作物学报 ›› 2024, Vol. 50 ›› Issue (6): 1628-1634.doi: 10.3724/SP.J.1006.2024.32041
• 研究简报 • 上一篇
张小芳1,2(), 朱琪1,2, 华芸堰1,2, 贾黎惠莹1,2, 邱士优1, 陈宇杰1, 马涛1,*(), 丁沃娜1,*()
ZHANG Xiao-Fang1,2(), ZHU Qi1,2, HUA Yun-Yan1,2, JIA Li-Hui-Ying1,2, QIU Shi-You1, CHEN Yu-Jie1, MA Tao1,*(), DING Wo-Na1,*()
摘要:
为了探究水稻亲环素家族基因OsCYP22的功能, 构建OsCYP22酵母双杂交诱饵载体, 并利用水稻酵母双杂交cDNA文库筛选与OsCYP22相互作用蛋白。自激活试验结果表明, OsCYP22诱饵载体无自激活活性, 也对酵母细胞无毒性。通过对酵母双杂交文库的筛选, 共得到38个阳性菌落, 结合测序结果和生物信息学的方法筛选到20个可能与OsCYP22相互作用的蛋白。进一步对OsCYP22分别与调控植物根系生长相关基因OsCSN5和OsRUB1的全长互作验证, 结果显示OsCSN5与OsCYP22在酵母中相互作用。这为深入研究OsCYP22的生物学功能提供了理论依据。
[1] | Fischer G, Wittmann-Liebold B, Lang K, Kiefhaber T, Schmid F X. Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature, 1989, 337: 476-478. |
[2] | Singh H, Kaur K, Singh M, Kaur G, Singh P. Plant cyclophilins: multifaceted proteins with versatile roles. Front Plant Sci, 2020, 11: 585212. |
[3] |
Gasser C S, Gunning D A, Budelier K A, Brown S M. Structure and expression of cytosolic cyclophilin/peptidyl-prolyl cis-trans isomerase of higher plants and production of active tomato cyclophilin in Escherichia coli. Proc Natl Acad Sci USA, 1990, 87: 9519-9523.
pmid: 1702215 |
[4] | 童惠姗, 汪珊珊, 朱馨妮, 丁沃娜. 植物亲环素基因功能研究进展. 西北植物学报, 2017, 37: 830-838. |
Tong H S, Wang S S, Zhu X N, Ding W N. Research progress of cyclophilin gene function. Acta Bot Boreali-Occident Sin, 2017, 37: 830-838. (in Chinese with English abstract) | |
[5] | Li H, He Z Y, Lu G H, Lee S C, Alonso J, Ecker J R, Luan S. A WD40 domain cyclophilin interacts with histone H3 and functions in gene repression and organogenesis in Arabidopsis. Plant Cell, 2007, 19: 2403-2416. |
[6] | Sirpiö S, Khrouchtchova A, Allahverdiyeva Y, Hansson M, Fristedt R, Vener A V, Scheller H V, Jensen P E, Haldrup A, Aro E M. AtCYP38 ensures early biogenesis, correct assembly and sustenance of photosystem II. Plant J, 2008, 55: 639-651. |
[7] | Wang Q Q, Wang Y, Chai W B, Song N N, Wang J, Cao L M, Jiang H Y, Li X Y. Systematic analysis of the maize cyclophilin gene family reveals ZmCYP15 involved in abiotic stress response. Plant Cell Tissue Organ Cult, 2017, 128: 543-561. |
[8] | Jing H W, Yang X L, Zhang J, Liu X H, Zheng H K, Dong G J, Nian J Q, Feng J, Xia B, Qian Q, Li J Y, Zuo J R. Peptidyl-prolyl isomerization targets rice Aux/IAAs for proteasomal degradation during auxin signaling. Nat Commun, 2015, 6: 7395. |
[9] | Kumari S, Joshi R, Singh K, Roy S, Tripathi A K, Singh P, Singla-Pareek S L, Pareek A. Expression of a cyclophilin OsCyp2-P isolated from a salt-tolerant landrace of rice in tobacco alleviates stress via ion homeostasis and limiting ROS accumulation. Funct Integr Genomics, 2015, 15: 395-412. |
[10] | Kang B, Zhang Z C, Wang L L, Zheng L B, Mao W H, Li M F, Wu Y R, Wu P, Mo X R. OsCYP2, a chaperone involved in degradation of auxin-responsive proteins, plays crucial roles in rice lateral root initiation. Plant J, 2013, 74: 86-97. |
[11] | Fields S, Song O. A novel genetic system to detect protein- protein interactions. Nature, 1989, 340: 245-246. |
[12] | 沈竹, 曹勤红. 酵母双杂交及其衍生技术应用研究进展. 农业生物技术学报, 2022, 30: 2425-2433. |
Shen Z, Cao Q H. Research progress on application of yeast two hybrid system and Y2H-derivated techniques. J Agric Biotechnol, 2022, 30: 2425-2433. (in Chinese with English abstract) | |
[13] | 周非凡, 刘瑜, 常鑫磊, 林拥军. OsCPK12基因功能研究和互作蛋白筛选. 华中农业大学学报, 2019, 38(6): 48-55. |
Zhou F F, Liu Y, Chang X L, Lin Y J. Gene function of OsCPK12 and screening of its interaction proteins. J Huazhong Agric Univ, 2019, 38(6): 48-55. (in Chinese with English abstract) | |
[14] | 孔兰, 王锋, 蔡正正, 邱荣华, 吴春燕, 段远霖, 吴为人. 酵母双杂交筛选水稻OsJAG互作蛋白. 基因组学与应用生物学, 2019, 38: 4572-4579. |
Kong L, Wang F, Cai Z Z, Qiu R H, Wu C Y, Duan Y L, Wu W R. Screening of OsJAG-interacting proteins by yeast two-hybrid in rice. Genomics Appl Biol, 2019, 38: 4572-4579. (in Chinese with English abstract) | |
[15] |
郝小花, 戴佳利, 暨文劲, 黄丹, 李东屏, 田连福. 水稻籽粒低镉蛋白LCD互作蛋白的筛选与鉴定. 生物技术通报, 2020, 36(11): 21-29.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0510 |
Hao X H, Dai J L, Ji W J, Huang D, Li D P, Tian L F. Screening and identification of LCD-interacting proteins in rice. Biotechnol Bull, 2020, 36(11): 21-29. (in Chinese with English abstract) | |
[16] | 王子颖, 龙晨洁, 范兆宇, 张蕾. 利用酵母双杂交系统筛选与OsCRK5互作蛋白. 生物技术通报, 2023, 39(10): 25-33. |
Wang Z Y, Long C J, Fan Z Y, Zhang L. Screening of OsCRK5 interactive proteins in rice using yeast two-hybrid system. Biotechnol Bull, 2023, 39(10): 25-33 (in Chinese with English abstract). | |
[17] |
Dohmann E M N, Kuhnle C, Schwechheimer C. Loss of the CONSTITUTIVE PHOTOMORPHOGENIC9 signalosome subunit 5 is sufficient to cause the cop/det/fus mutant phenotype in Arabidopsis. Plant Cell, 2005, 17: 1967-1978.
pmid: 15923347 |
[18] | Pozo J C, Dharmasiri S, Hellmann H, Walker L, Gray W M, Estelle M. AXR1-ECR1-dependent conjugation of RUB1 to the Arabidopsis Cullin AtCUL1 is required for auxin response. Plant Cell, 2002, 14: 421-433. |
[19] | 郭睿, 刘全忠. 蛋白质相互作用研究技术的新进展. 天津医科大学学报, 2015, 21: 542-544. |
Guo R, Liu Q Z. New progress in protein interaction research technology. J Tianjin Med Univ, 2015, 21: 542-544. (in Chinese with English abstract) | |
[20] | 何龙, 羊健, 张松柏, 张恒木, 刘勇, 陈剑平. 水稻CSN5B蛋白抗血清的制备及其应用. 生物技术通讯, 2016, 27: 525-528. |
He L, Yang J, Zhang S B, Zhang H M, Liu Y, Chen J P. Preparation and application of antiserum against CSN5B protein from rice plant. Lett Biotechnol, 2016, 27: 525-528. (in Chinese with English abstract) | |
[21] |
Qin N X, Xu D Q, Li J G, Deng X W. COP9 signalosome: discovery, conservation, activity, and function. J Integr Plant Biol, 2020, 62: 90-103.
doi: 10.1111/jipb.12903 |
[22] | Lozano-Duran R, Rosas-Diaz T, Gusmaroli G, Luna A P, Taconnat L, Deng X W, Bejarano E R. Geminiviruses subvert ubiquitination by altering CSN-mediated derubylation of SCF E3 ligase complexes and inhibit jasmonate signaling in Arabidopsis thaliana. Plant Cell, 2011, 23: 1014-1032. |
[23] | He L, Chen X, Yang J, Zhang T Y, Li J, Zhang S B, Zhong K L, Zhang H M, Chen J P, Yang J. Rice black-streaked dwarf virus- encoded P5-1 regulates the ubiquitination activity of SCF E3 ligases and inhibits jasmonate signaling to benefit its infection in rice. New Phytol, 2020, 225: 896-912. |
[1] | 付景, 马梦娟, 张骐飞, 段居琦, 王越涛, 王付华, 王生轩, 白涛, 尹海庆, 王亚. 干湿交替灌溉和施氮量对粳稻光合特性和氮素吸收利用的影响[J]. 作物学报, 2024, 50(7): 1787-1804. |
[2] | 裴法敬, 张文轩, 张晓, 王昕钰, 彭少兵, 米甲明. 长粒香型的超短生育期水稻新品系创制[J]. 作物学报, 2024, 50(7): 1684-1698. |
[3] | 唐清芸, 杨晶晶, 赵蕾, 宋志文, 王国栋, 李玉祥. 施氮量对滴灌水稻根系形态构型和分形特征的影响[J]. 作物学报, 2024, 50(6): 1540-1553. |
[4] | 朱忠林, 文月, 周棋, 巫燕飞, 杜雪竹, 盛锋. 水稻OsCNGC10基因抗倒伏性以及抗旱性功能研究[J]. 作物学报, 2024, 50(5): 1351-1360. |
[5] | 胡明明, 丁峰, 彭志芸, 向开宏, 李郁, 张宇杰, 杨志远, 孙永健, 马均. 多元化种植模式下秸秆还田配合水氮管理对水稻产量形成与氮素吸收利用的影响[J]. 作物学报, 2024, 50(5): 1236-1252. |
[6] | 耿孝宇, 张翔, 刘洋, 左博源, 朱旺, 马唯一, 汪璐璐, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根, 韦还和. 江苏省滨海盐碱地籼粳杂交稻产量优势形成特征[J]. 作物学报, 2024, 50(5): 1253-1270. |
[7] | 万应春, 班义结, 蒋钰东, 王亚欣, 刘晶晶, 刘晓晴, 程育林, 王楠, 冯萍. 水稻雄性不育突变体tpa1的表型鉴定与精细定位[J]. 作物学报, 2024, 50(5): 1104-1114. |
[8] | 余瑶, 王紫瑶, 周思睿, 刘鹏程, 叶亚峰, 马伯军, 刘斌美, 陈析丰. 水稻类病变突变体lms1的表型鉴定与抗病分子机制分析[J]. 作物学报, 2024, 50(4): 857-870. |
[9] | 王吕, 吴玉红, 秦宇航, 淡亚彬, 陈浩, 郝兴顺, 田霄鸿. 紫云英稻秸秆协同还田与氮肥减量配施对水稻干物质积累、氮素转运及产量的影响[J]. 作物学报, 2024, 50(3): 756-770. |
[10] | 张丽洁, 周海宇, MUHAMMAD Zeshan, MUNSIF Ali Shad, 杨明冲, 李波, 韩世健, 张翠翠, 胡利华, 王令强. 水稻花粉小肽锌指蛋白基因OsFLZ13功能研究[J]. 作物学报, 2024, 50(3): 543-555. |
[11] | 韦还和, 张翔, 朱旺, 耿孝宇, 马唯一, 左博源, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根. 盐胁迫对水稻籽粒灌浆特性及产量形成的影响[J]. 作物学报, 2024, 50(3): 734-746. |
[12] | 李万, 李成, 程敏, 吴芳. 磷转运蛋白StPHO1.2提高马铃薯耐热性[J]. 作物学报, 2024, 50(2): 394-402. |
[13] | 吴宇, 刘磊, 崔克辉, 齐晓丽, 黄见良, 彭少兵. 低氮条件下超级杂交稻苗期根系特征的变化及与其高氮素积累的关系[J]. 作物学报, 2024, 50(2): 414-424. |
[14] | 吴昊, 张瑛, 王琛, 顾汉柱, 周天阳, 张伟杨, 顾骏飞, 刘立军, 杨建昌, 张耗. 栽培优化对长江下游水稻灌浆期根系特征和稻米淀粉特性的影响[J]. 作物学报, 2024, 50(2): 478-492. |
[15] | 李明月, 张文婷, 李阳, 张保龙, 杨立明, 王金彦. 小肽Ospep5对水稻耐镉性的影响[J]. 作物学报, 2024, 50(1): 67-75. |
|