欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (6): 1616-1627.doi: 10.3724/SP.J.1006.2024.33054

• 研究简报 • 上一篇    下一篇

绿洲灌区增密对水氮减量玉米产量的补偿机制

王菲儿1(), 郭瑶2, 李盼1, 韦金贵1, 樊志龙1, 胡发龙1, 范虹1, 何蔚1, 殷文1,*(), 陈桂平1,*()   

  1. 1省部共建干旱生境作物学国家重点实验室 / 甘肃农业大学农学院, 甘肃兰州 730070
    2西北师范大学生命科学学院, 甘肃兰州 730070
  • 收稿日期:2023-09-28 接受日期:2024-01-30 出版日期:2024-06-12 网络出版日期:2024-02-20
  • 通讯作者: * 殷文, E-mail: yinwen@gsau.edu.cn;陈桂平, E-mail: chengp@gsau.edu.cn
  • 作者简介:E-mail: wangfeier0912@163.com
  • 基金资助:
    国家重点研发计划(2023YED1900405);国家自然科学基金项目(32101857);国家自然科学基金项目(U21A20218);国家自然科学基金项目(32372238);甘肃省科技计划项目(23JRRA704);甘肃省科技计划项目(23JRRA1407);甘肃农业大学伏羲青年人才项目(Gaufx-03Y10)

Compensation mechanism of increased maize density on yield with water and nitrogen reduction supply in oasis irrigation areas

WANG Fei-Er1(), GUO Yao2, LI Pan1, WEI Jin-Gui1, FAN Zhi-Long1, HU Fa-Long1, FAN Hong1, HE Wei1, YIN Wen1,*(), CHEN Gui-Ping1,*()   

  1. 1State Key Laboratory of Arid Land Crop Science / College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    2College of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2023-09-28 Accepted:2024-01-30 Published:2024-06-12 Published online:2024-02-20
  • Contact: * E-mail: yinwen@gsau.edu.cn;E-mail: chengp@gsau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2023YED1900405);National Natural Science Foundation of China(32101857);National Natural Science Foundation of China(U21A20218);National Natural Science Foundation of China(32372238);Science and Technology Program of Gansu Province(23JRRA704);Science and Technology Program of Gansu Province(23JRRA1407);Fuxi Young Talents Fund of Gansu Agricultural University(Gaufx-03Y10)

摘要:

针对河西绿洲灌区水资源短缺、玉米田氮肥施用量高等生产生态问题, 在节水减氮条件下, 分析增加种植密度补偿水氮减量导致玉米减产的效应, 为水氮节约型玉米高效生产提供理论依据与技术支撑。基于2016年布设的裂裂区田间试验, 主区为2种灌水定额: 灌水减量20% (W1, 3240 m3 hm-2)和传统灌水(W2, 4050 m3 hm-2), 裂区为2种施氮量: 减量施氮25% (N1, 270 kg hm-2)和传统施氮(N2, 360 kg hm-2), 裂裂区为3种玉米密度: 传统种植密度(D1, 7.50万株 hm-2)、增密30% (D2, 9.75万株 hm-2)和增密60% (D3, 12.00万株 hm-2), 通过测定2020—2021年玉米籽粒产量和生物产量, 分析干物质积累及其分配、转运特征, 量化产量构成因素, 明确增密对水氮减量玉米产量的补偿效应及机制。研究表明, 减水、减氮降低了玉米籽粒产量和生物产量, 而增密30%能够补偿因水氮同步减量造成的产量负效应, 且维持较高的施氮量有利于玉米增产节水。W1N1D1 (减量灌水减量施氮及传统密度)较W2N2D1 (对照: 传统灌水传统施氮及传统密度)籽粒产量和生物产量分别降低9.1%~15.0%与10.0%~11.0%, 但W1N1D2 (减量灌水减量施氮及增密30%)与W2N2D1差异不显著。W1N2D2 (减量灌水传统施氮及增密30%)较W2N2D1籽粒和生物产量分别提高12.9%~15.4%与6.4%~12.0%。增密30%能够补偿水氮同步减量造成玉米减产的主要原因是W1N1D2能增加玉米穗数, 进而提高玉米灌浆初期至成熟期干物质积累量和苗期到大喇叭口期群体生长速率及花前转运率。增密30%在灌水减量和传统施氮条件下促进玉米增产的主要原因是W1N2D2可增加玉米穗数, 提高玉米生育期干物质积累量与群体生长速率, 促进穗部干物质分配, 提高花前转运量、转运率及转运贡献率。因此, 增密30%是绿洲灌区水氮同步减量玉米稳产高产的可行措施, 是氮肥不减但减水20%玉米节水增产有效举措。

关键词: 水氮减量, 密植, 玉米, 产量构成, 干物质积累, 干物质分配与转运

Abstract:

Aiming at the production and ecological problems of the lack of water resources and excessive chemical nitrogen fertilizer input in arid oasis irrigation areas, the effect of increased planting density to compensate for the loss of maize yield caused by reducing water and nitrogen inputs was analyzed under reduced water and nitrogen inputs, which could provide theoretical and technical support for the efficient production of maize with water and nitrogen reduction. Based on a split-plot field experiment conducted in 2016, the main plot was divided into two irrigation quotas: reduced irrigation by 20% (W1, 3240 m3 hm-2) and traditional irrigation (W2, 4050 m3 hm-2), and the split-plot was divided into two nitrogen application rates: reduced nitrogen (N1, 270 kg hm-2) by 25% and traditional nitrogen (N2, 360 kg hm-2) were applied, and the sub-split plot was divided into three maize densities: traditional planting density (D1, 75,000 hm-2 plants), increased density by 30% (D2, 97, 500 hm-2 plants) and increased density by 60% (D3, 120,000 hm-2 plants). We measured grain yield and biological yield of maize in 2020 and 2021, analyzed the characteristics of dry matter accumulation, distribution, and transport characteristics, quantified the yield composition factors, and clarified the compensation effect and mechanism of densification on maize yield with water and nitrogen reduction. The study showed that water and nitrogen reduction inputs decreased the grain yield and biological yield in maize, but the increased density by 30% can compensate for the loss of yield due to reducing water and nitrogen inputs and improve maize yield under reduced water while maintaining traditional nitrogen. The grain yield and biological yield of W1N1D1 (reduced water and nitrogen and traditional density) was 9.1%-15.0% and 10.0%-11.0% lower than W2N2D1 (comparison: traditional irrigation, traditional nitrogen application, and traditional density), but there was no significant difference in W1N1D2 (reduced irrigation, reduced nitrogen, and increased density by 30%) compared with W2N2D1. Compared with W2N2D1, W1N2D2 (reduced irrigation, traditional nitrogen, and increased density by 30%) increased grain yield and biological yield by 12.9%-15.4% and 6.4%-12.0%, respectively. Increased density by 30% compensated for the negative effect of water and nitrogen reduction mainly attributed to improving spike number of W1N1D2, which further increased dry matter accumulation from the early-filling stage to the maturity stage in maize, population growth rate and dry matter remobilization at pre-anthesis from seeding stage to the flare opening stage. Increasing spike number of W1N2D2 improved dry matter accumulation and population growth rate, promoted dry matter distribution in the ear, and increased dry matter remobilization. In addition, the dry matter remobilization efficiency and contribution of dry matter remobilization to grain at pre-anthesis were the main reasons for increasing maize yield with the increased density by 30% under water and nitrogen reduction inputs. Therefore, increasing density by 30% was a feasible measure for simultaneous reduction of water and nitrogen in oasis irrigation area to stabilize and increase maize yield.

Key words: water-nitrogen reduction, dense planting, maize, yield components, dry matter accumulation, dry matter distribution and transportation

图1

2020-2021年度试验区玉米生育期内气温及降水量"

图2

增密对水氮减量玉米籽粒产量的影响 W1: 传统灌水减量20% (3240 m3 hm-2); W2: 传统灌水(4050 m3 hm-2); N1: 减量施氮25% (270 kg hm-2); N2: 传统施氮(360 kg hm-2); D1: 传统种植密度(75,000株hm-2); D2: 传统种植密度增加30% (97,500株hm-2); D3: 传统种植密度增加60% (120,000株hm-2)。图中柱子上的不同小写字母表示处理间差异显著P < 0.05。**: P < 0.01; *: P < 0.05; NS: 无显著差异。"

图3

增密对水氮减量玉米生物产量的影响 图中柱子上的不同小写字母表示处理间差异显著P < 0.05。**: P < 0.01; *: P < 0.05; NS: 无显著差异。各处理缩写同图2。"

表1

不同处理模式下玉米的干物质积累量及群体生长速率"

年份
Year
灌水Irrigation 施氮Nitrogen 密度
Density
干物质积累量
Dry matter accumulation (kg hm-2)
群体生长速率
Population growth rate (kg hm-2 d-1)
P1-P2 P2-P3 P3-P4 P1-P2 P2-P3 P3-P4
2020 W1 N1 D1 2647 e 17,302 g 10,924 cd 62 f 303 f 102 g
D2 3605 d 20,008 ef 10,322 d 72 cd 333 de 127 e
D3 4768 c 22,641 bc 13,413 b 85 b 370 cd 201 a
N2 D1 5520 b 16,386 h 10,012 d 66 e 326 ef 142 d
D2 4553 c 20,671 de 11,783 c 76 c 377 c 157 c
D3 5367 b 24,747 a 14,332 ab 97 a 460 a 176 b
W2 N1 D1 6699 a 18,587 f 11,247 cd 63 ef 371 c 114 f
D2 3404 d 18,926 f 14,483 ab 68 e 354 d 154 c
D3 5714 b 22,938 b 15,183 a 102 a 427 b 199 a
N2 D1 2339 ef 20,359 ef 9969 d 68 de 347 d 121 ef
D2 2131 f 21,402 cd 13,635 b 71 cd 359 cd 204 a
D3 3371 d 26,095 a 13,845 ab 100 a 454 a 171 b
2021 W1 N1 D1 4323 bc 15,248 g 10,076 e 72 e 346 g 93 f
D2 3472 de 18,113 ef 12,352 cd 84 cd 382 f 104 d
D3 4778 a 21,247 bc 14,305 b 115 a 406 de 97 ef
N2 D1 3247 e 18,654 ef 12,155 d 78 de 378 f 109 cd
D2 2841 f 20,394 cd 13,166 c 85 cd 427 bc 112 c
D3 4238 bc 22,059 ab 15,638 a 102 b 442 b 114 c
W2 N1 D1 1841 g 17,687 f 12,262 cd 61 f 359 g 102 de
D2 3556 d 19,351 de 14,350 b 86 c 417 cd 84 g
D3 4393 b 21,706 abc 14,502 b 108 b 424 c 152 a
N2 D1 4071 c 19,002 ef 11,932 d 75 de 400 e 103 de
D2 3244 e 21,050 bc 13,177 c 78 e 429 bc 122 b
D3 4990 a 22,983 a 14,086 b 121 a 471 a 123 b
方差分析ANOVA
灌水W NS ** ** NS ** *
施氮N NS ** NS * ** **
密度D ** ** ** ** ** **
W×N * ** ** NS * **
W×D NS NS * ** NS NS
N×D * NS ** NS * **
W×N×D ** ** * NS * **

图4

不同灌水、施氮及密度下玉米成熟期干物质分配 图中柱子上的不同小写字母表示处理间差异显著P < 0.05。**: P < 0.01; *: P < 0.05; NS: 无显著差异。各处理缩写同图2。"

表2

不同水氮处理模式下玉米干物质转运特征"

年份
Year
灌水Irrigation 施氮Nitrogen 密度Density 花前转运量
Dry matter remobilization at pre-anthesis
(kg hm-2)
花前转运率
Dry matter
remobilization
efficiency at pre-anthesis (%)
花前转运贡献率
Contribution of dry matter remobilization to grain at pre-anthesis
(%)
花后积累量
Dry matter accumulation at post anthesis
(kg hm-2)
花后积累贡献率
Contribution of dry matter accumulation to grain at post anthesis
(%)
2020 W1 N1 D1 1419 ef 11.29 d 6.72 e 11,160 g 93.28 c
D2 1527 de 10.68 e 7.44 de 12,773 ef 92.56 cd
D3 1377 fg 9.84 fg 5.20 fg 12,428 f 94.80 ab
N2 D1 1793 c 11.73 cd 9.11 b 13,145 ef 90.89 f
D2 1834 c 10.29 f 8.21 cd 15,981 a 91.79 de
D3 2321 b 14.15 ab 8.14 cd 14,004 cd 91.86 de
W2 N1 D1 1608 d 12.26 c 5.85 f 11,444 g 94.15 b
D2 1277 g 9.19 g 5.75 f 12,535 f 94.25 b
D3 1448 ef 9.56 fg 4.66 g 13,400 de 95.34 a
N2 D1 1599 d 10.12 f 7.99 d 14,173 cd 92.01 d
D2 2619 a 14.75 a 13.37 a 15,289 ab 86.63 g
D3 2309 b 13.55 b 8.87 bc 14,735 bc 91.13 ef
2021 W1 N1 D1 1271 gh 8.87 f 6.85 d 12,409 de 93.15 d
D2 1601 de 10.99 d 7.43 c 12,985 cd 92.57 e
D3 1284 gh 8.98 ef 4.95 fg 12,971 cd 95.05 ab
N2 D1 1737 cd 12.71 c 7.90 bc 11,939 e 92.10 ef
D2 1926 c 11.82 cd 8.38 b 14,368 a 91.62 f
D3 1545 e 9.81 e 5.88 ef 13,775 b 94.12 bc
W2 N1 D1 1351 fg 9.83 e 6.93 d 12,262 de 93.07 d
D2 1751 cd 11.77 cd 7.64 bc 13,116 cd 92.36 ef
D3 1110 h 8.17 fg 4.32 g 12,502 de 95.68 a
N2 D1 1450 f 7.87 g 6.29 de 13,062 cd 93.71 cd
D2 2985 a 18.35 a 12.29 a 13,309 c 87.71 g
D3 2335 b 13.91 b 8.40 b 14,227 ab 91.60 f
方差分析ANOVA
灌水W ** * * NS *
施氮N ** ** ** ** **
密度D ** ** ** ** **
W×N ** * ** NS **
W×D * ** * * *
N×D * ** ** NS *
W×N×D ** ** ** * *

表3

不同处理模式下玉米的产量构成因素"

灌水Irrigation 施氮Nitrogen 密度
Density
穗数
Spike number
(×104 spikes hm-2)
穗粒数
Kernel number per spike
(grain per ear)
千粒重
1000-kernel weight
(g)
2020 2021 2020 2021 2020 2021
W1 N1 D1 7.38 d 7.29 d 509 e 518 c 323 f 349 bc
D2 9.29 c 9.49 c 478 f 477 ef 311 g 332 cd
D3 11.43 b 11.32 b 456 g 440 h 292 h 293 e
N2 D1 7.66 d 7.53 d 558 bc 564 b 370 ab 367 ab
D2 9.46 c 9.34 c 543 cd 517 cd 366 b 364 ab
D3 11.88 a 11.55 b 484 f 465 fg 333 e 331 cd
W2 N1 D1 7.29 d 7.43 d 554 cd 557 b 369 ab 372 a
D2 9.40 c 9.49 c 539 d 508 d 351 c 346 bc
D3 11.45 b 11.36 b 477 f 453 hg 325 ef 316 d
N2 D1 7.53 d 7.54 d 598 a 585 a 376 a 378 a
D2 9.52 c 9.43 c 574 b 528 c 370 ab 367 ab
D3 11.98 a 12.03 a 510 e 481 e 342 d 334 cd
方差分析ANOVA
灌水W NS * ** ** ** **
施氮N ** ** ** ** ** **
密度D ** ** ** ** ** **
W×N NS NS NS * ** NS
W×D NS NS * NS NS NS
N×D NS ** NS NS * NS
W×N×D NS NS NS NS NS NS

图5

不同处理玉米籽粒产量与其调控因素的通径分析 粗线代表直接通径, 细线代表间接通径。粗体数字为相关系数, 不加粗数值为通径系数。**: P < 0.01; *: P < 0.05; NS: 无显著差异。CGR、DMRCG、DMAC、SN、KNS、TKW分别表示群体生长速率、花前转运贡献率、花后积累贡献率、穗数、穗粒数、千粒重。"

[1] Davis K F, Gephart J A, Emery K A, Leach A M, Galloway J N, D Odorico P. Meeting future food demand with current agricultural resources. Glob Environ Change, 2016, 39: 125-132.
[2] Davis K F, Rulli M C, Seveso A, D’Odorico P. Increased food production and reduced water use through optimized crop distribution. Nat Geosci, 2017, 10: 919-924.
[3] Lu J S, Geng C M, Cui X L, Li M Y, Chen S H, Hu T T. Response of drip fertigated wheat-maize rotation system on grain yield, water productivity and economic benefits using different water and nitrogen amounts. Agric Water Manag, 2021, 258: 107220.
[4] Li Y, Huang G H, Chen Z J, Xiong Y W, Huang Q Z, Xu X, Huo Z L. Effects of irrigation and fertilization on grain yield, water and nitrogen dynamics and their use efficiency of spring wheat farmland in an arid agricultural watershed of northwest China. Agric Water Manag, 2022, 260: 107277.
[5] 殷文, 郭瑶, 范虹, 樊志龙, 胡发龙, 于爱忠, 赵财, 柴强. 西北干旱灌区不同地膜覆盖利用方式对玉米水分利用的影响. 中国农业科学, 2021, 54: 4750-4760.
doi: 10.3864/j.issn.0578-1752.2021.22.004
Yin W, Guo Y, Fan H, Fan Z L, Hu F L, Yu A Z, Zhao C, Chai Q. Effects of different plastic film mulching and using patterns on soil water use of maize in the arid irrigated area of northwestern China. Sci Agric Sin, 2021, 54: 4750-4760. (in Chinese with English abstract)
[6] 张喜军, 魏廷邦, 樊志龙, 柴强. 绿洲灌区水氮减施密植玉米的光合源动态和产量表现. 核农学报, 2020, 34: 1302-1310.
doi: 10.11869/j.issn.100-8551.2020.06.1302
Zhang X J, Wei T B, Fan Z L, Chai Q. Photosynthetic source dynamics and yield performance of high density maize with reduced amount of water and nitrogen in oasis irrigation region. Acta Agric Nucl Sin, 2020, 34: 1302-1310 (in Chinese with English abstract).
[7] Meng Q F, Yue S C, Hou P, Cui Z L, Chen X P. Improving yield and nitrogen use efficiency simultaneously for maize and wheat in China: a review. Pedosphere, 2016, 26: 137-147.
[8] 李嘉, 吕慎强, 杨泽宇, 李惠通, 王吕, 阳婷, 王筱斐, 王林权. 氮肥运筹对黄土塬区春玉米产量、效益和氮肥利用率的综合效应. 植物营养与肥料学报, 2020, 26: 32-41.
Li J, Lyu S Q, Yang Z Y, Li H T, Wang L, Yang T, Wang X F, Wang L Q. Comprehensive effects of nitrogen fertilizer management on yield, economic performance and nitrogen use efficiency of spring maize in Loess Plateau, China. J Plant Nutr Fert, 2020, 26: 32-41. (in Chinese with English abstract)
[9] Wang Z Q, Zhang W Y, Beebout S S, Zhang H, Liu L J, Yang J C, Zhang J H. Grain yield, water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates. Field Crops Res, 2016, 193: 54-69.
[10] 魏廷邦, 柴强, 王伟民, 王军强. 水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应. 中国农业科学, 2019, 52: 428-444.
doi: 10.3864/j.issn.0578-1752.2019.03.004
Wei T B, Chai Q, Wang W M, Wang J Q. Effects of coupling of irrigation and nitrogen application as well as planting density on photosynthesis and dry matter accumulation characteristics of maize in oasis irrigated areas. Sci Agric Sin, 2019, 52: 428-444. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2019.03.004
[11] 殷文, 柴强, 于爱忠, 赵财, 樊志龙, 胡发龙, 范虹, 郭瑶. 间作小麦秸秆还田对地膜覆盖玉米灌浆期冠层温度及光合生理特性的影响. 中国农业科学, 2020, 53: 4764-4776.
doi: 10.3864/j.issn.0578-1752.2020.23.004
Yin W, Chai Q, Yu A Z, Zhao C, Fan Z L, Hu F L, Fan H, Guo Y. Effects of intercropped wheat straw retention on canopy temperature and photosynthetic physiological characteristics of intercropped maize mulched with plastic during grain filling stage. Sci Agric Sin, 2020, 53: 4764-4776. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2020.23.004
[12] 赵财, 王巧梅, 郭瑶, 殷文, 樊志龙, 胡发龙, 于爱忠, 柴强. 水氮耦合对地膜玉米免耕轮作小麦干物质积累及产量的影响. 作物学报, 2018, 44: 1694-1703.
doi: 10.3724/SP.J.1006.2018.01694
Zhao C, Wang Q M, Guo Y, Yin W, Fan Z L, Hu F L, Yu A Z, Chai Q. Effects of water-nitrogen coupling patterns on dry matter accumulation and yield of wheat under no-tillage with previous plastic mulched maize. Acta Agron Sin, 2018, 44: 1694-1703. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.01694
[13] Kodur S, Shrestha U B, Maraseni T N, Deo R C. Environmental and economic impacts and trade-offs from simultaneous management of soil constraints, nitrogen and water. J Clean Prod, 2019, 222: 960-970.
[14] 陈磊, 宋书会, 云鹏, 周磊, 高翔, 卢昌艾, 刘荣乐, 汪洪. 连续三年减施氮肥对潮土玉米生长及根际土壤氮素供应的影响. 植物营养与肥料学报, 2019, 25: 1482-1494.
Chen L, Song S H, Yun P, Zhou L, Gao X, Lu C A, Liu R L, Wang H. Effects of reduced nitrogen fertilizer for three consecutive years on maize growth and rhizosphere nitrogen supply in fluvo-aquic soil. J Plant Nutr Fert, 2019, 25: 1482-1494. (in Chinese with English abstract)
[15] 郭瑶, 柴强, 殷文, 冯福学, 赵财, 于爱忠. 绿洲灌区小麦免耕秸秆还田对后作玉米产量性能指标的影响. 中国生态农业学报, 2017, 25: 69-77.
Guo Y, Chai Q, Yin W, Feng F X, Zhao C, Yu A Z. Effect of wheat straw return to soil with zero-tillage on maize yield in irrigated oases. Chin J Eco-Agric, 2017, 25: 69-77. (in Chinese with English abstract)
[16] 杨明达, 关小康, 刘影, 崔静宇, 丁超明, 王静丽, 韩静丽, 王怀苹, 康海平, 王同朝. 滴灌模式和水分调控对夏玉米干物质和氮素积累与分配及水分利用的影响. 作物学报, 2019, 45: 443-459.
doi: 10.3724/SP.J.1006.2019.83026
Yang M D, Guan X K, Liu Y, Cui J Y, Ding C M, Wang J L, Han J L, Wang H P, Kang H P, Wang T C. Effects of drip irrigation pattern and water regulation on the accumulation and allocation of dry matter and nitrogen, and water use efficiency in summer maize. Acta Agron Sin, 2019, 45: 443-459. (in Chinese with English abstract)
[17] 王宜伦, 李潮海, 谭金芳, 韩燕来, 张许. 超高产夏玉米植株氮素积累特征及一次性施肥效果研究. 中国农业科学, 2010, 43: 3151-3158.
Wang Y L, Li C H, Tan J F, Han Y L, Zhang X. Studies on plant nitrogen accumulation characteristics and the effect of single application of base fertilizer on super-high-yield summer maize. Sci Agric Sin, 2010, 43: 3151-3158 (in Chinese with English abstract).
[18] 薛吉全, 张仁和, 马国胜, 路海东, 张兴华, 李凤艳, 郝引川, 邰书静. 种植密度、氮肥和水分胁迫对玉米产量形成的影响. 作物学报, 2010, 36: 1022-1029.
doi: 10.3724/SP.J.1006.2010.01022
Xue J Q, Zhang R H, Ma G S, Lu H D, Zhang X H, Li F Y, Hao Y C, Tai S J. Effects of plant density, nitrogen application, and water stress on yield formation of maize. Acta Agron Sin, 2010, 36: 1022-1029. (in Chinese with English abstract)
[19] Yan W M, Zhong Y Q, Liu W Z, Shangguan Z P. Asymmetric response of ecosystem carbon components and soil water consumption to nitrogen fertilization in farmland. Agric Ecosyst Environ, 2021, 305: 107166.
[20] Zhang Y H, Yin J D, Guo Z H, Li J, Wang R. Simulation of soil water balance and crop productivity of long-term continuous maize cropping under high planting density in rainfed agroecosystems. Agric For Meteorol, 2022, 312: 108740.
[21] Lu J S, Hu T T, Geng C M, Cui X L, Fan J L, Zhang F C. Response of yield, yield components and water-nitrogen use efficiency of winter wheat to different drip fertigation regimes in northwest China. Agric Water Manag, 2021, 255: 107034.
[22] 王一帆, 秦亚洲, 冯福学, 赵财, 于爱忠, 刘畅, 柴强. 根间作用与密度协同作用对小麦间作玉米产量及产量构成的影响. 作物学报, 2017, 43: 754-762.
Wang Y F, Qin Y Z, Feng F X, Zhao C, Yu A Z, Liu C, Chai Q. Synergistic effect of root interaction and density on yield and yield components of wheat/maize intercropping system. Acta Agron Sin, 2017, 43: 754-762. (in Chinese with English abstract)
[23] 王旭敏, 雒文鹤, 刘朋召, 张琦, 王瑞, 李军. 节水减氮对夏玉米干物质和氮素积累转运及产量的调控效应. 中国农业科学, 2021, 54: 3183-3197.
doi: 10.3864/j.issn.0578-1752.2021.15.004
Wang X M, Luo W H, Liu P Z, Zhang Q, Wang R, Li J. Regulation effects of water saving and nitrogen reduction on dry matter and nitrogen accumulation, transportation and yield of summer maize. Sci Agric Sin, 2021, 54: 3183-3197. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2021.15.004
[24] 明博, 谢瑞芝, 侯鹏, 李璐璐, 王克如, 李少昆.2005-2016 年中国玉米种植密度变化分析. 中国农业科学, 2017, 50: 1960-1972.
Ming B, Xie R Z, Hou P, Li L L, Wang K R, Li S K. Analysis of maize planting density in China from 2005 to 2016. Sci Agric Sin, 2017, 50: 1960-1972. (in Chinese with English abstract)
[25] Zhang G Q, Shen D P, Xie R Z, Ming B, Hou P, Xue J, Li R F, Chen J L, Wang K R, Li S K. Optimizing planting density to improve nitrogen use of super high-yield maize. Agron J, 2020, 112: 4147-4158.
[26] 毛圆圆, 薛军, 翟娟, 张园梦, 张国强, 明博, 谢瑞芝, 王克如, 侯鹏, 李召锋, 李少昆. 水肥一体化条件下密植高产玉米适宜追氮次数研究. 植物营养与肥料学报, 2022, 28: 2227-2238.
Mao Y Y, Xue J, Zhai J, Zhang Y M, Zhang G Q, Ming B, Xie R Z, Wang K R, Hou P, Li Z F, Li S K. Optimum times of nitrogen topdressing in high-yield maize under high plant density and fertigation. J Plant Nutr Fert, 2022, 28: 2227-2238. (in Chinese with English abstract)
[27] Sun Y, Zang H, Splettstößer T, Kumar A, Xu X L, Kuzyakov Y, Pausch J. Plant intraspecific competition and growth stage alter carbon and nitrogen mineralization in the rhizosphere. Plant Cell Environ, 2021, 44: 1231-1242.
[28] Calviño P A, Andrade F H, Sadras V O. Maize yield as affected by water availability, soil depth, and crop management. Agron J, 2003, 95: 275-281.
[29] Sheshbahreh M J, Dehnavi M M, Salehi A, Bahreininejad B. Effect of irrigation regimes and nitrogen sources on biomass production, water and nitrogen use efficiency and nutrients uptake in coneflower (Echinacea purpurea L.). Agric Water Manag, 2019, 213: 358-367.
[30] Wang F, Xie R Z, Ming B, Wang K R, Hou P, Chen J L, Liu G Z, Zhang G Q, Xue J, Li S K. Dry matter accumulation after silking and kernel weight are the key factors for increasing maize yield and water use efficiency. Agric Water Manag, 2021, 254: 106938.
[31] 杨吉顺, 高辉远, 刘鹏, 李耕, 董树亭, 张吉旺, 王敬锋. 种植密度和行距配置对超高产夏玉米群体光合特性的影响. 作物学报, 2010, 36: 1226-1233.
doi: 10.3724/SP.J.1006.2010.01226
Yang J S, Gao H Y, Liu P, Li G, Dong S T, Zhang J W, Wang J F. Effects of planting density and row spacing on canopy apparent photosynthesis of high-yield summer corn. Acta Agron Sin, 2010, 36: 1226-1233. (in Chinese with English abstract)
[32] 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成. 作物学报, 2023, 49: 1919-1929.
Wei J G, Guo Y, Chai Q, Yin W, Fan Z L, Hu F L. Yield and yield components of maize response to high plant density under reduced water and nitrogen supply. Acta Agron Sin, 2023, 49: 1919-1929. (in Chinese with English abstract)
[33] Wei J G, Chai Q, Yin W, Fan H, Guo Y, Hu F L, Fan Z L, Wang Q M. Grain yield and N uptake of maize in response to increased plant density under reduced water and nitrogen supply conditions. J Integr Agric, 2024, 23: 122-140.
doi: 10.1016/j.jia.2023.05.006
[34] 陈国平, 高聚林, 赵明, 董树亭, 李少昆, 杨祁峰, 刘永红, 王立春, 薛吉全, 柳京国, 李潮海, 王永宏, 王友德, 宋慧欣, 赵久然. 近年我国玉米超高产田的分布、产量构成及关键技术. 作物学报, 2012, 38: 80-85.
doi: 10.3724/SP.J.1006.2012.00080
Chen G P, Gao J L, Zhao M, Dong S T, Li S K, Yang Q F, Liu Y H, Wang L C, Xue J Q, Liu J G, Li C H, Wang Y H, Wang Y D, Song H X, Zhao J R. Distribution, yield structure, and key cultural techniques of maize superhigh yield plots in recent years. Acta Agron Sin, 2012, 38: 80-85 (in Chinese with English abstract).
[35] Guo Y, Yin W, Fan H, Fan Z L, Hu F L, Yu A Z, Zhao C, Chai Q, Aziiba E A, Zhang X J. Photosynthetic physiological characteristics of water and nitrogen coupling for enhanced high-density tolerance and increased yield of maize in arid irrigation regions. Front Plant Sci, 2021, 12: 726568.
[36] Marchiori P E R, Machado E C, Ribeiro R V. Photosynthetic limitations imposed by self-shading in field-grown sugarcane varieties. Field Crops Res, 2014, 155: 30-37.
[1] 方宇辉, 齐学礼, 李艳, 张煜, 彭超军, 华夏, 陈艳艳, 郭瑞, 胡琳, 许为钢. 强光胁迫对转玉米C4ZmPEPC+ZmPPDK基因小麦光合和生理特性的影响[J]. 作物学报, 2024, 50(7): 1647-1657.
[2] 王蕊, 孙擘, 张云龙, 张茗起, 范亚明, 田红丽, 赵怡锟, 易红梅, 匡猛, 王凤格. 叶绿体标记在玉米种质资源快速分组中的应用分析[J]. 作物学报, 2024, 50(7): 1867-1876.
[3] 折萌, 郑登俞, 柯照, 吴忠义, 邹华文, 张中保. 玉米ZmGRAS13基因的克隆及功能研究[J]. 作物学报, 2024, 50(6): 1420-1434.
[4] 郑雪晴, 王兴荣, 张彦军, 龚佃明, 邱法展. 玉米果穗相关性状QTL定位及重要候选基因分析[J]. 作物学报, 2024, 50(6): 1435-1450.
[5] 韩洁楠, 张泽, 刘晓丽, 李冉, 上官小川, 周婷芳, 潘越, 郝转芳, 翁建峰, 雍洪军, 周志强, 徐晶宇, 李新海, 李明顺. o2突变引起糯玉米籽粒淀粉积累差异研究[J]. 作物学报, 2024, 50(5): 1207-1222.
[6] 王永亮, 胥子航, 李申, 梁哲铭, 白炬, 杨治平. 不同覆盖措施对土壤水热状况及春玉米产量和水分利用效率的影响[J]. 作物学报, 2024, 50(5): 1312-1324.
[7] 田红丽, 杨扬, 范亚明, 易红梅, 王蕊, 金石桥, 晋芳, 张云龙, 刘亚维, 王凤格, 赵久然. 用于玉米品种真实性鉴定的最优核心SNP位点集的研发[J]. 作物学报, 2024, 50(5): 1115-1123.
[8] 苏帅, 刘孝伟, 牛群凯, 时子文, 侯雨微, 冯开洁, 荣廷昭, 曹墨菊. 玉米多叶矮化突变体lyd1的鉴定与基因克隆[J]. 作物学报, 2024, 50(5): 1124-1135.
[9] 邹佳琪, 王仲林, 谭先明, 陈燎原, 杨文钰, 杨峰. 基于连续小波变换估测干旱胁迫下玉米籽粒产量[J]. 作物学报, 2024, 50(4): 1030-1042.
[10] 娄菲, 左怿平, 李萌, 代鑫萌, 王健, 韩金玲, 吴舒, 李向岭, 段会军. 有机肥替代部分化肥氮对糯玉米产量、品质及氮素利用的影响[J]. 作物学报, 2024, 50(4): 1053-1064.
[11] 张振, 赵俊晔, 石玉, 张永丽, 于振文. 不同播幅对小麦花后叶片光合特性和产量的影响[J]. 作物学报, 2024, 50(4): 981-990.
[12] 岳海旺, 魏建伟, 刘朋程, 陈淑萍, 卜俊周. 基于GYT双标图分析对黄淮海生态区玉米品种综合评价[J]. 作物学报, 2024, 50(4): 836-856.
[13] 薛明, 汪晨晨, 姜露光, 刘浩, 张路遥, 陈赛华. 玉米花序发育基因AFP1的定位及功能研究[J]. 作物学报, 2024, 50(3): 603-612.
[14] 王吕, 吴玉红, 秦宇航, 淡亚彬, 陈浩, 郝兴顺, 田霄鸿. 紫云英稻秸秆协同还田与氮肥减量配施对水稻干物质积累、氮素转运及产量的影响[J]. 作物学报, 2024, 50(3): 756-770.
[15] 赵荣荣, 丛楠, 赵闯. 基于Landsat 8影像提取豫中地区冬小麦和夏玉米分布信息的最佳时相选择[J]. 作物学报, 2024, 50(3): 721-733.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .