作物学报 ›› 2025, Vol. 51 ›› Issue (2): 301-311.doi: 10.3724/SP.J.1006.2025.44098
王语新(), 陈天羽, 翟红, 张欢, 高少培, 何绍贞, 赵宁, 刘庆昌(
)
WANG Yu-Xin(), CHEN Tian-Yu, ZHAI Hong, ZHANG Huan, GAO Shao-Pei, HE Shao-Zhen, ZHAO Ning, LIU Qing-Chang(
)
摘要:
HT1 (HIGH LEAF TEMPERATURE 1)属于蛋白激酶, 在模式植物拟南芥中主要参与气孔运动, 但其在甘薯(Ipomoea batatas (L.) Lam.)中的作用未见相关报道。本研究从甘薯品系徐薯55-2中克隆得到IbHT1基因, 其CDS全长1140 bp, 编码379个氨基酸。IbHT1蛋白具有一个保守的STKc_MAP3K_Like蛋白激酶结构域, 预测分子量大小43.07 kD, 等电点8.83。其基因组全长2796 bp, 含有3个外显子和2个内含子。IbHT1蛋白定位于细胞膜上, 其蛋白全长无转录激活活性。IbHT1基因受20% PEG-6000诱导下调表达。过表达IbHT1基因减弱了甘薯植株的抗旱性, 而RNA干扰该基因显著增强了甘薯植株的抗旱性。通过酵母筛库筛选到与IbHT1蛋白互作的10个蛋白, 由此推测, IbHT1蛋白激酶可能通过与这些蛋白相互作用从而共同参与甘薯抗旱性的调控。
[1] | 赵杨, 杨永青, 丁杨林, 张蘅, 谢彦杰, 赵春钊, 刘林川, 王鹏程. 植物非生物逆境学科发展综述. 植物生理学报, 2024, 60: 248-270. |
Zhao Y, Yang Y Q, Ding Y L, Zhang H, Xie Y J, Zhao C Z, Liu L C, Wang P C. Plant abiotic stress biology: a decade update. Plant Physiol J, 2024, 60: 248-270 (in Chinese with English abstract). | |
[2] | Zhu J K. Abiotic stress signaling and responses in plants. Cell, 2016, 167: 313-324. |
[3] | 任洪雷, 朱筱, 张丰屹, 张必弦, 王家军, 王金生, 吴俊江, 王广金, 邱丽娟. 干旱胁迫的影响及抗旱性研究进展. 分子植物育种, 网络首发[2024-01-22], https://link.cnki.net/urlid/46.1068.S.20240119. |
Ren H L, Zhu X, Zhang F Y, Zhang B X, Wang J J, Wang J S, Wu J J, Wang G J, Qiu L J. Effect of drought stress and research progress of drought resistance. Mol Plant Breed, Published online [2024-01-22], https://link.cnki.net/urlid/46.1068.S.20240119. (in Chinese with English abstract). | |
[4] |
朱婷婷, 王彦霞, 裴丽丽, 谢传磊, 陈明, 陈隽, 周永斌, 马有志, 徐兆师. 植物蛋白激酶与作物非生物胁迫抗性的研究. 植物遗传资源学报, 2017, 18: 763-770.
doi: 10.13430/j.cnki.jpgr.2017.04.020 |
Zhu T T, Wang Y X, Pei L L, Xie C L, Chen M, Chen J, Zhou Y B, Ma Y Z, Xu Z S. Research progress of plant protein kinase and abiotic stress resistance. J Plant Genet Resour, 2017, 18: 763-770 (in Chinese with English abstract).
doi: 10.13430/j.cnki.jpgr.2017.04.020 |
|
[5] |
张鑫苗, 伍国强, 魏明. MAPK在植物响应逆境胁迫中的作用. 草业学报, 2024, 33(1): 182-197.
doi: 10.11686/cyxb2023090 |
Zhang X M, Wu G Q, Wei M. The role of MAPK in plant response to abiotic stress. Acta Pratac Sin, 2024, 33(1): 182-197 (in Chinese with English abstract). | |
[6] |
Chen X X, Ding Y L, Yang Y Q, Song C P, Wang B S, Yang S H, Guo Y, Gong Z Z. Protein kinases in plant responses to drought, salt, and cold stress. J Integr Plant Biol, 2021, 63: 53-78.
doi: 10.1111/jipb.13061 |
[7] | Chen J, Wang L H, Yuan M. Update on the roles of rice MAPK cascades. Int J Mol Sci, 2021, 22: 1679. |
[8] | Li Y Y, Cai H X, Liu P, Wang C Y, Gao H Y, Wu C G, Yan K, Zhang S Z, Huang J G, Zheng C C. Arabidopsis MAPKKK18 positively regulates drought stress resistance via downstream MAPKK3. Biochem Biophys Res Commun, 2017, 484: 292-297. |
[9] | Ning J, Li X H, Hicks L M, Xiong L Z. A Raf-Like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiol, 2010, 152: 876-890. |
[10] | Ma H G, Chen J, Zhang Z Z, Ma L, Yang Z Y, Zhang Q L, Li X H, Xiao J H, Wang S P. MAPK kinase 10.2 promotes disease resistance and drought tolerance by activating different MAPKs in rice. Plant J, 2017, 92: 557-570. |
[11] | Zhao L L, Yan J W, Xiang Y, Sun Y, Zhang A Y. ZmWRKY104 transcription factor phosphorylated by ZmMPK6 functioning in ABA-induced antioxidant defense and enhance drought tolerance in maize. Biology, 2021, 10: 893. |
[12] | Li F J, Li M Y, Wang P, Cox K L Jr, Duan L S, Dever J K, Shan L B, Li Z H, He P. Regulation of cotton (Gossypium hirsutum) drought responses by mitogen-activated protein (MAP) kinase cascade-mediated phosphorylation of GhWRKY59. New Phytol 2017, 215: 1462-1475. |
[13] |
Jeong S, Lim C W, Lee S C. The pepper MAP Kinase CaAIMK1 positively regulates ABA and drought stress responses. Front Plant Sci, 2020, 11: 720.
doi: 10.3389/fpls.2020.00720 pmid: 32528517 |
[14] | Wang J Y, Chitsaz F, Derbyshire M K, Gonzales N R, Gwadz M, Lu S N, Marchler G H, Song J S, Thanki N, Yamashita R A, Yang M Z, Zhang D C, Zheng C J, Lanczycki C J, Marchler-Bauer A. The conserved domain database in 2023. Nucleic Acids Res, 2023, 51: D384-D388. |
[15] |
Hashimoto M, Negi J, Young J, Israelsson M, Schroeder J I, Iba K. Arabidopsis HT1 kinase controls stomatal movements in response to CO2. Nat Cell Biol, 2006, 8: 391-397.
pmid: 16518390 |
[16] | Matrosova A, Bogireddi H, Mateo-Peñas A, Hashimoto-Sugimoto M, Iba K, Schroeder J I, Israelsson-Nordström M. The HT1 protein kinase is essential for red light-induced stomatal opening and genetically interacts with OST1 in red light and CO2-induced stomatal movement responses. New Phytol, 2015, 208: 1126-1137. |
[17] | Horak H, Sierla M, Toldsepp K, Wang C, Wang Y S, Nuhkat M, Valk E, Pechter P, Merilo E, Salojarvi J, Overmyer K, Loog M, Brosche M, Schroeder J I, Kangasjarvi J, Kollist H. A dominant mutation in the HT1 kinase uncovers roles of MAP kinases and GHR1 in CO2-induced stomatal closure. Plant Cell, 2016, 28: 2493-2509. |
[18] |
Gahlowt P, Tripathi D K, Singh S, Gupta R, Singh V P. Does MPK4/12-HT1 function as a CO2/bicarbonate sensor to regulate the stomatal conductance under high CO levels. Plant Cell Rep, 2023, 42: 2043-2045.
doi: 10.1007/s00299-023-03077-8 pmid: 37815540 |
[19] | 后猛, 李臣, 张允刚, 闫会, 王欣, 唐维, 宋炜涵, 高闰飞, 李强. 优质高产淀粉型甘薯徐薯37选育及性状鉴定. 江苏师范大学学报(自然科学版), 2023, 41(3): 45-47. |
Hou M, Li C, Zhang Y G, Yan H, Wang X, Tang W, Song W H, Gao R F, Li Q. Breeding and character identification of a sweetpotato variety Xushu 37 for starch use with high yield and quality. J Jiangsu Norm Univ (Nat Sci Edn), 2023, 41(3): 45-47 (in Chinese with English abstract). | |
[20] | Wang Z, Li X, Gao X R, Dai Z R, Peng K, Jia L C, Wu Y K, Liu Q C, Zhai H, Gao S P, Zhao N, He S Z, Zhang H. IbMYB73 targets abscisic acid-responsive IbGER5 to regulate root growth and stress tolerance in sweet potato. Plant Physiol, 2024, 194: 787-804. |
[21] | Yan M X, Li M, Wang Y Z, Wang X Y, Moeinzadeh M H, Quispe-Huamanquispe D G, Fan W J, Fang Y J, Wang Y Q, Nie H Z, Wang Z Y, Tanaka A, Heider B, Kreuze J F, Gheysen G, Wang H X, Vingron M, Bock R, Yang J. Haplotype-based phylogenetic analysis and population genomics uncover the origin and domestication of sweetpotato. Mol Plant, 2024, 17: 277-296. |
[22] | 吴胜男, 孙凯, 张海, 刘峰, 王凤. 甘薯分子标记辅助育种研究进展. 黑龙江农业科学, 2022, (9): 111-115. |
Wu S N, Sun K, Zhang H, Liu F, Wang F. Research progress of sweet potato molecular marker-assisted breeding. Heilongjiang Agric Sci, 2022, (9): 111-115 (in Chinese with English abstract). | |
[23] | Jin R, Kim B H, Ji C Y, Kim H S, Li H M, Ma D F, Kwak S S. Overexpressing IbCBF3 increases low temperature and drought stress tolerance in transgenic sweetpotato. Plant Physiol Biochem, 2017, 118: 45-54. |
[24] | Zhou Y Y, Zhai H, Xing S H, Wei Z H, He S Z, Zhang H, Gao S P, Zhao N, Liu Q C. A novel small open reading frame gene. IbEGF, enhances drought tolerance in transgenic sweet potato. Front Plant Sci, 2022, 13: 965069. |
[25] | Ren Z T, He S Z, Zhou Y Y, Zhao N, Jiang T, Zhai H, Liu Q C. A sucrose non-fermenting-1-related protein kinase-1 gene, IbSnRK1, confers salt, drought and cold tolerance in sweet potato. Crop J, 2020, 8: 905-917. |
[26] | Wang Y X, Zhang H, Gao S P, Zhai H, He S Z, Zhao N, Liu Q C. An ABA-inducible gene IbTSJT1positively regulates drought tolerance in transgenic sweetpotato. J Integr Agric, Published online [2023-10-18], https://doi.org/10.1016/j.jia.2023.10.015 |
[27] |
Zhang H, Gao X R, Zhi Y H, Li X, Zhang Q, Niu J B, Wang J, Zhai H, Zhao N, Li J G, Liu Q C, He S Z. A non-tandem CCCH-type zinc-finger protein, IbC3H18, functions as a nuclear transcriptional activator and enhances abiotic stress tolerance in sweet potato. New Phytol, 2019, 223: 1918-1936.
doi: 10.1111/nph.15925 pmid: 31091337 |
[28] | Zhang H, Wang Z, Li X, Gao X R, Dai Z R, Cui Y F, Zhi Y H, Liu Q C, Zhai H, Gao S P, Zhao N, He S Z. The IbBBX24- IbTOE3-IbPRX17 module enhances abiotic stress tolerance by scavenging reactive oxygen species in sweet potato. New Phytol, 2022, 233: 1133-1152. |
[29] | Xue L Y, Wei Z H, Zhai H, Xing S H, Wang Y X, He S Z, Gao S P, Zhao N, Zhang H, Liu Q C. The IbPYL8-IbbHLH66- IbbHLH118 complex mediates the abscisic acid-dependent drought response in sweet potato. New Phytol, 2022, 236: 2151-2171. |
[30] | 周桦楠, 于涛, 刘冠求, 潘家荃, 万博, 刘振雷. 甘薯MAPK基因家族的鉴定及生物信息学分析. 沈阳农业大学学报, 2021, 52: 513-520. |
Zhou H N, Yu T, Liu G Q, Pan J Q, Wan B, Liu Z L. Genome-wide identification and bioinformatic analysis of mitogen activated protein kinase gene family in sweet potato. J Shenyang Agric Univ, 2021, 52: 513-520 (in Chinese with English abstract). | |
[31] |
靳容, 刘明, 赵鹏, 张强强, 张爱君, 唐忠厚. 甘薯丝裂原活化蛋白激酶MPK6对低温胁迫的响应. 中国农业科学, 2021, 54: 4265-4273.
doi: 10.3864/j.issn.0578-1752.2021.20.002 |
Jin R, Liu M, Zhao P, Zhang Q Q, Zhang A J, Tang Z H. IbMKP6, A mitogen-activated protein kinase, confers low temperature tolerance in sweetpotato. Sci Agric Sin, 2021, 54: 4265-4273 (in Chinese with English abstract). | |
[32] |
靖小菁, 杨新笋, 靳晓杰, 刘意, 雷剑, 王连军, 柴沙沙, 张文英, 焦春海. 甘薯蔓割病(Fusarium oxysporum f. sp. batatas)相关基因IbMAPKK9的克隆与特性分析. 作物学报, 2023, 49: 3289-3301.
doi: 10.3724/SP.J.1006.2023.24284 |
Jing X J, Yang X S, Jin X J, Liu Y, Lei J, Wang L J, Chai S S, Zhang W Y, Jiao C H. Cloning and characterization of IbMAPKK9 gene associated with Fusarium oxysporum f. sp. batatas in sweet potato. Acta Agron Sin, 2023, 49: 3289-3301 (in Chinese with English abstract). | |
[33] |
Zhu H, Zhou Y Y, Zhai H, He S Z, Zhao N, Liu Q C. Transcriptome profiling reveals insights into the molecular mechanism of drought tolerance in sweetpotato. J Integr Agric, 2019, 18: 9-23.
doi: 10.1016/S2095-3119(18)61934-3 |
[34] | Xing S H, Zhu H, Zhou Y Y, Xue L Y, Wei Z H, Wang Y X, He S Z, Zhang H, Gao S P, Zhao N, Zhai H, Liu Q C. A cytochrome P450 superfamily gene, IbCYP82D47, increases carotenoid contents in transgenic sweet potato. Plant Sci, 2022, 318: 111233. |
[35] |
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol, 2018, 35: 1547-1549.
doi: 10.1093/molbev/msy096 pmid: 29722887 |
[36] |
Rogers S O, Bendich A J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol, 1985, 5: 69-76.
doi: 10.1007/BF00020088 pmid: 24306565 |
[37] | Zhou Y Y, Zhu H, He S Z, Zhai H, Zhao N, Xing S H, Wei Z H, Liu Q C. A novel sweetpotato transcription factor gen. IbMYB116 enhances drought tolerance in transgenic Arabidopsis. Front Plant Sci 2019, 10: 1025. |
[38] | Zhang H, Zhang Q, Zhai H, Gao S P, Yang L, Wang Z, Xu Y T, Huo J X, Ren Z T, Zhao N, Wang X F, Li J G, Liu Q C, He S Z. IbBBX24 promotes the jasmonic acid pathway and enhances Fusarium wilt resistance in sweet potato. Plant Cell, 2020, 32: 1102-1123. |
[39] | Shitamichi N, Matsuoka D, Sasayama D, Furuya T, Nanmori T. Over-expression of MAP3Kδ4, an ABA-inducible Raf-like MAP3K that confers salt tolerance i. Arabidopsis. Plant Biotechnol 2013, 30: 111-118. |
[40] |
Li X, Wang Z, Sun S F, Dai Z R, Zhang J, Wang W B, Peng K, Geng W H, Xia S H, Liu Q C, Zhai H, Gao S P, Zhao N, Tian F, Zhang H, He S Z. IbNIEL-mediated degradation of IbNAC087 regulates jasmonic acid-dependent salt and drought tolerance in sweet potato. J Integr Plant Biol, 2024, 66: 176-195.
doi: 10.1111/jipb.13612 |
[41] |
Katiyar A, Smita S, Lenka S K, Rajwanshi R, Chinnusamy V, Bansal K C. Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis. BMC Genomics, 2012, 13: 544.
doi: 10.1186/1471-2164-13-544 pmid: 23050870 |
[42] |
Baldoni E, Genga A, Cominelli E. Plant MYB transcription factors: their role in drought response mechanisms. Int J Mol Sci, 2015, 16: 15811-15851.
doi: 10.3390/ijms160715811 pmid: 26184177 |
[43] | Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 2003, 15: 63-78. |
[44] | Li X M, Zhong M, Qu L N, Yang J X, Liu X Q, Zhao Q, Liu X M, Zhao X Y.AtMYB32 regulates the ABA response by targeting ABI3, ABI4 and ABI5 and the drought response by targeting CBF4 in Arabidopsis. Plant Sci, 2021, 310: 110983. |
[45] | Wyrzykowska A, Bielewicz D, Plewka P, Soltys-Kalina D, Wasilewicz-Flis I, Marczewski W, Jarmolowski A, Szweykowska- Kulinska Z. The MYB33, MYB65, and MYB101 transcription factors affect Arabidopsis and potato responses to drought by regulating the ABA signaling pathway. Physiol Plant, 2022, 174: e13775. |
[46] |
Yang A, Dai X Y, Zhang W H. A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot, 2012, 63: 2541-2556.
doi: 10.1093/jxb/err431 pmid: 22301384 |
[47] | Tang Y H, Bao X X, Zhi Y L, Wu Q, Guo Y R, Yin X H, Zeng L Q, Li J, Zhang J, He W L, Liu W H, Wang Q W, Jia C K, Li Z K, Liu K. Overexpression of a MYB family gene, OsMYB6, increases drought and salinity stress tolerance in transgenic rice. Front Plant Sci, 2019, 10: 168. |
[48] | Peng Y, Tang N, Zou J, Ran J, Chen X B. Rice MYB transcription factor OsMYB1R1 negatively regulates drought resistance. Plant Growth Regul, 2023, 99: 515-525. |
[49] | Chen T Z, Li W J, Hu X H, Guo J R, Liu A M, Zhang B L. A cotton MYB transcription factor, GbMYB5, is positively involved in plant adaptive response to drought stress. Plant Cell Physiol, 2015, 56: 917-929. |
[50] | Shin D J, Moon S J, Han S, Kim B G, Park S R, Lee S K, Yoon H J, Lee H E, Kwon H B, Baek D, Yi B Y, Byun M O. Expression of StMYB1R-1, a novel potato single MYB-Like domain transcription factor, increases drought tolerance. Plant Physiol, 2011, 155: 421-432. |
[51] | Li B, Zheng J C, Wang T T, Min D H, Wei W L, Chen J, Zhou Y B, Chen M, Xu Z S, Ma Y Z. Expression analyses of soybean VOZ transcription factors and the role of GmVOZ1G in drought and salt stress tolerance. Int J Mol Sci, 2020, 21: 2177. |
[52] | Song C, Lee J, Kim T, Hong J C, Lim C O. VOZ1, a transcriptional repressor of DREB2C, mediates heat stress responses i. Arabidopsis. Planta 2018, 247: 1439-1448. |
[53] | Chong L, Xu R, Huang P C, Guo P C, Zhu M K, Du H, Sun X L, Ku L X, Zhu J K, Zhu Y F. The tomato OST1-VOZ1 module regulates drought-mediated flowering. Plant Cell, 2022, 34: 2001-2018. |
[1] | 金欣欣, 宋亚辉, 苏俏, 杨永庆, 李玉荣, 王瑾. 冀花系列高油酸花生抗旱性鉴定与综合评价[J]. 作物学报, 2025, 51(3): 797-811. |
[2] | 阳新月, 肖人滈, 张林茜, 唐铭均, 孙光燕, 杜康, 吕长文, 唐道彬, 王季春. 不同生育期涝渍对甘薯抗逆生理特性及产量形成的影响[J]. 作物学报, 2025, 51(3): 744-754. |
[3] | 霍如雪, 葛祥菡, 石嘉, 李雪蕊, 戴圣杰, 刘振宁, 李宗芸. 甘薯组氨酸激酶蛋白IbHK5响应干旱和盐胁迫的功能分析[J]. 作物学报, 2025, 51(3): 650-666. |
[4] | 刘波, 池明, 曹梦琦, 唐达, 杨恒照, 张卫华, 薛聪. 过表达马铃薯StuPPO9基因对烟草抗旱能力的影响[J]. 作物学报, 2024, 50(9): 2237-2247. |
[5] | 孙一鸣, 田侠, 王少霞, 刘庆. 不同施磷水平对甘薯硒吸收、分配和转化的影响[J]. 作物学报, 2024, 50(6): 1608-1615. |
[6] | 张小芳, 朱琪, 华芸堰, 贾黎惠莹, 邱士优, 陈宇杰, 马涛, 丁沃娜. 水稻OsCYP22互作蛋白的筛选及验证[J]. 作物学报, 2024, 50(6): 1628-1634. |
[7] | 杨春菊, 唐道彬, 张凯, 杜康, 黄红, 乔欢欢, 王季春, 吕长文. 氮钾减量配施对甘薯产量和品质的影响[J]. 作物学报, 2024, 50(5): 1341-1350. |
[8] | 朱晓亚, 张强强, 赵鹏, 刘明, 王静, 靳容, 于永超, 唐忠厚. 叶面喷施丹参碳点缓解甘薯低磷胁迫的转录组与代谢组学分析[J]. 作物学报, 2024, 50(2): 383-393. |
[9] | 蒋杨影, 唐铭均, 张林茜, 吕长文, 唐道彬, 王季春. 生长前期光照强度对甘薯叶片光合生理和结薯的影响[J]. 作物学报, 2024, 50(10): 2575-2585. |
[10] | 杨毅, 何志强, 林佳慧, 李洋, 陈飞, 吕长文, 唐道彬, 周全卢, 王季春. 椰糠施用量对土壤理化性状和甘薯产量的影响[J]. 作物学报, 2023, 49(9): 2517-2527. |
[11] | 苏一钧, 赵路宽, 唐芬, 戴习彬, 孙亚伟, 周志林, 刘亚菊, 曹清河. 378份甘薯引进种遗传多样性及群体结构分析[J]. 作物学报, 2023, 49(9): 2582-2593. |
[12] | 贾瑞雪, 陈伊航, 张荣, 唐朝臣, 王章英. 超高效液相色谱法同时测定甘薯中13种类胡萝卜素的含量[J]. 作物学报, 2023, 49(8): 2259-2274. |
[13] | 王雁楠, 陈金金, 卞倩倩, 胡琳琳, 张莉, 尹雨萌, 乔守晨, 曹郭郑, 康志河, 赵国瑞, 杨国红, 杨育峰. 转录组与代谢组联合分析揭示遮阴胁迫下甘薯的代谢响应途径[J]. 作物学报, 2023, 49(7): 1785-1798. |
[14] | 梅玉琴, 刘意, 王崇, 雷剑, 朱国鹏, 杨新笋. 甘薯PHB基因家族的全基因组鉴定和表达分析[J]. 作物学报, 2023, 49(6): 1715-1725. |
[15] | 朱旭东, 杨兰锋, 陈媛媛, 侯泽豪, 罗旖柔, 熊泽浩, 方正武. 甜荞FeSGT1基因克隆及抗旱功能解析[J]. 作物学报, 2023, 49(6): 1573-1583. |
|