欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (2): 459-469.doi: 10.3724/SP.J.1006.2025.41019

• 耕作栽培·生理生化 • 上一篇    下一篇

燕麦红芸豆带状间作的产量效应及根系形态与土壤酶活性

张辰煜1(), 葛军勇2, 褚俊聪1, 王星宇2, 赵宝平3, 杨亚东1,*(), 臧华栋1, 曾昭海1,*()   

  1. 1中国农业大学农学院 / 农业农村部农作制度重点实验室, 北京 100193
    2张家口市农业科学院, 河北张家口 075000
    3内蒙古农业大学农学院, 内蒙古呼和浩特 010019
  • 收稿日期:2024-03-10 接受日期:2024-10-25 出版日期:2025-02-12 网络出版日期:2024-11-12
  • 通讯作者: 杨亚东, E-mail: yadong_tracy@cau.edu.cn; 曾昭海, E-mail: zengzhaohai@cau.edu.cn
  • 作者简介:E-mail: s20223010033@cau.edu.cn
  • 基金资助:
    国家重点研发计划项目(2023YFD1600702);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS07-B-5);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS07-A-6)

Yield effect and its root and soil enzyme characteristics of oat and red kidney bean strip intercropping

ZHANG Chen-Yu1(), GE Jun-Yong2, CHU Jun-Cong1, WANG Xing-Yu2, ZHAO Bao-Ping3, YANG Ya-Dong1,*(), ZANG Hua-Dong1, ZENG Zhao-Hai1,*()   

  1. 1College of Agronomy and Biotechnology, China Agricultural University / Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
    2Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou 075000, Hebei, China
    3College of Agronomy, Inner Mongolia Agricultural University, Hohhot 010019, Inner Mongolia, China
  • Received:2024-03-10 Accepted:2024-10-25 Published:2025-02-12 Published online:2024-11-12
  • Contact: E-mail: yadong_tracy@cau.edu.cn; E-mail: zengzhaohai@cau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2023YFD1600702);China Agriculture Research System of MOF and MARA(CARS07-B-5);China Agriculture Research System of MOF and MARA(CARS07-A-6)

摘要: 为明确豆禾间作系统的产量及其与作物根系和土壤酶学特性的关系。于2020—2021年在河北省张北县开展了2年大田试验, 以燕麦单作、红芸豆单作为对照, 研究了燕麦和红芸豆带状间作模式的产量效应、根系特征以及土壤酶活性。结果表明, 2年试验中, 间作模式的土地当量比分别为1.07和1.08, 且燕麦的偏土地当量比为0.63和0.72。间作模式的净收益与2种单作相比差异不显著, 但产投比均大于单作模式。间作燕麦在拔节期根长、根表面积、根体积在0~10 cm和10~20 cm两个土层均低于单作, 但在灌浆期均高于单作; 间作红芸豆根系形态参数在2个土层随生育期进程均由优势逐渐变为劣势。间作对燕麦各时期土壤酶活性的影响不显著, 但显著提高了红芸豆开花期和鼓粒期0~10 cm和10~20 cm两个土层土壤C、N和ALP获取酶活性。偏最小二乘路径分析显示, 燕麦的产量主要受到根系特性影响, 而红芸豆主要受土壤酶活性影响。由此可见, 燕麦‖红芸豆模式有更高的经济效益, 可以提升系统生产力, 且燕麦和红芸豆产量变化作用路径不同。

关键词: 燕麦, 红芸豆, 带状间作, 产量, 根系特征, 土壤酶活性

Abstract:

To evaluate the yield of a bean and cereal intercropping system and its relationship with root and soil enzyme characteristics, a two-year field experiment (2021-2022) was conducted in Zhangbei county, Hebei province, China. The study examined crop yield, root characteristics, and soil enzyme activities in oat and red kidney bean strip intercropping, with oat monoculture and red kidney bean monoculture as controls. The results showed that the land equivalent ratios (LER) for oat and red kidney bean intercropping were 1.07 and 1.08, respectively, over the two years. The partial land equivalent ratios (PLER) for oat were 0.63 and 0.72. While there was no significant difference in net income between intercropping and monoculture systems, the output-to-input ratio in the intercropping system was higher than in either monoculture. At the jointing stage, oat root length, surface area, and volume in intercropping were lower than in monoculture, but these parameters were higher at the filling stage in both the 0-10 cm and 10-20 cm soil layers. For intercropped red kidney bean, the dominance of root morphological parameters shifted to inferiority as the growth stage advanced. Relay intercropping had minimal effects on oat soil enzyme activities but significantly increased the activities of C, N, and ALP acquisition enzymes in the 0-10 cm and 10-20 cm soil layers at the flowering and filling stages of red kidney bean. Partial least squares path analysis revealed that oat yield was primarily influenced by root characteristics, while red kidney bean yield was predominantly regulated by soil enzyme activities. In conclusion, oat and red kidney bean strip intercropping enhances system productivity, provides higher economic benefits, and the yield dynamics of oat and red kidney bean are driven by different underlying mechanisms.

Key words: oat, red kidney bean, strip intercropping, yield, root system, soil enzyme activity

图1

燕麦红芸豆带状间作田间种植示意图"

表1

2021-2022年燕麦和红芸豆生物量和产量及土地当量比"

年份
Year
作物
Crop
生物量
Biomass (kg hm-2)
产量
Yield (kg hm-2)
土地当量比
Land equivalent ratio
单作
Monoculture
间作
Intercropping
单作
Monoculture
间作Intercropping 偏土地当量比LERO/LERR 间作当量比 LER
2021 燕麦Oat 11,880.0±198.7 a 7737.5±124.6 b 3570.9±168.1 a 2245.9±27.8 b 0.63±0.03 1.07±0.02
红芸豆
Red kidney bean
6429.1±259.5 b 2352.0±129.5 a 1853.1±43.4 b 793.3±23.5 a 0.44±0.01
2022 燕麦Oat 9443.3±221.6 a 6876.9±129.7 b 3484.7±54.8 a 2523.2±14.2 b 0.72±0.01 1.08±0.01
红芸豆
Red kidney bean
5129.2±224.5 b 1930.2±52.0 a 2121.5±23.7 b 735.0±22.7 a 0.35±0.01

表2

2021-2022年不同种植模式的经济效益分析"

年份
Year
种植模式
Cropping system
总投入
Total input
(yuan hm-2)
总收入
Total income
(yuan hm-2)
净收入
Net income
(yuan hm-2)
产投比
Output/Input
2021 燕麦单作Monoculture oat 2575.0 12,374.5±495.2 b 9799.5±495.2 a 3.81±0.19 b
红芸豆单作Monoculture red kidney bean 3925.0 14,824.7±347.2 a 10,899.7±347.2 a 3.78±0.09 b
间作Intercropping 3250.0 14,182.6±206.8 a 10,932.6±206.8 a 4.36±0.06 a
2022 燕麦单作Monoculture oat 2575.0 11,645.7±190.1 c 9070.7±190.1 c 3.52±0.07 b
红芸豆单作Monoculture red kidney bean 3925.0 16,971.7±190.0 a 13,046.7±190.0 a 4.32±0.05 a
间作Intercropping 3250.0 14,319.7±226.0 b 11,069.7±226.0 b 4.41±0.07 a

图2

2021-2022年不同时期燕麦和红芸豆的总根长(A和B)、根表面积(C和D)和根体积(E和F) 数据为平均值±标准误(n = 4)。Jointing stage: 燕麦拔节期(对应红芸豆开花期); Filling stage: 燕麦灌浆期(对应红芸豆鼓粒期); MO: 单作燕麦; IO: 间作燕麦; MR: 单作红芸豆; IR: 间作红芸豆。不同小写字母表示同一土层间作与单作间差异显著(P < 0.05)。"

图3

燕麦和红芸豆不同时期的土壤碳(A和B)、氮(C和D)和碱性磷酸(E和F)获取酶活性 数据为平均值±标准误(n = 4)。缩写及处理同图2。不同小写字母表示同一土层间作和单作间差异显著(P < 0.05)。"

图4

间作通过改变根系参数和土壤酶活性影响燕麦(A)和红芸豆(B)生产的偏最小二乘路径分析 实线箭头和虚线箭头分别代表正、负相关性。灰色底色标注为具体指标。箭头上的数字为标准化路径系数(r), 星号表示关系的强度(*: P < 0.05, **: P < 0.01)。"

[1] Homulle Z, George T S, Karley A J. Root traits with team benefits: understanding belowground interactions in intercropping systems. Plant Soil, 2022, 471: 1-26.
[2] Li L, Sun J H, Zhang F S, Li X L, Yang S C, Rengel Z. Wheat/maize or wheat/soybean strip intercropping: I. Yield advantage and interspecific interactions on nutrients. Field Crops Res, 2001, 71: 123-137.
[3] Gao X, Wu M, Xu R N, Wang X R, Pan R Q, Kim H J, Liao H. Root interactions in a maize/soybean intercropping system control soybean soil-borne disease, red crown rot. PLoS One, 2014, 9: e95031.
[4] Chapagain T, Riseman A. Intercropping wheat and beans: effects on agronomic performance and land productivity. Crop Sci, 2014, 54: 2285-2293.
[5] 杨亚东, 冯晓敏, 任长忠, 胡跃高, 张卫建, 曾昭海. 燕麦‖大豆、 燕麦‖绿豆系统种间互作对氮素吸收与结瘤固氮的影响. 中国农业科学, 2015, 48: 32-39.
doi: 10.3864/j.issn.0578-1752.2015.S.004
Yang Y D, Feng X M, Ren C Z, Hu Y G, Zhang W J, Zeng Z H. Effects of interspecific interactions on nitrogen absorption, nodulation and nitrogen fixation in oat ‖ soybean and oat ‖ mung bean intercropping systems. Sci Agric Sin, 2015, 48: 32-39 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2015.S.004
[6] Zheng B C, Zhou Y, Chen P, Zhang X N, Du Q, Yang H, Wang X C, Yang F, Xiao T, Li L, Yang W Y, Yong T W. Maize-legume intercropping promotes N uptake through changing the root spatial distribution, legume nodulation capacity, and soil N availability. J Integr Agric, 2022, 21: 1755-1771.
[7] Gong X W, Dang K, Lyu S M, Zhao G, Tian L X, Luo Y, Feng B L. Interspecific root interactions and water-use efficiency of intercropped proso millet and mung bean. Eur J Agron, 2020, 115: 126034.
[8] McCormack M L, Adams T S, Smithwick E A H, Eissenstat D M. Variability in root production, phenology, and turnover rate among 12 temperate tree species. Ecology, 2014, 95: 2224-2235.
pmid: 25230473
[9] Hassan A, Dresbøll D B, Rasmussen C R, Lyhne-Kjærbye A, Nicolaisen M H, Stokholm M S, Lund O S, Thorup-Kristensen K. Root distribution in intercropping systems—a comparison of DNA based methods and visual distinction of roots. Arch Agron Soil Sci, 2021, 67: 15-28.
[10] Xia H Y, Zhao J H, Sun J H, Bao X G, Christie P, Zhang F S, Li L. Dynamics of root length and distribution and shoot biomass of maize as affected by intercropping with different companion crops and phosphorus application rates. Field Crops Res, 2013, 150: 52-62.
[11] Ehrmann J, Ritz K. Plant: soil interactions in temperate multi-cropping production systems. Plant Soil, 2014, 376: 1-29.
[12] Peng X Q, Wang W. Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of Northern China. Soil Biol Biochem, 2016, 98: 74-84.
[13] 张瑞, 焉学倩, 杨忠亮, 张丹丹, 闫梅霞, 王英平. 作物间作研究进展. 特产研究, 网络首发[2023-10-17], https://doi.org/10.16720/j.cnki.tcyj.2023.171.
Zhang R, Yan X Q, Yang Z L, Zhang D D, Yan M X, Wang Y P. Advances in study on intercropping of crops. Agric Res Arid Areas, Published online [2023-10-17], https://doi.org/10.16720/j.cnki.tcyj.2023.171 (in Chinese with English abstract).
[14] 覃潇敏, 郑毅, 汤利, 龙光强. 施氮对玉米. //马铃薯间作根际土壤酶活性和硝化势的影响 云南农业大学学报(自然科学), 2015, 30: 886-894.
Qin X M, Zheng Y, Tang L, Long G Q. Effects of nitrogen application rates on rhizosphere soil enzyme activity and potential nitrification in maize and potato intercropping. J Yunnan Agric Univ (Nat Sci), 2015, 30: 886-894 (in Chinese with English abstract).
[15] Wang Z G, Bao X G, Li X F, Jin X, Zhao J H, Sun J H, Christie P, Li L. Intercropping maintains soil fertility in terms of chemical properties and enzyme activities on a timescale of one decade. Plant Soil, 2015, 391: 265-282.
[16] 罗志成. 北方旱地农业研究的进展与思考. 干旱地区农业研究, 1994, 12(1): 4-13.
Luo Z C. Progress and consideration of dryland farming research in North China. Agric Res Arid Areas, 1994, 12(1): 4-13 (in Chinese).
[17] 冯文豪, 佟越强, 杨亚东, 葛军勇, 臧华栋, 曾昭海. 全球燕麦生产时空演变规律及对中国的启示. 麦类作物学报, 2022, 42: 902-910.
Feng W H, Tong Y Q, Yang Y D, Ge J Y, Zang H D, Zeng Z H. Spatial-temporal evolution characteristics of global oat production and its enlightment to China. J Triticeae Crops, 2022, 42: 902-910 (in Chinese with English abstract).
[18] Sadras V O, Mahadevan M, Zwer P K. Oat phenotypes for drought adaptation and yield potential. Field Crops Res, 2017, 212: 135-144.
[19] 畅建武, 郝晓鹏, 王燕, 杨伟, 郜欣. 红芸豆氮磷钾肥效试验研究. 中国农学通报, 2015, 31(15): 108-113.
doi: 10.11924/j.issn.1000-6850.casb14120084
Chang J W, Hao X P, Wang Y, Yang W, Gao X. Fertilizer efficiency experiment of nitrogen phosphorus and potassium on red kidney bean. Chin Agric Sci Bull, 2015, 31(15): 108-113 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.casb14120084
[20] Ma H Y, Zhou J, Ge J Y, Nie J W, Zhao J, Xue Z Q, Hu Y G, Yang Y D, Peixoto L, Zang H D, Zeng Z H. Intercropping improves soil ecosystem multifunctionality through enhanced available nutrients but depends on regional factors. Plant Soil, 2022, 480: 71-84.
[21] Mead R, Willey R W. The concept of a ‘land equivalent ratio’ and advantages in yields from intercropping. Exp Agric, 1980, 16: 217-228.
[22] 王月, 张鹏鹏, 施磊, 臧华栋, 葛军勇, 曾昭海, 杨亚东. 北方半干旱区燕麦带状间作模式构建及经济效益分析. 山西农业大学学报(自然科学版), 2022, 42(5): 55-65.
Wang Y, Zhang P P, Shi L, Zang H D, Ge J Y, Zeng Z H, Yang Y D. Construction and economic benefits analysis of oat strip intercropping model of oat-based strip intercropping systems in the semi-arid area of northern China. J Shanxi Agric Univ (Nat Sci Edn), 2022, 42(5): 55-65 (in Chinese with English abstract).
[23] Saraswati S, Parsons C T, Strack M. Access roads impact enzyme activities in boreal forested peatlands. Sci Total Environ, 2019, 651: 1405-1415.
doi: 10.1016/j.scitotenv.2018.09.280
[24] 汪雪, 刘晓静, 王静, 童长春, 吴勇. 紫花苜蓿-燕麦连续间作下根系及土壤养分时空变化特征. 应用生态学报, 2023, 34: 2683-2692.
doi: 10.13287/j.1001-9332.202310.017
Wang X, Liu X J, Wang J, Tong C C, Wu Y. Temporal-spatial variations of root and soil nutrient under continuous intercropping of alfalfa and oat. Chin J Appl Ecol, 2023, 34: 2683-2692 (in Chinese with English abstract).
doi: 10.13287/j.1001-9332.202310.017
[25] 赵财, 周海燕, 柴强, 黄高宝, 刘辉娟, 朱静. 不同供水水平下丁香酚和间作蚕豆对小麦根系生长的互作效应. 草业学报, 2014, 23(2): 133-139.
doi: 10.11686/cyxb20140216
Zhao C, Zhou H Y, Chai Q, Huang G B, Liu H J, Zhu J. Effects of eugenol and intercropped faba-bean on wheat root growth under different water supply conditions. Acta Pratac Sin, 2014, 23(2): 133-139 (in Chinese with English abstract).
[26] 王婷, 王强学, 李永梅, 王自林, 肖靖秀, 范茂攀. 玉米大豆间作对作物根系及土壤团聚体稳定性的影响. 云南农业大学学报(自然科学), 2021, 36: 507-515.
Wang T, Wang Q X, Li Y M, Wang Z L, Xiao J X, Fan M P. Effect of maize and soybean intercropping on root system and soil aggregate stability. J Yunnan Agric Univ (Nat Sci), 2021, 36: 507-515 (in Chinese with English abstract).
[27] 鲍根生, 李媛, 冯晓云, 张鹏, 孟思宇. 高寒区氮添加和间作种植互作对燕麦和豌豆根系构型影响的研究. 草业学报, 2024, 33(3): 73-84.
doi: 10.11686/cyxb2023155
Bao G S, Li Y, Feng X Y, Zhang P, Meng S Y. Interactive effects of intercropping patterns and nitrogen addition on root architectural characteristics of oat and pea in an alpine region. Acta Pratac Sin, 2024, 33(3): 73-84 (in Chinese with English abstract).
[28] 朱亚琼, 郑伟, 王祥, 关正翾. 混播方式对豆禾混播草地植物根系构型特征的影响. 草业学报, 2018, 27(1): 73-85.
doi: 10.11686/cyxb2017110
Zhu Y Q, Zheng W, Wang X, Guan Z X. Effects plant spacing pattern on root morphological and architectural characteristics of legume-grass mixtures. Acta Pratac Sin, 2018, 27(1): 73-85 (in Chinese with English abstract).
[29] 马忠明, 杜少平, 王平, 包兴国. 长期定位施肥对小麦玉米间作土壤酶活性的影响. 核农学报, 2011, 25: 796-801.
Ma Z M, Du S P, Wang P, Bao X G. Effects of long-term located fertilization on soil enzymatic activities for wheat-maize intercropping in irrigated desert soils. J Nucl Agric Sci, 2011, 25: 796-801 (in Chinese with English abstract).
doi: 10.11869/hnxb.2011.04.0796
[30] 王庆宇, 李立军, 阮慧, 周红生, 李晓婷. 旱地燕麦间作对土壤酶活性、微生物含量及产量的影响. 干旱地区农业研究, 2019, 37(2): 179-184.
Wang Q Y, Li L J, Ruan H, Zhou H S, Li X T. Effects of intercropping of oat on soil enzyme activity, microbial content and yield in arid land. Agric Res Arid Areas, 2019, 37(2): 179-184 (in Chinese with English abstract).
[31] Sinsabaugh R L, Hill B H, Follstad Shah J J. Eco enzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 2009, 462: 795-798.
[32] 马怀英, 王上, 杨亚东, 冯晓敏, 曾昭海, 任长忠, 臧华栋, 胡跃高. 燕麦与豆科作物间作的产量、经济效益与碳足迹分析. 中国农业大学学报, 2021, 26(8): 23-32.
Ma H Y, Wang S, Yang Y D, Feng X M, Zeng Z H, Ren C Z, Zang H D, Hu Y G. Intercropping of oat with mung bean, peanut, and soybean: yield advantages, economic benefits and carbon footprints. J China Agric Univ, 2021, 26(8): 23-32 (in Chinese with English abstract).
[33] 朱珍勇, 高文道, 王晓云, 周明, 徐永忠. 配方施肥模式对南粳9108产量和产投比的影响. 农业科技通讯, 2023, (11): 56-60.
Zhu Z Y, Gao W D, Wang X Y, Zhou M, Xu Y Z. Effect of formulated fertilization mode on the yield and input-output ratio of Nanjing 9108. Bull Agric Sci Technol 2023, (11): 56-60 (in Chinese).
[34] 杜文盼, 赵桂琴, 柴继宽, 杨莉, 张建贵, 史怡超, 张官禄. 根系分隔方式对燕麦/豌豆间作地上生物量、土壤养分及根系性状的影响. 草业学报, 2024, 33(8): 25-36.
doi: 10.11686/cyxb2023370
Du W P, Zhao G Q, Chai J K, Yang L, Zhang J G, Shi Y C, Zhang G L. Effects of root separation on aboveground biomass, soil nutrient contents, and root characters of intercropped oat and pea. Acta Pratac Sin, 2024, 33(8): 25-36 (in Chinese with English abstract).
[35] 彭良斌, 周杰, 马怀英, 臧华栋, 靳建刚, 薛志强, 杨亚东, 曾昭海. 燕麦与马铃薯带状间作产量优势及土地利用率. 中国农业大学学报, 2023, 28(3): 38-49.
Peng L B, Zhou J, Ma H Y, Zang H D, Jin J G, Xue Z Q, Yang Y D, Zeng Z H. Yield advantage and land utilization of oat and potato strip intercropping system. J China Agric Univ, 2023, 28(3): 38-49 (in Chinese with English abstract).
[36] 冯晓敏, 杨永, 臧华栋, 钱欣, 胡跃高, 宋振伟, 张卫建, 曾昭海. 燕麦花生间作系统作物氮素累积与转移规律. 植物营养与肥料学报, 2018, 24: 617-624.
Feng X M, Yang Y, Zang H D, Qian X, Hu Y G, Song Z W, Zhang W J, Zeng Z H. Characteristics of crop nitrogen accumulation and nitrogen transfer in oat and peanut intercropping system. J Plant Nutr Fert, 2018, 24: 617-624 (in Chinese with English abstract).
[37] Qian X, Zang H D, Xu H S, Hu Y G, Ren C Z, Guo L C, Wang C L, Zeng Z H. Relay strip intercropping of oat with maize, sunflower and mung bean in semi-arid regions of Northeast China: yield advantages and economic benefits. Field Crops Res, 2018, 223: 33-40.
[38] Yong Y, Hu Y G, Shahrajabian M H, Ren C Z, Guo L C, Wang C L, Zeng Z H. Organic matter, protein percentage, yield, competition and economics of oat-soybean and oat-groundnut intercropping systems in Northern China. Cercetari Agron Moldova, 2017, 50: 25-35.
[39] Tscherko D, Rustemeier J, Richter A, Wanek W, Kandeler E. Functional diversity of the soil microflora in primary succession across two glacier forelands in the Central Alps. Eur J Soil Sci, 2003, 54: 685-696.
[40] 李金婷, 覃潇敏, 覃宏宇, 农玉琴, 骆妍妃, 韦持章, 韦锦坚. 间作对玉米根系形态特征及其氮磷养分吸收的影响. 南方农业学报, 2022, 53: 1348-1356.
Li J T, Qin X M, Qin H Y, Nong Y Q, Luo Y F, Wei C Z, Wei J J. Effects of maize and soybean intercrop on maize root morphological traits and its nitrogen and phosphorus nutrient absorption. J South Agric, 2022, 53: 1348-1356 (in Chinese with English abstract).
[41] 邵泽强, 刘书奇, 勾千冬, 依德萍, 陆文龙. 施氮和种植模式对玉米/紫花苜蓿间作体系中作物产量、吸氮量和根系形态的影响. 东北农业科学, 2023, 48(4): 6-11.
Shao Z Q, Liu S Q, Gou Q D, Yi D P, Lu W L. Effects of nitrogen application and planting patterns on crop yield, nitrogen uptake and root morphology in a maize/alfalfa intercropping system. J Northeast Agric Sci, 2023, 48(4): 6-11 (in Chinese with English abstract).
[42] 赵建华, 孙建好, 陈亮之. 三种豆科作物与玉米间作对玉米生产力和种间竞争的影响. 草业学报, 2020, 29(1): 86-94.
doi: 10.11686/cyxb2019119
Zhao J H, Sun J H, Chen L Z. Productivity and interspecific competition of maize intercropped with faba bean, soybean or pea. Acta Pratac Sin, 2020, 29(1): 86-94 (in Chinese with English abstract).
[43] Liu S, Xu G X, Chen H H, Zhang M M, Cao X W, Chen M, Chen J, Feng Q H, Shi Z M. Contrasting responses of soil microbial biomass and extracellular enzyme activity along an elevation gradient on the eastern Qinghai-Tibetan Plateau. Front Microbiol, 2023, 14: 974316.
[44] 张卫信, 申智锋, 邵元虎, 时雷雷, 刘胜杰, 史楠楠, 傅声雷. 土壤生物与可持续农业研究进展. 生态学报, 2020, 40: 3183-3206.
Zhang W X, Shen Z F, Shao Y H, Shi L L, Liu S J, Shi N N, Fu S L. Soil biota and sustainable agriculture: a review. Acta Ecol Sin, 2020, 40: 3183-3206 (in Chinese with English abstract).
[1] 杨翠华, 李诗豪, 易徐徐, 郑飞雄, 杜雪竹, 盛锋. 聚-γ-谷氨酸对水稻产量、品质和养分吸收的影响[J]. 作物学报, 2025, 51(3): 785-796.
[2] 刘亚龙, 王鹏飞, 于爱忠, 王玉珑, 尚永盼, 杨学慧, 尹波, 张冬玲, 王凤. 绿肥还田条件下减氮对河西绿洲灌区玉米产量及N2O排放的影响[J]. 作物学报, 2025, 51(3): 771-784.
[3] 王岩, 白春生, 李波, 范虹, 何蔚, 杨莉莉, 曹悦, 赵财. 覆膜免耕和灌水量对西北绿洲灌区玉米产量及光合特性的影响[J]. 作物学报, 2025, 51(3): 755-770.
[4] 阳新月, 肖人滈, 张林茜, 唐铭均, 孙光燕, 杜康, 吕长文, 唐道彬, 王季春. 不同生育期涝渍对甘薯抗逆生理特性及产量形成的影响[J]. 作物学报, 2025, 51(3): 744-754.
[5] 熊强强, 孙长辉, 顾雯霏, 陆彦尧, 周年兵, 郭保卫, 刘国栋, 魏海燕, 朱金燕, 张洪程. 基于生育期、产量和品质对70份粳糯品种(系)的综合评价[J]. 作物学报, 2025, 51(3): 728-743.
[6] 苏明, 吴佳瑞, 洪自强, 李翻过, 周甜, 吴宏亮, 康建宏. 西北半干旱区马铃薯块茎淀粉形成及产量对磷肥减量的响应[J]. 作物学报, 2025, 51(3): 713-727.
[7] 李翔宇, 季欣杰, 王雪莲, 龙安燃, 王峥宇, 杨子慧, 宫香伟, 姜英, 齐华. 秸秆还田配施氮肥对春玉米产量和籽粒品质的影响[J]. 作物学报, 2025, 51(3): 696-712.
[8] 胡雅杰, 郭靖豪, 丛舒敏, 蔡沁, 徐益, 孙亮, 郭保卫, 邢志鹏, 杨文飞, 张洪程. 灌浆前期低温弱光复合处理对水稻产量和品质的影响[J]. 作物学报, 2025, 51(2): 405-417.
[9] 秦梦倩, 黄威, 陈敏, 宁宁, 何德志, 胡兵, 夏起昕, 蒋博, 程泰, 常海滨, 王晶, 赵杰, 汪波, 蒯婕, 徐正华, 周广生. 氮肥运筹对迟播油菜产量及抗倒性的影响[J]. 作物学报, 2025, 51(2): 432-446.
[10] 王崇铭, 陆志峰, 闫金垚, 宋毅, 王昆昆, 方娅婷, 李小坤, 任涛, 丛日环, 鲁剑巍. 磷肥用量对油稻轮作系统作物产量与磷素吸收量及其稳定性的影响[J]. 作物学报, 2025, 51(2): 447-458.
[11] 覃金华, 洪卫源, 冯向前, 李子秋, 周子榆, 王爱冬, 李瑞杰, 王丹英, 张运波, 陈松. 基于氮肥运筹下水稻产量与品质协同的农艺生理指标解析[J]. 作物学报, 2025, 51(2): 485-502.
[12] 陈于婷, 丁晓雨, 许本波, 张学昆, 徐劲松, 殷艳. 气候变暖对冬油菜产量、品质及重要农艺性状的影响[J]. 作物学报, 2025, 51(2): 516-525.
[13] 王鹏博, 张冬霞, 乔唱唱, 黄明, 王贺正. 秸秆还田和施磷量对豫西旱地小麦土壤酶活性和产量形成的影响[J]. 作物学报, 2025, 51(2): 534-547.
[14] 张军, 胡川, 周起晖, 任开明, 董誓言, 刘傲寒, 吴金芝, 黄明, 李友军. 减氮及有机肥替代对旱地冬小麦干物质积累、转运、分配和产量的影响[J]. 作物学报, 2025, 51(1): 207-220.
[15] 赵黎明, 段绍彪, 项洪涛, 郑殿峰, 冯乃杰, 沈雪峰. 干湿交替灌溉与植物生长调节剂对水稻光合特性及内源激素的影响[J]. 作物学报, 2025, 51(1): 174-188.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .