欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (2): 459-469.doi: 10.3724/SP.J.1006.2025.41019

• 耕作栽培·生理生化 • 上一篇    下一篇

燕麦红芸豆带状间作的产量效应及根系形态与土壤酶活性

张辰煜1,葛军勇2,褚俊聪1,王星宇2,赵宝平3,杨亚东1,*,臧华栋1,曾昭海1,*   

  1. 1 中国农业大学农学院 / 农业农村部农作制度重点实验室, 北京100193; 2张家口市农业科学院, 河北张家口075000; 3 内蒙古农业大学农学院, 内蒙古呼和浩特010019
  • 收稿日期:2024-03-10 修回日期:2024-10-25 接受日期:2024-10-25 出版日期:2025-02-12 网络出版日期:2024-11-12
  • 通讯作者: 杨亚东, E-mail: yadong_tracy@cau.edu.cn; 曾昭海, E-mail: zengzhaohai@cau.edu.cn
  • 基金资助:
    土壤酶活性[本研究由国家重点研发计划项目(2023YFD1600702)和财政部和农业农村部国家现代农业产业技术体系建设专项(CARS07-B-5, CARS07-A-6)资助。

Yield effect and its root and soil enzyme characteristics of oat and red kidney bean strip intercropping

ZHANG Chen-Yu1,GE Jun-Yong2,CHU Jun-Cong1,WANG Xing-Yu2,ZHAO Bao-Ping3,YANG Ya-Dong1,*,ZANG Hua-Dong1,ZENG Zhao-Hai1,*   

  1. 1 College of Agronomy and Biotechnology, China Agricultural University / Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; 2 Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou 075000, Hebei, China; 3 College of Agronomy, Inner Mongolia Agricultural University, Hohhot 010019, Inner Mongolia, China
  • Received:2024-03-10 Revised:2024-10-25 Accepted:2024-10-25 Published:2025-02-12 Published online:2024-11-12
  • Supported by:
    This study was supported by the National Key Research and Development Program of China (2023YFD1600702) and the China Agriculture Research System of MOF and MARA (CARS07-B-5, CARS07-A-6).

摘要:

为明确豆禾间作系统的产量及其与作物根系和土壤酶学特性的关系。于20202021年在河北省张北县开展了2年大田试验,以燕麦单作、红芸豆单作为对照,研究了燕麦和红芸豆带状间作模式的产量效应、根系特征以及土壤酶活性。结果表明,2年试验中,间作模式的土地当量比分别为1.071.08,且燕麦的偏土地当量比为0.630.72。间作模式的净收益与2种单作相比差异不显著,但产投比均大于单作模式。间作燕麦在拔节期根长、根表面积、根体积在0~10 cm10~20 cm两个土层均低于单作,但在灌浆期均高于单作;间作红芸豆根系形态参数在2个土层随生育期进程均由优势逐渐变为劣势。间作对燕麦各时期土壤酶活性的影响不显著,但显著提高了红芸豆开花期和鼓粒期0~10 cm10~20 cm两个土层土壤CNALP获取酶活性。偏最小二乘路径分析显示燕麦的产量主要受到根系特性影响,而红芸豆主要受土壤酶活性影响。由此可见,燕麦‖红芸豆模式有更高的经济效益,可以提升系统生产力,且燕麦和红芸豆产量变化作用路径不同。

关键词: 燕麦, 红芸豆, 带状间作, 产量, 根系特征

Abstract:

To evaluate the yield of a bean and cereal intercropping system and its relationship with root and soil enzyme characteristics, a two-year field experiment (2021–2022) was conducted in Zhangbei county, Hebei province, China. The study examined crop yield, root characteristics, and soil enzyme activities in oat and red kidney bean strip intercropping, with oat monoculture and red kidney bean monoculture as controls. The results showed that the land equivalent ratios (LER) for oat and red kidney bean intercropping were 1.07 and 1.08, respectively, over the two years. The partial land equivalent ratios (PLER) for oat were 0.63 and 0.72. While there was no significant difference in net income between intercropping and monoculture systems, the output-to-input ratio in the intercropping system was higher than in either monoculture. At the jointing stage, oat root length, surface area, and volume in intercropping were lower than in monoculture, but these parameters were higher at the filling stage in both the 0–10 cm and 10–20 cm soil layers. For intercropped red kidney bean, the dominance of root morphological parameters shifted to inferiority as the growth stage advanced. Relay intercropping had minimal effects on oat soil enzyme activities but significantly increased the activities of C, N, and ALP acquisition enzymes in the 0–10 cm and 10–20 cm soil layers at the flowering and filling stages of red kidney bean. Partial least squares path analysis revealed that oat yield was primarily influenced by root characteristics, while red kidney bean yield was predominantly regulated by soil enzyme activities. In conclusion, oat and red kidney bean strip intercropping enhances system productivity, provides higher economic benefits, and the yield dynamics of oat and red kidney bean are driven by different underlying mechanisms.

Key words: oat, red kidney bean, strip intercropping, yield, root system, soil enzyme activity

[1] Homulle Z, George T S, Karley A J. Root traits with team benefits: understanding belowground interactions in intercropping systems. Plant Soil, 2022, 471: 1–26.

[2] Li L, Sun J H, Zhang F S, Li X L, Yang S C, Rengel Z. Wheat/maize or wheat/soybean strip intercropping I. Yield advantage and interspecific interactions on nutrients. Field Crops Res, 2001, 71: 123–137.

[3] Gao X, Wu M, Xu R N, Wang X R, Pan R Q, Kim H J, Liao H. Root interactions in a maize/soybean intercropping system control soybean soil-borne disease, red crown rot. PLoS One, 2014, 9: e95031.

[4] Chapagain T, Riseman A. Intercropping wheat and beans: effects on agronomic performance and land productivity. Crop Sci, 2014, 54: 2285–2293.

[5] 杨亚东, 冯晓敏, 任长忠, 胡跃高, 张卫建, 曾昭海. 燕麦大豆、燕麦绿豆系统种间互作对氮素吸收与结瘤固氮的影响. 中国农业科学, 2015, 48: 32–39.
Yang Y D, Feng X M, Ren C Z, Hu Y G, Zhang W J, Zeng Z H. Effects of interspecific interactions on nitrogen absorption, nodulation and nitrogen fixation in oat  soybean and oat  mung bean intercropping systems. Sci Agric Sin, 2015, 48: 3239 (in Chinese with English abstract).

[6] Zheng B C, Zhou Y, Chen P, Zhang X N, Du Q, Yang H, Wang X C, Yang F, Xiao T, Li L, Yang W Y, Yong T W. Maize–legume intercropping promotes N uptake through changing the root spatial distribution, legume nodulation capacity, and soil N availability. J Integr Agric, 2022, 21: 1755–1771.

[7] Gong X W, Dang K, Lv S M, Zhao G, Tian L X, Luo Y, Feng B L. Interspecific root interactions and water-use efficiency of intercropped proso millet and mung bean. Eur J Agron, 2020, 115: 126034.

[8] McCormack M L, Adams T S, Smithwick E A H, Eissenstat D M. Variability in root production, phenology, and turnover rate among 12 temperate tree species. Ecology, 2014, 95: 2224–2235.

[9] Hassan A, Dresbøll D B, Rasmussen C R, Lyhne-Kjærbye A, Nicolaisen M H, Stokholm M S, Lund O S, Thorup-Kristensen K. Root distribution in intercropping systems–a comparison of DNA based methods and visual distinction of roots. Arch Agron Soil Sci, 2021, 67: 15–28.

[10] Xia H Y, Zhao J H, Sun J H, Bao X G, Christie P, Zhang F S, Li L. Dynamics of root length and distribution and shoot biomass of maize as affected by intercropping with different companion crops and phosphorus application rates. Field Crops Res, 2013, 150: 52–62.

[11] Ehrmann J, Ritz K. Plant: soil interactions in temperate multi-cropping production systems. Plant Soil, 2014, 376: 1–29. 

[12] Peng X Q, Wang W. Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of Northern China. Soil Biol Biochem, 2016, 98: 74–84.

[13张瑞, 焉学倩, 杨忠亮, 张丹丹, 闫梅霞, 王英平. 作物间作研究进展特产研究, 网络首发 [2023-10-17], https://doi.org/10.16720/j.cnki.tcyj.2023.171.
Zhang R, Yan X Q, Yang Z L, Zhang D D, Yan M X, Wang Y P. Advances in study on intercropping of crops. Agric Res Arid Areas, Published online [2023-10-17], https://doi.org/10.16720/j.cnki.tcyj.2023.171 (in Chinese with English abstract).

[14] 覃潇敏, 郑毅, 汤利, 龙光强施氮对玉米//马铃薯间作根际土壤酶活性和硝化势的影响. 云南农业大学学报(自然科学), 2015, 30: 886–894.
Qin X M, Zheng Y, Tang L, Long G Q. Effects of nitrogen application rates on rhizosphere soil enzyme activity and potential nitrification in maize and potato intercropping. J Yunnan Agric Univ (Nat Sci), 2015: 886–894 (in Chinese with English abstract).

[15] Wang Z G, Bao X G, Li X F, Jin X, Zhao J H, Sun J H, Christie P, Li L. Intercropping maintains soil fertility in terms of chemical properties and enzyme activities on a timescale of one decade. Plant Soil, 2015, 391: 265–282.

[16罗志成北方旱地农业研究的进展与思考. 干旱地区农业研究, 199412(1): 4–13.
Luo Z C. Progress and consideration of dryland farming research in North China. Agric Res Arid Areas, 1994, 12(1): 4–13 (in Chinese).

[17] 冯文豪, 佟越强, 杨亚东, 葛军勇, 臧华栋, 曾昭海全球燕麦生产时空演变规律及对中国的启示. 麦类作物学报, 2022, 42: 902–910.
Feng W H, Tong Y Q, Yang Y D, Ge J Y, Zang H D, Zeng Z H. Spatial-temporal evolution characteristics of global oat production and its enlightment to China. J Triticeae Crops, 2022, 42: 902–910 (in Chinese with English abstract).

[18] Sadras V O, Mahadevan M, Zwer P K. Oat phenotypes for drought adaptation and yield potential. Field Crops Res, 2017, 212: 135–144.

[19畅建武, 郝晓鹏, 王燕, 杨伟, 郜欣红芸豆氮磷钾肥效试验研究. 中国农学通报, 2015, 31(15): 108–113.
Chang J W, Hao X P, Wang Y, Yang W, Gao X. Fertilizer efficiency experiment of nitrogen phosphorus and potassium on red kidney bean. Chin Agric Sci Bull, 2015, 31(15): 108–113 (in Chinese with English abstract).

[20] Ma H Y, Zhou J, Ge J Y, Nie J W, Zhao J, Xue Z Q, Hu Y G, Yang Y D, Peixoto L, Zang H D, Zeng Z H. Intercropping improves soil ecosystem multifunctionality through enhanced available nutrients but depends on regional factors. Plant Soil, 2022, 480: 71–84.

[21] Mead R, Willey R W. The concept of a ‘land equivalent ratio’ and advantages in yields from intercropping. Ex Agric, 1980, 16: 217–228.

[22] 王月, 张鹏鹏, 施磊, 臧华栋, 葛军勇, 曾昭海, 杨亚东. 北方半干旱区燕麦带状间作模式构建及经济效益分析. 山西农业大学学报(自然科学版), 2022, 42(5): 5565.
Wang Y, Zhang P P, Shi L, Zang H D, Ge J Y, Zeng Z H, Yang Y D. Construction and economic benefits analysis of oat strip intercropping model of oat-based strip intercropping systems in the semi-arid area of northern China. J Shanxi Agric Univ (Nat Sci Edn), 2022, 42(5): 5565 (in Chinese with English abstract).

[23] Saraswati S, Parsons C T, Strack M. Access roads impact enzyme activities in boreal forested peatlands. Sci Total Environ, 2019, 651: 1405–1415.

[24汪雪, 刘晓静, 王静, 童长春, 吴勇. 紫花苜蓿-燕麦连续间作下根系及土壤养分时空变化特征. 应用生态学报, 2023, 34: 2683–2692.
Wang X, Liu X J, Wang J, Tong C C, Wu Y. Temporal-spatial variations of root and soil nutrient under continuous intercropping of alfalfa and oat. Chin J Appl Ecol, 2023, 34: 26832692 (in Chinese with English abstract).

[25赵财, 周海燕, 柴强, 黄高宝, 刘辉娟, 朱静. 不同供水水平下丁香酚和间作蚕豆对小麦根系生长的互作效应. 草业学报, 2014, 23(2): 133–139.
Zhao C, Zhou H Y, Chai Q, Huang G B, Liu H J, Zhu J. Effects of eugenol and intercropped faba-bean on wheat root growth under different water supply conditions. Acta Pratac Sin, 2014, 23(2): 133139 (in Chinese with English abstract).

[26] 王婷, 王强学, 李永梅, 王自林, 肖靖秀, 范茂攀玉米大豆间作对作物根系及土壤团聚体稳定性的影响. 云南农业大学学报(自然科学), 2021, 36: 507–515.
Wang T, Wang Q X, Li Y M, Wang Z L, Xiao J X, Fan M P. Effect of maize and soybean intercropping on root system and soil aggregate stability. J Yunnan Agric Univ (Nat Sci), 2021, 36: 507–515 (in Chinese with English abstract).

[27鲍根生, 李媛, 冯晓云, 张鹏, 孟思宇. 高寒区氮添加和间作种植互作对燕麦和豌豆根系构型影响的研究. 草业学报, 2024, 33(3): 7384.
Bao G S, Li Y, Feng X Y, Zhang P, Meng S Y. Interactive effects of intercropping patterns and nitrogen addition on root architectural characteristics of oat and pea in an alpine region. Acta Pratac Sin, 2024, 33(3): 7384 (in Chinese with English abstract).

[28] 朱亚琼, 郑伟, 王祥, 关正翾混播方式对豆禾混播草地植物根系构型特征的影响. 草业学报, 2018, 27(1): 73–85.
Zhu Y Q, Zheng W, Wang X, Guan Z X. Effects plant spacing pattern on root morphological and architectural characteristics of legume-grass mixtures. Acta Pratac Sin, 2018, 27(1): 73–85 (in Chinese with English abstract).

[29] 马忠明, 杜少平, 王平, 包兴国长期定位施肥对小麦玉米间作土壤酶活性的影响. 核农学报, 2011, 25: 796–801.
Ma Z M, Du S P, Wang P, Bao X G. Effects of long-term located fertilization on soil enzymatic activities for wheat-maize intercropping in irrigated desert soils. J Nucl Agric Sci, 2011, 25: 796–801 (in Chinese with English abstract).

[30王庆宇, 李立军, 阮慧, 周红生, 李晓婷旱地燕麦间作对土壤酶活性、微生物含量及产量的影响. 干旱地区农业研究, 2019, 37(2): 179–184.
Wang Q Y, Li L J, Ruan H, Zhou H S, Li X T. Effects of intercropping of oat on soil enzyme activity, microbial content and yield in arid land. Agric Res Arid Areas, 2019, 37(2): 179–184 (in Chinese with English abstract).

[31] Sinsabaugh R L, Hill B H, Follstad Shah J J. Eco enzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 2009, 462: 795–798.

[32] 马怀英, 王上, 杨亚东, 冯晓敏, 曾昭海, 任长忠, 臧华栋, 胡跃高. 燕麦与豆科作物间作的产量、经济效益与碳足迹分析. 中国农业大学学报, 2021, 26(8): 2332.
Ma H Y, Wang S, Yang Y D, Feng X M, Zeng Z H, Ren C Z, Zang H D, Hu Y G. Intercropping of oat with mung bean, peanut, and soybean: yield advantages, economic benefits and carbon footprints. J China Agric Univ, 2021, 26(8): 2332 (in Chinese with English abstract).

[33] 朱珍勇, 高文道, 王晓云, 周明, 徐永忠. 配方施肥模式对南粳9108产量和产投比的影响. 农业科技通讯, 2023, (11): 5660.
Zhu Z Y, Gao W D, Wang X Y, Zhou M, Xu Y Z. Effect of formulated fertilization mode on the yield and input-output ratio of Nanjing 9108. Bull Agric Sci Technol, 2023, (11): 56–60 (in Chinese).

[34] 杜文盼, 赵桂琴, 柴继宽, 杨莉, 张建贵, 史怡超, 张官禄. 根系分隔方式对燕麦/豌豆间作地上生物量、土壤养分及根系性状的影响. 草业学报, 2024, 33(8): 2536.
Du W P, Zhao G Q, Chai J K, Yang L, Zhang J G, Shi Y C, Zhang G L. Effects of root separation on aboveground biomass, soil nutrient contentsand root characters of intercropped oat and pea. Acta Pratac Sin, 2024, 33(8): 2536 (in Chinese with English abstract).

[35彭良斌, 周杰, 马怀英, 臧华栋, 靳建刚, 薛志强, 杨亚东, 曾昭海燕麦与马铃薯带状间作产量优势及土地利用率. 中国农业大学学报, 2023, 28(3): 38–49.
Peng L B, Zhou J, Ma H Y, Zang H D, Jin J G, Xue Z Q, Yang Y D, Zeng Z H. Yield advantage and land utilization of oat and potato strip intercropping system. J China Agric Univ, 2023, 28(3): 38–49 (in Chinese with English abstract).

[36冯晓敏, 杨永, 臧华栋, 钱欣, 胡跃高, 宋振伟, 张卫建, 曾昭海. 燕麦花生间作系统作物氮素累积与转移规律. 植物营养与肥料学报, 2018, 24: 617624.
Feng X M, Yang Y, Zang H D, Qian X, Hu Y G, Song Z W, Zhang W J, Zeng Z H. Characteristics of crop nitrogen accumulation and nitrogen transfer in oat and peanut intercropping system. J Plant Nutr Fert, 2018, 24: 617–624 (in Chinese with English abstract).

[37] Qian X, Zang H D, Xu H S, Hu Y G, Ren C Z, Guo L C, Wang C L, Zeng Z H. Relay strip intercropping of oat with maize, sunflower and mung bean in semi-arid regions of Northeast China: yield advantages and economic benefits. Field Crops Res, 2018, 223: 33–40.

[38] Yong Y, Hu Y G, Shahrajabian M H, Ren C Z, Guo L C, Wang C L, Zeng Z H. Organic matter, protein percentage, yield, competition and economics of oat-soybean and oat-groundnut intercropping systems in Northern China. Cercetari Agron Moldova, 2017, 50: 25–35.

[39] Tscherko D, Rustemeier J, Richter A, Wanek W, Kandeler E. Functional diversity of the soil microflora in primary succession across two glacier forelands in the Central Alps. Eur J Soil Sci, 2003, 54: 685–696.

[40] 李金婷, 覃潇敏, 覃宏宇, 农玉琴, 骆妍妃, 韦持章, 韦锦坚间作对玉米根系形态特征及其氮磷养分吸收的影响. 南方农业学报, 2022, 53(5): 1348–1356.
Li J T, Qin X M, Qin H Y, Nong Y Q, Luo Y F, Wei C Z, Wei J J. Effects of maize and soybean intercrop on maize root morphological traits and its nitrogen and phosphorus nutrient absorption. J South Agric, 2022, 53(5): 1348–1356 (in Chinese with English abstract).

[41] 邵泽强, 刘书奇, 勾千冬, 依德萍, 陆文龙施氮和种植模式对玉米/紫花苜蓿间作体系中作物产量、吸氮量和根系形态的影响. 东北农业科学, 2023, 48(4): 6–11.
Shao Z Q, Liu S Q, Gou Q D, Yi D P, Lu W L. Effects of nitrogen application and planting patterns on crop yield, nitrogen uptake and root morphology in a maize/alfalfa intercropping system. J Northeast Agric Sci, 2023, 48(4): 6–11 (in Chinese with English abstract).

[42] 赵建华, 孙建好, 陈亮之三种豆科作物与玉米间作对玉米生产力和种间竞争的影响. 草业学报, 2020, 29(1): 86–94.
Zhao J H, Sun J H, Chen L Z. Productivity and interspecific competition of maize intercropped with faba bean, soybean or pea. Acta Pratac Sin, 2020, 29(1): 86–94 (in Chinese with English abstract).

[43] Liu S, Xu G X, Chen H H, Zhang M M, Cao X W, Chen M, Chen J, Feng Q H, Shi Z M. Contrasting responses of soil microbial biomass and extracellular enzyme activity along an elevation gradient on the eastern Qinghai-Tibetan Plateau. Front Microbiol, 2023, 14: 974316.

[44] 张卫信, 申智锋, 邵元虎, 时雷雷, 刘胜杰, 史楠楠, 傅声雷. 土壤生物与可持续农业研究进展. 生态学报, 2020, 40: 31833206.
Zhang W X, Shen Z F, Shao Y H, Shi L L, Liu S J, Shi N N, Fu S L. Soil biota and sustainable agriculture: a review. Acta Ecol Sin, 2020, 40: 3183–3206 (in Chinese with English abstract).

[1] 胡雅杰, 郭靖豪, 丛舒敏, 蔡沁, 徐益, 孙亮, 郭保卫, 邢志鹏, 杨文飞, 张洪程. 灌浆前期低温弱光复合处理对水稻产量和品质的影响[J]. 作物学报, 2025, 51(2): 405-417.
[2] 秦梦倩, 黄威, 陈敏, 宁宁, 何德志, 胡兵, 夏起昕, 蒋博, 程泰, 常海滨, 王晶, 赵杰, 汪波, 蒯婕, 徐正华, 周广生. 氮肥运筹对迟播油菜产量及抗倒性的影响[J]. 作物学报, 2025, 51(2): 432-446.
[3] 王崇铭, 陆志峰, 闫金垚, 宋毅, 王昆昆, 方娅婷, 李小坤, 任涛, 丛日环, 鲁剑巍. 磷肥用量对油稻轮作系统作物产量与磷素吸收量及其稳定性的影响[J]. 作物学报, 2025, 51(2): 447-458.
[4] 覃金华, 洪卫源, 冯向前, 李子秋, 周子榆, 王爱冬, 李瑞杰, 王丹英, 张运波, 陈松. 基于氮肥运筹下水稻产量与品质协同的农艺生理指标解析[J]. 作物学报, 2025, 51(2): 485-502.
[5] 陈于婷, 丁晓雨, 许本波, 张学昆, 徐劲松, 殷艳. 气候变暖对冬油菜产量、品质及重要农艺性状的影响[J]. 作物学报, 2025, 51(2): 516-525.
[6] 王鹏博, 张冬霞, 乔唱唱, 黄明, 王贺正. 秸秆还田和施磷量对豫西旱地小麦土壤酶活性和产量形成的影响[J]. 作物学报, 2025, 51(2): 534-547.
[7] 赵黎明, 段绍彪, 项洪涛, 郑殿峰, 冯乃杰, 沈雪峰. 干湿交替灌溉与植物生长调节剂对水稻光合特性及内源激素的影响[J]. 作物学报, 2025, 51(1): 174-188.
[8] 王丽萍, 李盼, 赵连豪, 樊志龙, 胡发龙, 范虹, 何蔚, 柴强, 殷文. 西北绿洲灌区玉米叶片衰老特征对不同地膜覆盖利用方式的响应[J]. 作物学报, 2025, 51(1): 233-246.
[9] 王媛, 许佳茵, 董二伟, 王劲松, 刘秋霞, 黄晓磊, 焦晓燕. 有机肥替代化肥氮对谷子氮素累积、产量及品质的影响[J]. 作物学报, 2025, 51(1): 149-160.
[10] 辛明华, 秘雅迪, 王国平, 李小飞, 李亚兵, 董合林, 韩迎春, 冯璐. 行距配置和种植密度对棉花干物质生产及产量的影响[J]. 作物学报, 2025, 51(1): 221-232.
[11] 李超, 付小琼. 基于GYT双标图综合评价黄河流域中熟杂交棉花区域试验品种[J]. 作物学报, 2025, 51(1): 30-43.
[12] 丁树启, 程彤, 王弼琨, 于德彬, 饶德民, 孟凡钢, 赵胤凯, 王晓慧, 张伟. 密植对不同年代大豆品种群体光合生产和产量形成的影响[J]. 作物学报, 2025, 51(1): 161-173.
[13] 张军, 胡川, 周起晖, 任开明, 董誓言, 刘傲寒, 吴金芝, 黄明, 李友军. 减氮及有机肥替代对旱地冬小麦干物质积累、转运、分配和产量的影响[J]. 作物学报, 2025, 51(1): 207-220.
[14] 张贵芹, 王洪章, 郭新送, 朱福军, 高涵, 张吉旺, 赵斌, 任佰朝, 刘鹏, 任昊. 有机物料投入对滨海盐碱地土壤理化性状和夏玉米产量形成的影响[J]. 作物学报, 2024, 50(9): 2323-2334.
[15] 张振, 何建宁, 石玉, 于振文, 张永丽. 行距和种植方式对小麦光合特性和产量的影响[J]. 作物学报, 2024, 50(9): 2396-2407.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!