欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (2): 447-458.doi: 10.3724/SP.J.1006.2025.44104

• 耕作栽培·生理生化 • 上一篇    下一篇

磷肥用量对油稻轮作系统作物产量与磷素吸收量及其稳定性的影响

王崇铭(), 陆志峰, 闫金垚, 宋毅, 王昆昆, 方娅婷, 李小坤, 任涛, 丛日环, 鲁剑巍()   

  1. 华中农业大学资源与环境学院 / 农业农村部长江中下游耕地保育重点实验室 / 华中农业大学微量元素研究中心, 湖北武汉 430070
  • 收稿日期:2024-06-26 接受日期:2024-09-18 出版日期:2025-02-12 网络出版日期:2024-10-10
  • 通讯作者: 鲁剑巍, E-mail: lunm@mail.hzau.edu.cn
  • 作者简介:E-mail: naamuluanpao@webmail.hzau.edu.cn
  • 基金资助:
    国家重点研发计划项目“长江中下游水旱轮作区中低产田障碍消减与产能提升综合模式与应用”(2023YFD1901100);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-12);中央高校基本科研业务费专项基金项目(2662021ZH001)

Effect of phosphorus fertilizer rates on crop yield, phosphorus uptake and its stability in rapeseed-rice rotation system

WANG Chong-Ming(), LU Zhi-Feng, YAN Jin-Yao, SONG Yi, WANG Kun-Kun, FANG Ya-Ting, LI Xiao-Kun, REN Tao, CONG Ri-Huan, LU Jian-Wei()   

  1. College of Resources and Environment, Huazhong Agricultural University / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs / Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2024-06-26 Accepted:2024-09-18 Published:2025-02-12 Published online:2024-10-10
  • Contact: E-mail: lunm@mail.hzau.edu.cn
  • Supported by:
    National Key Research and Development Program of China “Comprehensive Model and Application of Obstacle Reduction and Productivity Improvement of Low-yield Fields in the Water-dry Rotation Area of the Middle and Lower Reaches of the Yangtze River”(2023YFD1901100);China Agriculture Research System of MOF and MARA(CARS-12);Fundamental Research Funds for the Central Universities(2662021ZH001)

摘要: 油菜-水稻轮作是我国长江流域主要水旱轮作模式, 其高产稳产对保障粮油安全至关重要。施用磷肥是油稻种植的常用技术, 为探究磷肥对油菜-水稻轮作系统生产力及其稳定性的作用, 利用2016—2023年在长江中游地区开展连续7年的田间定位试验(试验设置0、45、90、135和180 kg P2O5 hm-2共5个磷肥用量处理), 对油菜和水稻的产量与磷素吸收量及其稳定性、系统能值及其生产力风险进行分析。结果表明, 施磷均显著提高油菜和水稻产量, 对油菜的增产效果显著高于水稻, 油菜增产2.3~12.5倍, 在磷肥用量90 kg hm-2时达到最高水平, 主要通过增加单株角果数水平提高产量, 其次是千粒重和每角粒数; 水稻增产4.4%~17.1%, 在磷肥用量45 kg hm-2时达到最高水平, 一定程度上通过单株有效穗数和每穗实粒数提高产量。油菜和水稻地上部磷素积累量随着磷肥用量的增加而增加, 油菜地上部积累量增加5.0~11.8倍, 水稻增加22.9%~46.2%, 轮作周年增加50.2%~118.8%, 随着磷肥用量的增加, 油菜磷肥回收利用率(PRE)在磷肥用量45~90 kg hm-2, 水稻在45 kg hm-2时达到最高水平, 继续增加磷肥用量PRE下降。施磷显著提高油菜产量稳定性, 在磷肥用量45 kg hm-2时达到最高水平, 产量稳定性与磷素积累量、单株角果数、每角粒数的稳定性呈显著正相关关系; 水稻整体产量与磷素积累量稳定性水平高于油菜, 磷肥投入对其无显著影响。施磷可显著提高系统周年能值产量和稳定性, 磷肥用量分别在油菜季90 kg hm-2和水稻季45~90 kg hm-2时达到最高水平, 使系统在稳产的基础上达成高产的目标。综上所述, 当油菜季磷肥用量为90 kg hm-2、水稻季磷肥用量为45 kg hm-2时可在保证系统能值产量达到最高水平的同时兼顾系统稳定性和提高磷肥利用效率, 是油稻轮作系统磷肥最佳推荐用量。

关键词: 油稻轮作, 产量, 磷素积累量, 产量稳定性, 系统生产力风险

Abstract:

The rapeseed-rice rotation system is a key cropping pattern in the Yangtze River Basin, where achieving high and stable yields is essential for food and oil security. Phosphorus (P) fertilization is a common practice in the cultivation of both rapeseed and rice. To assess the effects of P fertilization on the productivity and stability of this rotation system, a 7-year field experiment was conducted from 2016 to 2023 in the middle reaches of the Yangtze River. The experiment included five P fertilizer treatments: 0, 45, 90, 135, and 180 kg P2O5 hm-2. The study evaluated crop yield, P uptake, energy yield stability, and productivity risk. The results indicated that P fertilization significantly increased the yields of both rapeseed and rice, with a more pronounced effect observed in rapeseed. Specifically, rapeseed yield increased by 2.3 to 12.5 times, with the highest yield achieved at 90 kg P2O5 hm-2. This increase was primarily due to a higher number of pods per plant, followed by improvements in seed weight and seeds per pod. Rice yield increased by 4.4% to 17.1%, peaking at 45 kg P2O5 hm-2, largely due to an increase in effective panicle number per plant and grains per panicle. Phosphorus accumulation in the aboveground biomass of both crops increased with higher P application rates, with rapeseed showing a 5.0- to 11.8-fold increase and rice showing a 22.9% to 46.2% increase, leading to an annual rotation increase of 50.2% to 118.8%. The phosphorus recovery efficiency (PRE) for rapeseed peaked at P application rates of 45 to 90 kg P2O5 hm-2, while for rice, the maximum PRE was observed at 45 kg P2O5 hm-2. Beyond this rate, further P application resulted in decreased PRE. P fertilization also notably improved the yield stability of rapeseed, with the highest stability observed at 45 kg P2O5 hm-2. Yield stability in rapeseed was positively correlated with the stability of P accumulation, the number of pods per plant, and the number of seeds per pod. In contrast, rice exhibited higher yield stability and P uptake than rapeseed, with no significant effect from additional P input. Overall, P fertilization significantly enhanced the system's annual energy yield, reaching its peak at 90 kg P2O5 hm-2 during the rapeseed season and between 45 and 90 kg P2O5 hm-2 during the rice season, thereby supporting high production levels. In conclusion, the optimal P fertilizer application rates for the rapeseed-rice rotation system are 90 kg P2O5 hm-2 for rapeseed and 45 kg P2O5 hm-2 for rice. These rates effectively balance maximum energy yield with system stability while optimizing P fertilizer use efficiency.

Key words: rapeseed-rice rotation, yield, phosphorus uptake, yield stability, system productivity risk

图1

不同磷肥用量下油菜籽和水稻产量 *、**和***分别表示P < 0.05、P < 0.01和P < 0.001水平差异显著, ns表示无显著差异。小写字母表示不同磷肥用量下产量显著性差异(P < 0.05)。P: 磷效应; Y: 年份效应; P×Y: 磷处理和年份的交互效应。"

图2

油菜和水稻产量构成因子及特征重要性得分 图(a)为不同磷肥用量条件下油菜和水稻产量构成因子水平; 图(b)为产量构成因子变化对磷肥施用响应的随机森林特征重要性得分。*和**分别表示P < 0.05和P < 0.01水平差异显著。小写字母代表不同磷肥用量下产量构成因子显著性差异(P < 0.05)。"

图3

不同磷肥用量下轮作系统作物地上部磷素积累量 *、**和***分别表示P < 0.05、P < 0.01和P < 0.001水平差异显著, ns表示无显著差异。小写字母表示不同磷肥用量下磷素积累量显著性差异(P < 0.05)。P: 磷效应; Y: 年份效应; P×Y: 磷处理和年份的交互效应。"

图4

不同磷肥用量下PHI *、**和***分别表示P < 0.05、P < 0.01和P < 0.001水平差异显著, ns表示无显著差异。小写字母表示不同磷肥用量下PHI显著性差异(P < 0.05)。P: 磷效应; Y: 年份效应; P×Y: 磷处理和年份的交互效应。PHI: 磷收获指数。"

图5

不同磷肥用量下轮作系统磷回收利用效率 *、**和***分别表示P < 0.05、P < 0.01和P < 0.001水平差异显著, ns表示无显著差异。小写字母表示不同磷肥用量处理间PRE显著性差异(P < 0.05)。P: 磷效应; Y: 年份效应; P×Y: 磷处理和年份的交互效应。PRE: 磷肥回收利用率。"

表1

产量、产量构成因子及磷素积累量稳定性"

作物
Crop
磷肥用量
P fertilizer rate
(kg hm-2)
产量
Yield (kg hm-2)
单株角果数(单株有效穗数)
Pods per plant (Panicles, No.)
每角粒数(每穗实粒数)
Seeds per pod (Panicle, No.)
千粒重
1000 seeds weight (g)
磷素积累量
P uptake (kg hm-2)
CV (%) SYI CV (%) SYI CV (%) SYI CV (%) SYI CV (%) SYI
油菜
Rape
0 59.1±3.8 a 0.21±0.04 b 55.7±12.5 a 0.28±0.12 b 29.6±3.9 a 0.53±0.05 b 17.2±0.8 b 0.64±0.01 a 65.1±1.7 a 0.17±0.00 b
45 13.0±1.9 b 0.73±0.04 a 31.0±5.3 b 0.47±0.06 a 19.2±3.6 b 0.67±0.04 a 25.9±3.5 a 0.54±0.05 b 16.1±2.7 b 0.68±0.07 a
90 16.4±4.8 b 0.67±0.09 a 28.9±5.5 b 0.55±0.07 a 18.0±3.2 b 0.70±0.03 a 26.5±1.7 a 0.53±0.01 b 15.3±1.3 b 0.68±0.05 a
135 17.1±1.8 b 0.67±0.03 a 32.9±4.8 b 0.50±0.08 a 19.5±2.1 b 0.67±0.02 a 27.5±2.4 a 0.51±0.02 b 19.8±2.0 b 0.62±0.01 a
180 17.5±2.9 b 0.66±0.07 a 32.6±1.1 b 0.52±0.03 a 20.6±2.9 b 0.65±0.05 a 28.2±1.9 a 0.52±0.01 b 14.6±7.4 b 0.72±0.12 a
水稻
Rice
0 8.0±2.3 a 0.84±0.04 a 18.5±2.8 a 0.63±0.06 a 11.2±2.8 a 0.75±0.07 a 3.6±0.8 a 0.92±0.01 a 13.9±2.4 a 0.73±0.03 a
45 7.2±0.6 a 0.84±0.01 a 20.1±4.6 a 0.53±0.14 a 12.5±2.3 a 0.77±0.04 a 3.3±0.5 a 0.92±0.00 a 12.8±5.3 a 0.72±0.11 a
90 6.2±1.0 a 0.86±0.03 a 20.3±2.0 a 0.57±0.17 a 14.7±4.0 a 0.69±0.10 a 4.0±1.2 a 0.91±0.04 a 13.6±6.2 a 0.72±0.02 a
135 5.5±2.0 a 0.88±0.05 a 16.3±3.5 a 0.60±0.21 a 15.5±6.7 a 0.70±0.11 a 3.6±0.9 a 0.92±0.02 a 12.4±4.8 a 0.75±0.12 a
180 5.2±1.7 a 0.89±0.02 a 18.0±3.3 a 0.56±0.17 a 16.2±7.0 a 0.68±0.16 a 2.8±0.4 a 0.94±0.01 a 13.2±4.3 a 0.72±0.02 a

图6

油菜和水稻产量及磷素积累量稳定性的相关性分析 相关性分析所用数据为单季作物产量、产量构成因子、磷素积累量稳定性。*、**和***分别表示在P < 0.05、P < 0.01和P < 0.001水平上相关性显著。CV: 指标变异系数; SYI: 指标可持续指数。"

图7

油稻轮作系统能值产量、生产力风险及稳定性差异指数 图(a)为油菜、水稻季不同磷肥用量组合系统能值产量, 小写字母表示不同磷肥用量组合处理间显著性差异(P < 0.05); 图(b)~(e)括号内数字表示系统稳定性差异指数, 数字越小代表系统越稳定。其中图(b)、(c)、(d)分别为油菜磷肥用量0、45、90 kg hm-2条件下水稻季不同磷肥用量系统生产力风险对应的临界能值对比, 图(e)为系统稳定性差异指数最低水平与能值产量最高水平时系统生产力风险对应的临界能值对比。"

[1] 冯海棠, 王汉中. 新形势下的我国食用植物油供给安全对策. 中国油料作物学报, 2024, 46: 221-227.
doi: 10.19802/j.issn.1007-9084.2024021
Feng H T, Wang H Z. Security strategy for the nation’s edible vegetable oil supplies under the new circumstances. Chin J Oil Crop Sci, 2024, 46: 221-227 (in Chinese with English abstract).
[2] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45: 915-924.
Zhang F S, Wang J Q, Zhang W F, Cui Z L, Ma W Q, Chen X P, Jiang R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedol Sin, 2008, 45: 915-924 (in Chinese with English abstract).
[3] Huang J D, Cao X Y, Kuai J, Cheng H, Zuo Q S, Du H, Peng S B, Huang J L, Deng N Y. Evaluation of production capacity for rice-rapeseed cropping system in China. Field Crops Res, 2023, 293: 108842.
[4] Hou E Q, Luo Y Q, Kuang Y W, Chen C R, Lu X K, Jiang L F, Luo X Z, Wen D Z. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat Commun, 2020, 11: 637.
doi: 10.1038/s41467-020-14492-w pmid: 32005808
[5] MacDonald G K, Bennett E M, Potter P A, Ramankutty N. Agronomic phosphorus imbalances across the world’s croplands. Proc Natl Acad Sci USA, 2011, 108: 3086-3091.
doi: 10.1073/pnas.1010808108 pmid: 21282605
[6] 闫金垚, 郭丽璇, 王昆昆, 廖世鹏, 陆志峰, 丛日环, 李小坤, 任涛, 鲁剑巍. 长江流域稻-油轮作区土壤磷库现状及环境风险分析. 土壤学报, 2023, 60: 247-257.
Yan J Y, Guo L X, Wang K K, Liao S P, Lu Z F, Cong R H, Li X K, Ren T, Lu J W. Status of soil phosphorus pool and environmental risk assessment in rice-oilseed rape rotation area in the Yangtze River Basin. Acta Pedol Sin, 2023, 60: 247-257 (in Chinese with English abstract).
[7] Zingore S, Murwira H K, Delve R J, Giller K E. Variable grain legume yields, responses to phosphorus and rotational effects on maize across soil fertility gradients on African smallholder farms. Nutr Cycl Agroecosyst, 2008, 80: 1-18.
[8] Yan J Y, Ren T, Wang K K, Li H Z, Li X K, Cong R H, Lu J W. Improved crop yield and phosphorus uptake through the optimization of phosphorus fertilizer rates in an oilseed rape-rice cropping system. Field Crops Res, 2022, 286: 108614.
[9] Macholdt J, Piepho H P, Honermeier B. Does fertilization impact production risk and yield stability across an entire crop rotation? Insights from a long-term experiment. Field Crops Res, 2019, 238: 82-92.
[10] Han X M, Hu C, Chen Y F, Qiao Y, Liu D H, Fan J, Li S L, Zhang Z. Crop yield stability and sustainability in a rice-wheat cropping system based on 34-year field experiment. Eur J Agron, 2020, 113: 125965.
[11] 李娟, 张立成, 章明清, 王煌平, 张辉, 张永春. 长期不同施肥模式下赤红壤旱地花生-甘薯轮作体系产量稳定性研究. 植物营养与肥料学报, 2021, 27: 179-190.
Li J, Zhang L C, Zhang M Q, Wang H P, Zhang H, Zhang Y C. Yield stability in peanut-sweet potato rotation system under long-term combined application of chemical and organic fertilizers in latosolic red soil. J Plant Nutr Fert, 2021, 27: 179-190 (in Chinese with English abstract).
[12] Liu J L, Yang L, Luan M D, Wang Y, Zhang C, Zhang B, Shi J S, Zhao F G, Lan W Z, Luan S. A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis. Proc Natl Acad Sci USA, 2015, 112: E6571-E6578.
[13] Kamerlin S C L, Sharma P K, Prasad R B, Warshel A. Why nature really chose phosphate. Quart Rev Biophys, 2013, 46: 1-132.
[14] de Bang T C, Husted S, Laursen K H, Persson D P, Schjoerring J K. The molecular-physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytol, 2021, 229: 2446-2469.
doi: 10.1111/nph.17074 pmid: 33175410
[15] 全国土壤普查办公室. 中国土壤. 北京: 中国农业出版社, 1998.
National Soil Census Office. China Soil. Beijing: China Agriculture Press, 1998 (in Chinese).
[16] 邹娟.冬油菜施肥效果及土壤养分丰缺指标研究. 华中农业大学博士学位论文, 湖北武汉, 2010.
Zou J. Study on Fertilization Effect and Soil Nutrient Abundance and Deficiency Index of Winter Rape. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2010 (in Chinese with English abstract).
[17] Ren T, Zou J, Lu J W, Chen F, Wu J S, Li X K. On-farm trials of optimal fertilizer recommendations for the maintenance of high seed yields in winter oilseed rape (Brassica napus L.) production. Soil Sci Plant Nutr, 2015, 61: 528-540.
[18] Hou W F, Xue X X, Li X K, Khan M R, Yan J Y, Ren T, Cong R H, Lu J W. Interactive effects of nitrogen and potassium on: Grain yield, nitrogen uptake and nitrogen use efficiency of rice in low potassium fertility soil in China. Field Crops Res, 2019, 236: 14-23.
[19] 鲍士旦. 土壤农化分析, 第3版. 北京: 中国农业出版社, 2000. pp 25-114.
Bao S D. Soil and Agricultural Chemistry Analysis, 3rd edn. Beijing: China Agriculture Press, 2000. pp 25-114 (in Chinese).
[20] 方娅婷, 任涛, 张顺涛, 周橡棋, 赵剑, 廖世鹏, 丛日环, 鲁剑巍. 氮磷钾肥对旱地和水田油菜产量及养分利用的影响差异. 作物学报, 2023, 49: 772-783.
doi: 10.3724/SP.J.1006.2023.24061
Fang Y T, Ren T, Zhang S T, Zhou X Q, Zhao J, Liao S P, Cong R H, Lu J W. Different effects of nitrogen, phosphorus and potassium fertilizers on oilseed rape yield and nutrient utilization between continuous upland and paddy-upland rotations. Acta Agron Sin, 2023, 49: 772-783 (in Chinese with English abstract).
[21] 侯文峰. 氮钾配施提高水稻产量及氮肥利用效率的生理机制. 华中农业大学博士学位论文, 湖北武汉, 2019.
Hou W F. Physiological Mechanism of Combined Application of Nitrogen and Potassium to Improve Rice Yield and Nitrogen Use Efficiency. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2019 (in Chinese with English abstract).
[22] Wolf B. A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Commun Soil Sci Plant Anal, 1982, 13: 1035-1059.
[23] Quan Z, Zhang X, Fang Y T, Davidson E A. Different quantification approaches for nitrogen use efficiency lead to divergent estimates with varying advantages. Nat Food, 2021, 2: 241-245.
doi: 10.1038/s43016-021-00263-3 pmid: 37118466
[24] Sayin C, Nisa Mencet M, Ozkan B. Assessing of energy policies based on Turkish agriculture: current status and some implications. Energy Policy, 2005, 33: 2361-2373.
[25] Beheshti Tabar I, Keyhani A, Rafiee S.Energy balance in Iran’s agronomy (1990-2006). Renew Sustain Energy Rev, 2010, 14: 849-855.
[26] 曹馨元, 杜明利, 王宇诚, 陈欣华, 陈佳欣, 凌霄霞, 黄见良, 彭少兵, 邓南燕. 稻油系统周年产量差及形成因素探究: 以湖北省武穴市为例. 作物学报, 2024, 50: 1287-1299.
doi: 10.3724/SP.J.1006.2024.32030
Cao X Y, Du M L, Wang Y C, Chen X H, Chen J X, Ling X X, Huang J L, Peng S B, Deng N Y. Evaluation of annual yield gap and yield limiting facters in rice-rapeseed cropping system: an example from Wuxue city, Hubei province, China. Acta Agron Sin, 2024, 50: 1287-1299 (in Chinese with English abstract).
[27] Shukla G K. Some statistical aspects of partitioning genotype-environmental components of variability. Heredity, 1972, 29: 237-245.
doi: 10.1038/hdy.1972.87 pmid: 4507945
[28] Liaw A, Wiener M. Classification and regression by randomForest. R News, 2002, 2: 18-22.
[29] Lambers H. Phosphorus acquisition and utilization in plants. Annu Rev Plant Biol, 2022, 73: 17-42.
[30] 杨启睿, 李岚涛, 张铎, 王雅娴, 盛开, 王宜伦. 施磷对夏花生产量品质、光温生理特性及根系形态的影响. 作物学报, 2024, 50: 1841-1854.
doi: 10.3724/SP.J.1006.2024.34161
Yang Q R, Li L T, Zhang D, Wang Y X, Sheng K, Wang Y L. Effect of phosphorus application on yield, quality, light temperature physiological characteristics, and root morphology in summer peanut. Acta Agron Sin, 2024, 50: 1841-1854 (in Chinese with English abstract).
[31] Rathke G W, Behrens T, Diepenbrock W. Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.): a review. Agric Ecosyst Environ, 2006, 117: 80-108.
[32] 赵晨云, 郭小丽, 陈亚轲, 龚思远, 李俊周, 赵全志, 孙虎威. 生长素和独脚金内酯参与磷素调控水稻分蘖的机制初探. 河南农业科学, 2022, 51(1): 21-26.
Zhao C Y, Guo X L, Chen Y K, Gong S Y, Li J Z, Zhao Q Z, Sun H W. Preliminary study on mechanism of auxin and strigolactone involved in phosphate-modulated tillering of rice. J Henan Agric Sci, 2022, 51(1): 21-26 (in Chinese with English abstract).
[33] Wang Y, Zhao X, Wang L, Zhao P H, Zhu W B, Wang S Q. Phosphorus fertilization to the wheat-growing season only in a rice-wheat rotation in the Taihu Lake region of China. Field Crops Res, 2016, 198: 32-39.
[34] 昂叶菲, 郭悦, 陈慧颖, 刘若仪, 朱秋晴, 王龙, 朱毅勇, 易可可, 曾后清. 植物磷营养与非生物胁迫的互作机理及其在农业上的潜在应用. 植物营养与肥料学报, 2023, 29: 2345-2359.
Ang Y F, Guo Y, Chen H Y, Liu R Y, Zhu Q Q, Wang L, Zhu Y Y, Yi K K, Zeng H Q. Interaction between plant phosphorus nutrition and abiotic stress responses and its potential application in agricultural production. J Plant Nutr Fert, 2023, 29: 2345-2359 (in Chinese with English abstract).
[35] Yang G J, Hautier Y, Zhang Z J, Lyu X T, Han X G. Decoupled responses of above- and below-ground stability of productivity to nitrogen addition at the local and larger spatial scale. Glob Chang Biol, 2022, 28: 2711-2720.
[1] 杨翠华, 李诗豪, 易徐徐, 郑飞雄, 杜雪竹, 盛锋. 聚-γ-谷氨酸对水稻产量、品质和养分吸收的影响[J]. 作物学报, 2025, 51(3): 785-796.
[2] 刘亚龙, 王鹏飞, 于爱忠, 王玉珑, 尚永盼, 杨学慧, 尹波, 张冬玲, 王凤. 绿肥还田条件下减氮对河西绿洲灌区玉米产量及N2O排放的影响[J]. 作物学报, 2025, 51(3): 771-784.
[3] 王岩, 白春生, 李波, 范虹, 何蔚, 杨莉莉, 曹悦, 赵财. 覆膜免耕和灌水量对西北绿洲灌区玉米产量及光合特性的影响[J]. 作物学报, 2025, 51(3): 755-770.
[4] 阳新月, 肖人滈, 张林茜, 唐铭均, 孙光燕, 杜康, 吕长文, 唐道彬, 王季春. 不同生育期涝渍对甘薯抗逆生理特性及产量形成的影响[J]. 作物学报, 2025, 51(3): 744-754.
[5] 熊强强, 孙长辉, 顾雯霏, 陆彦尧, 周年兵, 郭保卫, 刘国栋, 魏海燕, 朱金燕, 张洪程. 基于生育期、产量和品质对70份粳糯品种(系)的综合评价[J]. 作物学报, 2025, 51(3): 728-743.
[6] 苏明, 吴佳瑞, 洪自强, 李翻过, 周甜, 吴宏亮, 康建宏. 西北半干旱区马铃薯块茎淀粉形成及产量对磷肥减量的响应[J]. 作物学报, 2025, 51(3): 713-727.
[7] 李翔宇, 季欣杰, 王雪莲, 龙安燃, 王峥宇, 杨子慧, 宫香伟, 姜英, 齐华. 秸秆还田配施氮肥对春玉米产量和籽粒品质的影响[J]. 作物学报, 2025, 51(3): 696-712.
[8] 胡雅杰, 郭靖豪, 丛舒敏, 蔡沁, 徐益, 孙亮, 郭保卫, 邢志鹏, 杨文飞, 张洪程. 灌浆前期低温弱光复合处理对水稻产量和品质的影响[J]. 作物学报, 2025, 51(2): 405-417.
[9] 秦梦倩, 黄威, 陈敏, 宁宁, 何德志, 胡兵, 夏起昕, 蒋博, 程泰, 常海滨, 王晶, 赵杰, 汪波, 蒯婕, 徐正华, 周广生. 氮肥运筹对迟播油菜产量及抗倒性的影响[J]. 作物学报, 2025, 51(2): 432-446.
[10] 张辰煜, 葛军勇, 褚俊聪, 王星宇, 赵宝平, 杨亚东, 臧华栋, 曾昭海. 燕麦红芸豆带状间作的产量效应及根系形态与土壤酶活性[J]. 作物学报, 2025, 51(2): 459-469.
[11] 覃金华, 洪卫源, 冯向前, 李子秋, 周子榆, 王爱冬, 李瑞杰, 王丹英, 张运波, 陈松. 基于氮肥运筹下水稻产量与品质协同的农艺生理指标解析[J]. 作物学报, 2025, 51(2): 485-502.
[12] 陈于婷, 丁晓雨, 许本波, 张学昆, 徐劲松, 殷艳. 气候变暖对冬油菜产量、品质及重要农艺性状的影响[J]. 作物学报, 2025, 51(2): 516-525.
[13] 王鹏博, 张冬霞, 乔唱唱, 黄明, 王贺正. 秸秆还田和施磷量对豫西旱地小麦土壤酶活性和产量形成的影响[J]. 作物学报, 2025, 51(2): 534-547.
[14] 赵黎明, 段绍彪, 项洪涛, 郑殿峰, 冯乃杰, 沈雪峰. 干湿交替灌溉与植物生长调节剂对水稻光合特性及内源激素的影响[J]. 作物学报, 2025, 51(1): 174-188.
[15] 王丽萍, 李盼, 赵连豪, 樊志龙, 胡发龙, 范虹, 何蔚, 柴强, 殷文. 西北绿洲灌区玉米叶片衰老特征对不同地膜覆盖利用方式的响应[J]. 作物学报, 2025, 51(1): 233-246.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[4] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[5] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[6] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[7] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[8] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[9] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[10] 秦治翔;杨佑明;张春华;徐楚年;翟志席. 棉纤维次生壁增厚相关基因的cDNA克隆与分析[J]. 作物学报, 2003, 29(06): 860 -866 .