrient components and health care function of sweet potato. Rain Fed Crops, 2003, (7): 162-166. (in Chinese with English abstract)
[15] 王庆华, 黄伟, 李前勇, 贺永建, 张德志, 胥清芳. 中国富硒食品的生产现状及趋势. 广东微量元素科学, 2008, (3): 7-10.
Wang Q H, Huang W, Li Q Y, He Y J, Zhang D Z, Xu Q F. Application and development of selenium accumulating food in China. Guangdong Trace Elem Sci, 2008, (3): 7-10. (in Chinese with English abstract)
[16] 中华人民共和国卫生部. GB/T 5009.93-2017. 食品安全国家标准: 食品中硒的测定.
Ministry of Health of the People’s Republic of China. GB/T 5009. 93-2017. National Food Safety Standard: Determination of Selenium in Foods, 2017. (in Chinese)
[17] Sun M, Liu G, Wu Q. Speciation of organic and inorganic selenium in selenium-enriched rice by graphite furnace atomic absorption spectrometry after cloud point extraction. Food Chem, 2013, 141: 66-71.
doi: 10.1016/j.foodchem.2013.03.002 pmid: 23768328
[18] 郭文慧, 刘庆, 史衍玺. 施硒对紫甘薯硒素累积及产量和品质的影响研究. 中国粮油学报, 2016, 31(9): 31-37.
Guo W H, Liu Q, Shi Y X. Effects of applying selenium on the accumulation of selenium, yield, and quality of purple sweet potato. J Chin Cereals Oils Assoc, 2016, 31(9): 31-37. (in Chinese with English abstract)
[19] 郭文慧, 刘庆, 史衍玺. 紫甘薯对硒的吸收和累积特征. 中国土壤与肥料, 2016, (4): 133-138.
Guo W H, Liu Q, Shi Y X. The characteristics of selenium absorption and accumulation in purple sweet potato. Soil Fert Sci China, 2016, (4): 133-138. (in Chinese with English abstract)
[20] 冯魁, 贾莉莉, 贾永红, 迪里夏提·尔肯, 刘俊, 石书兵. 施硒对不同密度春小麦产量和籽粒硒含量的影响. 麦类作物学报, 2018, 38: 834-840.
Feng K, Jia L L, Jia Y H, Dilixiati E, Liu J, Shi S B. Effect of selenium application on yield and selenium content of spring wheat under different planting density. J Triticeae Crops, 2018, 38: 834-840. (in Chinese with English abstract)
[21] 侯松, 田侠, 刘庆. 叶面喷施硒对紫甘薯硒吸收、分配及品质的影响. 作物学报, 2018, 44: 423-430.
doi: 10.3724/SP.J.1006.2018.00423
Hou S, Tian X, Liu Q. Effects of foliage spray of Se on absorption characteristics of Se and quality of purple sweet potato. Acta Agron Sin, 2018, 44: 423-430. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00423
[22] 雷新慧, 冷佳俊, 陶金才, 万晨茜, 吴怡欣, 王家乐, 王鹏科, 冯佰利, 王孟, 高金锋. 叶面喷施亚硒酸钠对甜荞光合特性、产量及硒积累效应的影响. 作物学报, 2023, 49: 1678-1689.
Lei X H, Leng J J, Tao J C, Wan C Q, Wu Y X, Wang J L, Wang P K, Feng B L, Wang M, Gao J F. Effects of foliar spraying selenium on photosynthetic characteristics, yield, and selenium accumulation of common buckwheat (Fagopyrum esculentum M.). Acta Agron Sin, 2023, 49: 1678-1689. (in Chinese with English abstract)
[23] 柯玲杰, 王婷, 周譞, 钱力, 许秋云, 史雅娟. 土壤原位硒及外源硒处理下土壤微生物群落特征分析. 环境化学, 2024, 43(6): 1-9.
Ke L J, Wang T, Zhou X, Qian L, Xu Q Y, Shi Y J. Characteristics of soil microbial communities treated with orthotopic and exogenous selenium. Environ Chem, 2024, 43(6): 1-9. (in Chinese with English abstract)
[24] Liu K, Cai M M, Hu C X, Sun X C, Cheng Q, Jia W, Yang T, Nie M, Zhao X H. Selenium (Se) reduces Sclerotinia stem rot disease incidence of oilseed rape by increasing plant Se concentration and shifting soil microbial community and functional profiles. Environ Pollut, 2019, 254: 113051.
[25] Cai M M, Hu C X, Wang X, Zhao Y Y, Jia W, Sun X C, Elyamine A M, Zhao X H. Selenium induces changes of rhizosphere bacterial characteristics and enzyme activities affecting chromium/ selenium uptake by pak choi (Brassica campestris L. ssp. chinensis Makino) in chromium contaminated soil. Environ Pollut, 2019, 249: 716-727.
[26] 李金峰. 冬小麦磷硒营养互作效应研究. 河南农业大学硕士学位论文,河南郑州, 2017.
Li J F. Study on the Interaction of Phosphorus and Selenium in Winter Wheat. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2017 (in Chinese with English abstract).
[27] 闫颖. 磷硒配施对小白菜生长及土壤磷硒有效性的影响. 西北农林科技大学硕士学位论文,陕西杨凌, 2022.
Yan Y. Effects of Combined Application of Phosphorus and Selenium on the Growth of Pakchoi and the Effectiveness of Phosphorus and Selenium. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2022. (in Chinese with English abstract)
[28] 胡彩霞, 刘红恩, 聂兆君, 李畅, 秦世玉, 刘亥扬, 许嘉阳, 赵鹏. 磷、硒配施对冬小麦硒吸收及土壤硒形态转化的影响. 核农学报, 2023, 37: 379-388.
doi: 10.11869/j.issn.1000-8551.2023.02.0379
Hu C X, Liu H E, Nie Z J, Li C, Qin S Y, Liu H Y, Xu J Y, Zhao P. Effect of phosphorus combined selenium application on selenium absorption of winter wheat and transformation of selenium chemical forms of in soil. J Nucl Agric Sci, 2023, 37: 379-388. (in Chinese with English abstract)
doi: 10.11869/j.issn.1000-8551.2023.02.0379
[29] 于淑慧. 磷对水稻吸收硒的影响研究. 西南大学硕士学位论文,重庆, 2015.
Yu S H. The Study of Phosphorus on Rice Selenium Uptake. MS Thesis of Southwest University, Chongqing, China, 2015. (in Chinese with English abstract)
[30] Wang Y Q, Wang K, Wang Q, Wan Y N, Yu Y, Wang Q, Li H F. Selenite uptake and transformation in rice seedlings (Oryza sativa L.): response to phosphorus nutrient status. Front Plant Sci, 2020, 11: 874.
[31] Souza M P D, Lytle C M, Mulholland M M, Otte M L, Terry N. Selenium assimilation and volatilization from dimethylselenoniopropionate by Indian mustard. Plant Physiol, 2000, 122: 1281-1288.
pmid: 10759525
[32] Zhang L H, Chu C C. Selenium uptake, transport, metabolism, reutilization, and biofortification in rice. Rice, 2022, 15: 30.
doi: 10.1186/s12284-022-00572-6 pmid: 35701545
[33] Liu H E, Shi Z W, Li J F, Zhao P, Qin S Y, Nie Z J. The impact of phosphorus supply on selenium uptake during hydroponics experiment of winter wheat (Triticum aestivum) in China. Front Plant Sci, 2018, 9: 1489-1501.
[34] Trippe R, Pilon-Smits E A. Selenium transport and metabolism in plants: phytoremediation and biofortification implications. J Hazard Mater, 2020, 404: 124178.
[35] 黄青青. 水稻和小麦对硒的吸收、转运及形态转化机制. 中国农业大学博士学位论文,北京, 2015.
Huang Q Q. Mechanisms of Selenium Uptake, Translocation and Speciation Transformation in Rice and Wheat. PhD Dissertation of China Agricultural University,Beijing, China, 2015. (in Chinese with English abstract)
[36] 王晓芳, 陈思杨, 罗章, 黄青青, 乔玉辉, 孙宏杰, 李花粉. 植物对硒的吸收转运和形态转化机制. 农业资源与环境学报, 2014, 31: 539-544.
Wang X F, Chen S Y, Luo Z, Huang Q Q, Qiao Y H, Sun H J, Li H F. Mechanisms of selenium uptake, translocation and chemical speciation transformation in plants. J Agric Resour Environ, 2014, 31: 539-544. (in Chinese with English abstract)
[37] 王永勤, 曹家树, 李建华, 赵猛, 赵桂芳. 施硒对大蒜产量和含硒量的影响. 园艺学报, 2001, 40: 425-429.
Wang Y Q, Cao J S, Li J H, Zhao M, Zhao G F. Effect of selenium application on the yield of garlic and its selenium content. Acta Hortic Sin, 2001, 40: 425-429. (in Chinese with English abstract)
[1] 付景, 马梦娟, 张骐飞, 段居琦, 王越涛, 王付华, 王生轩, 白涛, 尹海庆, 王亚. 干湿交替灌溉和施氮量对粳稻光合特性和氮素吸收利用的影响[J]. 作物学报, 2024, 50(7): 1787-1804.
[2] 曹秭琦, 赵小庆, 张向前, 王建国, 李娟, 韩云飞, 刘丹, 高艳华, 路战远, 任永峰. 施氮水平对沙质土壤油莎豆氮磷钾累积、分配及产量的影响[J]. 作物学报, 2024, 50(7): 1805-1817.
[3] 杨春菊, 唐道彬, 张凯, 杜康, 黄红, 乔欢欢, 王季春, 吕长文. 氮钾减量配施对甘薯产量和品质的影响[J]. 作物学报, 2024, 50(5): 1341-1350.
[4] 胡明明, 丁峰, 彭志芸, 向开宏, 李郁, 张宇杰, 杨志远, 孙永健, 马均. 多元化种植模式下秸秆还田配合水氮管理对水稻产量形成与氮素吸收利用的影响[J]. 作物学报, 2024, 50(5): 1236-1252.
[5] 朱晓亚, 张强强, 赵鹏, 刘明, 王静, 靳容, 于永超, 唐忠厚. 叶面喷施丹参碳点缓解甘薯低磷胁迫的转录组与代谢组学分析[J]. 作物学报, 2024, 50(2): 383-393.
[6] 李艳, 方宇辉, 王永霞, 彭超军, 华夏, 齐学礼, 胡琳, 许为钢. 不同磷胁迫处理转OsPHR2小麦的转录组学分析[J]. 作物学报, 2024, 50(2): 340-353.
[7] 杨毅, 何志强, 林佳慧, 李洋, 陈飞, 吕长文, 唐道彬, 周全卢, 王季春. 椰糠施用量对土壤理化性状和甘薯产量的影响[J]. 作物学报, 2023, 49(9): 2517-2527.
[8] 苏一钧, 赵路宽, 唐芬, 戴习彬, 孙亚伟, 周志林, 刘亚菊, 曹清河. 378份甘薯引进种遗传多样性及群体结构分析[J]. 作物学报, 2023, 49(9): 2582-2593.
[9] 贾瑞雪, 陈伊航, 张荣, 唐朝臣, 王章英. 超高效液相色谱法同时测定甘薯中13种类胡萝卜素的含量[J]. 作物学报, 2023, 49(8): 2259-2274.
[10] 王雁楠, 陈金金, 卞倩倩, 胡琳琳, 张莉, 尹雨萌, 乔守晨, 曹郭郑, 康志河, 赵国瑞, 杨国红, 杨育峰. 转录组与代谢组联合分析揭示遮阴胁迫下甘薯的代谢响应途径[J]. 作物学报, 2023, 49(7): 1785-1798.
[11] 梅玉琴, 刘意, 王崇, 雷剑, 朱国鹏, 杨新笋. 甘薯PHB基因家族的全基因组鉴定和表达分析[J]. 作物学报, 2023, 49(6): 1715-1725.
[12] 张小红, 彭琼, 鄢铮. 盐胁迫下不同甘薯品种的转录组测序分析[J]. 作物学报, 2023, 49(5): 1432-1444.
[13] 陈伊航, 唐朝臣, 张雄坚, 姚祝芳, 江炳志, 王章英. 基于表型性状和SSR分子标记构建甘薯核心种质[J]. 作物学报, 2023, 49(5): 1249-1261.
[14] 吴世雨, 陈匡稷, 吕尊富, 徐锡明, 庞林江, 陆国权. 施氮量对甘薯块根膨大过程中淀粉含量及特性的影响[J]. 作物学报, 2023, 49(4): 1090-1101.
[15] 刘明, 范文静, 赵鹏, 靳容, 张强强, 朱晓亚, 王静, 李强. 甘薯耐低钾基因型苗期筛选及综合评价[J]. 作物学报, 2023, 49(4): 926-937.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .