欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (5): 1277-1285.doi: 10.3724/SP.J.1006.2025.43043

• 耕作栽培·生理生化 • 上一篇    下一篇

耕层构造后东北旱作农田土壤有机碳组分积累及其稳定性特征

邹逸淼1(), 于湘萍1, 苗玉聪1, 蔡倩2, 杜桂娟2, 赵凤艳2, 张诗雨2, 李双异1, 白伟2,*()   

  1. 1沈阳农业大学土地与环境学院, 辽宁沈阳 110866
    2辽宁省农业科学院耕作栽培研究所 / 农业农村部东北节水农业重点实验室, 辽宁沈阳 110161
  • 收稿日期:2024-09-13 接受日期:2025-01-23 出版日期:2025-05-12 网络出版日期:2025-02-11
  • 通讯作者: *白伟, E-mail: libai200008@126.com
  • 作者简介:E-mail: 424475165@qq.com
  • 基金资助:
    国家自然科学基金项目(32272232);中国科学院战略性先导科技专项(XDA28090202);辽宁省“揭榜挂帅”科技攻关专项计划课题(2021JH1/1040003902);辽宁省农业科学院学科建设项目(120520303)

Characteristics of soil organic carbon fraction accumulation and its stability in dry-crop farmland in northeast China after plough layer construction

ZOU Yi-Miao1(), YU Xiang-Ping1, MIAO Yu-Cong1, CAI Qian2, DU Gui-Juan2, ZHAO Feng-Yan2, ZHANG Shi-Yu2, LI Shuang-Yi1, BAI Wei2,*()   

  1. 1College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
    2Institute of Tillage and Cultivation, Liaoning Academy of Agricultural Sciences / Key Laboratory of Water-saving Agriculture in Northeast China, Ministry of Agriculture and Rural Affairs, Shenyang 110161, Liaoning, China
  • Received:2024-09-13 Accepted:2025-01-23 Published:2025-05-12 Published online:2025-02-11
  • Contact: *E-mail: libai200008@126.com
  • Supported by:
    National Natural Science Foundation of China(32272232);Strategic Priority Science and Technology Project of the Chinese Academy of Sciences(XDA28090202);Science and Technology Research Project of Liaoning Province(2021JH1/1040003902);Discipline Construction Project of Liaoning Academy of Agricultural Sciences(120520303)

摘要:

耕层构造是影响土壤有机碳(SOC)积累和玉米生长发育的重要技术措施, 研究耕层构造后SOC组分积累及其稳定性的变化, 对深入解析东北春玉米区农田固碳培肥机制和建立合理耕层结构具有重要意义。本文依托始于2009年的14年田间定位试验, 试验采用随机区组设计, 研究了上虚下实耕层(ULDC, CK)、全虚耕层(AL)、虚实并存耕层(FLRC)和全实耕层(AC) 4个处理对SOC组分积累及其稳定性的影响。结果表明, 耕层构造显著影响0~15 cm和15~35 cm土层SOC含量, 其中AC在0~15 cm土层中促进了SOC积累。耕层构造改变了颗粒态有机碳(POC)和矿质结合态有机碳(MAOC)的含量及其占SOC的比例, 其中AC比ULDC显著提高0~15 cm土层MAOC含量(增幅为34.2%), 但显著降低了15~35 cm土层中MAOC含量(降幅为22.2%), 而POC含量在不同土层中的变化与不同耕层构造方式有关。相关性分析表明, POC/SOC与土壤微生物量碳(MBC)呈极显著正相关(r=0.74**), MAOC/SOC与MBC呈显著负相关(r= -0.69*), 表明耕层构造影响碳组分在碳库中的分配, 调控了SOC稳定性。研究结果进一步验证了合理耕层构造在调控土壤有机碳组分和提高其稳定性方面的重要作用, 为土壤健康管理和耕层结构优化提供了科学依据。综上, AC能够增加土壤有机碳组分积累, 增强了土壤碳库的稳定性, 这在辽西旱作农田合理耕层构建中具有一定的应用价值。

关键词: 耕层构造, 土壤有机碳, 有机碳组分, 稳定性, 旱作

Abstract:

Tillage structure is a critical agricultural practice that influences the accumulation of soil organic carbon (SOC) and the growth and development of maize. Investigating changes of post-tillage structure on the accumulation and stability of SOC fractions is essential for understanding mechanism of carbon fixation and fertilization in the spring maize region of Northeast China and for establishing optimal tillage structures. This study is based on a 14-year field experiment initiated in 2009, employing a randomized block design to evaluate the impacts of four tillage treatments: up-loose and down-compaction plough layer (ULDC, CK), all-loose plough layer (AL), furrow-loose and ridge-compaction plough layer (FLRC), and all-compaction plough layer (AC). The treatments were assessed for their effects on the accumulation and stability of SOC fractions. The results demonstrated that tillage layer structure significantly influenced SOC content in the 0-15 cm and 15-35 cm soil layers, with the AC treatment promoting greater SOC accumulation in the 0-15 cm layer. Tillage structure also altered the distribution of particulate organic carbon (POC) and mineral-associated organic carbon (MAOC) and their proportions within SOC. Specifically, the AC treatment significantly increased MAOC content in the 0-15 cm soil layer by 34.2% compared to the ULDC treatment, while decreasing MAOC content in the 15-35 cm soil layer by 22.2%. The variation in POC content across soil layers was closely related to different tillage construction methods. Correlation analysis revealed that the POC/SOC ratio was highly positively correlated with soil microbial biomass carbon (MBC) (r = 0.74**), while the MAOC/SOC ratio was significantly negatively correlated with MBC (r = -0.69*). These findings suggest that tillage structure influences the distribution of carbon components within the carbon pool, modulated SOC stability. This study highlights the critical role of rational tillage structure in regulating SOC fractions and enhancing their stability, providing a scientific basis for soil health management and tillage structure optimization. In conclusion, the AC treatment demonstrated the potential to promote SOC fraction accumulation and improve soil carbon pool stability, offering practical value for the development of sustainable tillage practices in dryland farming systems in western Liaoning.

Key words: plough layer structure, soil organic carbon, soil organic carbon fraction, stability of soil organic carbon pool, dry farming

图1

试验地点2023年生育期内降雨量和平均温度"

表1

不同耕层构造方式具体操作流程"

耕层构造处理方式
Tillage construction method
具体操作流程
Specific operation process
上虚下实耕层ULDC 每年春季采用传统旋耕机进行作业, 深度12-15 cm, 播种, 构建为上虚下实耕层结构, 该构造为当地传统耕作模式, 作为本研究对照(CK)。
The operation was performed each spring using a traditional rotary tiller to a depth of 12-15 cm, followed by seed sowing. This created a top-loose and bottom-compacted tillage structure, representing the local traditional tillage practice, which served as the control (CK) in this study.
全虚耕层AL 2009开始每年采用“V”型深松机进行作业, 深度30-35 cm, 再用传统旋耕机旋耕, 播种, 构造为全虚耕层结构。
Since 2009, a “V”-type deep loosening machine has been used annually to loosen the soil to a depth of 30-35 cm, followed by rotary tillage with a conventional rotary tiller and seed sowing. This process creates a fully loose tillage structure.
虚实并存耕层FLRC 每年采用凿式深松机进行作业, 深度25-30 cm, 宽幅50 cm, 再用旋耕机旋耕, 播种, 构造为虚实并存耕层结构。
The annual operation is conducted using a chisel-type deep loosening machine to a depth of 25-30 cm and a width of 50 cm, followed by rotary tillage and seed sowing with a rotary tiller. This process creates a combined imaginary and existing tillage structure.
全实耕层AC 每年采用免耕播种机直接播种, 构造为全实耕层结构。
Annual direct seeding with no-till planter, constructed as a full solid tillage structure.

表2

不同耕层构造对不同土层土壤理化性质的影响"

土层
Soil layer (cm)
处理
Treatment
土壤有机碳
SOC (g kg-1)
全氮
TN (g kg-1)
容重
BD (g cm-3)
碳氮比
C/N
pH
0-15 CK
AL
FLRC
AC
8.42±0.13 b
7.44±0.08 c
7.08±0.04 d
8.82±0.06 a
0.91±0.00 a
0.65±0.05 b
0.65±0.04 b
0.85±0.04 a
1.40±0.01 b
1.41±0.01 b
1.42±0.03 b
1.54±0.05 a
9.29±0.11 a
11.57±0.79 a
11.02±0.66 ab
10.46±0.42 ab
6.32±0.03 b
6.27±0.05 b
6.51±0.05 a
6.42±0.02 a
15-35 CK
AL
FLRC
AC
7.16±0.01 a
6.93±0.17 ab
6.58±0.03 b
5.89±0.17 c
1.05±0.03 a
0.66±0.01 b
0.54±0.02 c
0.52±0.02 c
1.60±0.02 a
1.55±0.01 a
1.55±0.03 a
1.54±0.04 a
6.83±0.19 c
10.58±0.12 b
12.33±0.42 a
11.33±0.14 b
6.41±0.03 b
6.41±0.05 b
6.57±0.05 a
6.35±0.02 b

图2

不同耕层构造下土壤颗粒态有机碳和矿物结合态有机碳含量及其占有机碳比例 缩写同表1和表2。图中误差线为标准误, 同一土层不同处理无相同字母表示处理之间存在显著差异(P < 0.05); POC代表颗粒有机碳; MAOC代表矿物结合态有机碳。"

图3

不同耕层构造后土壤微生物量碳和可溶性有机碳含量 缩写同表1。图中误差线为标准误, 同一土层不同处理无相同字母表示处理之间存在显著差异(P < 0.05)。MBC代表微生物生物量碳; DOC代表可溶性有机碳。"

表3

不同耕层构造后土壤微生物量碳和可溶性有机碳与有机碳组分占比的相关性分析"

土层
Soil layer (cm)
有机碳组分占比
Ratio of SOC fraction
SOC MBC DOC
0-15 POC/SOC -0.42 0.74** 0.23
MAOC/SOC 0.20 -0.69* 0.08
15-35 POC/SOC 0.48 -0.03 0.48
MAOC/SOC 0.22 0.33 0.38
[1] 白伟, 孙占祥, 郑家明, 郝卫平, 刘勤, 冯良山, 蔡倩, 冯晨. 耕层构造对春玉米产量形成及生长发育特征的影响. 华北农学报, 2015, 30(5): 205-213.
doi: 10.7668/hbnxb.2015.05.033
Bai W, Sun Z X, Zheng J M, Hao W P, Liu Q, Feng L S, Cai Q, Feng C. Effect of plough layer constructions on maize growth and yield in western Liaoning Province. Acta Agric Boreali-Sin, 2015, 30(5): 205-213 (in Chinese with English abstract).
doi: 10.7668/hbnxb.2015.05.033
[2] 韩晓增, 邹文秀, 王凤仙, 王凤菊. 黑土肥沃耕层构建效应. 应用生态学报, 2009, 20: 2996-3002.
Han X Z, Zou W X, Wang F X, Wang F J. Construction effect of fertile cultivated layer in black soil. Chin J Appl Ecol, 2009, 20: 2996-3002 (in Chinese with English abstract).
[3] 许淑青, 张仁陟, 董博, 张鸣. 耕作方式对耕层土壤结构性能及有机碳含量的影响. 中国生态农业学报, 2009, 17: 203-208.
Xu S Q, Zhang R Z, Dong B, Zhang M. Effect of tillage practices on structural properties and content of organic carbon in tilth soil. Chin J Eco-Agric, 2009, 17: 203-208 (in Chinese with English abstract).
[4] 白伟, 孙占祥, 张立祯, 郑家明, 冯良山, 蔡倩, 向午燕, 冯晨, 张哲. 耕层土壤虚实结构优化春玉米根系形态提高水分利用效率. 农业工程学报, 2019, 35(21): 88-97.
Bai W, Sun Z X, Zhang L Z, Zheng J M, Feng L S, Cai Q, Xiang W Y, Feng C, Zhang Z. Furrow loose and ridge compaction plough layer structure optimizing root morphology of spring maize and improving its water use efficiency. Trans CSAE, 2019, 35(21): 88-97 (in Chinese with English abstract).
[5] 丁启朔, 董盛盛, 李毅念, 邱威, 薛金林, 何瑞银. 耕层构造的土壤结构质量-径级数字图像分析. 农业工程学报, 2016, 32(2): 134-140.
Ding Q S, Dong C S, Li Y N, Qiu W, Xue J L, He R Y. Digital image processing of mass-size distribution of soil structures in plough layer. Trans CSAE, 2016, 32(2): 134-140 (in Chinese with English abstract).
[6] 展文洁, 刘剑钊, 梁尧, 袁静超, 张洪喜, 刘松涛, 蔡红光, 任军. 耕层构建方式对土壤理化性状、玉米养分累积及根系形态的影响. 玉米科学, 2020, 28(6): 94-100.
Zhan W J, Liu J Z, Liang Y, Yuan J C, Zhang H X, Liu S T, Cai H G, Ren J. Effects on soil physical and chemical properties, nutrient accumulation and root morphology in maize under different soil plough layer structure mode. J Maize Sci, 2020, 28(6): 94-100 (in Chinese with English abstract).
[7] 胡钧铭, 陈胜男, 韦翔华, 夏旭, 韦本辉. 耕作对健康耕层结构的影响及发展趋势. 农业资源与环境学报, 2018, 35(2): 95-103.
Hu J M, Chen S N, Wei X H, Xia X, Wei B H. Effects of tillage model on healthy plough layer structure and its development trends. J Agric Resour Environ, 2018, 35(2): 95-103 (in Chinese with English abstract).
[8] 白伟, 孙占祥, 张立祯, 郑家明, 冯良山, 蔡倩, 向午燕, 冯晨, 张哲. 耕层构造对土壤三相比和春玉米根系形态的影响. 作物学报, 2020, 46: 759-771.
doi: 10.3724/SP.J.1006.2020.93044
Bai W, Sun Z X, Zhang L Z, Zheng J M, Feng L S, Cai Q, Xiang W Y, Feng C, Zhang Z. Effects of plough layer construction on soil three phase rate and root morphology of spring maize in Northeast China. Acta Agron Sin, 2020, 46: 759-771 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2020.93044
[9] 白伟, 孙占样, 郑家明, 冯良山, 蔡倩. 旱作农田耕层构造对玉米产量及水分利用效率的影响机制. 2014年全国青年作物栽培与生理学术研讨会论文集. 中国作物学会, 北京, 2014.
Bai W, Sun Z X, Zheng J M, Feng L S, Cai Q. Mechanisms of the effect of tillage structure on yield and water use efficiency of maize in dry-crop farmland. Proceedings of the 2014 National Symposium on Crop Cultivation and Physiology for Youth. Crop Science Society of China, Beijing, China, 2014 (in Chinese).
[10] 周煜庄, 王瑞, 姚照胜, 张伟军, 刘涛, 孙成明. 不同土壤表面结构对小麦生长发育及产量的影响. 作物杂志, 2022, (2): 127-133.
Zhou Y Z, Wang R, Yao Z S, Zhang W J, Liu T, Sun C M. Effects of different soil surface structures on wheat growth, development and yield. Crops, 2022, (2): 127-133 (in Chinese with English abstract).
[11] 蔡岸冬, 徐香茹, 张旭博, 徐明岗, 张文菊. 不同利用方式下土壤矿物结合态有机碳特征与容量分析. 中国农业科学, 2014, 47: 4291-4299.
doi: 10.3864/j.issn.0578-1752.2014.21.014
Cai A D, Xu X R, Zhang X B, Xu M G, Zhang W J. Capacity and characteristics of mineral associated soil organic carbon under various land uses. Sci Agric Sin, 2014, 47: 4291-4299 (in Chinese with English abstract).
[12] 徐英德. 基于保护性农业的土壤固碳过程研究进展. 中国生态农业学报(中英文), 2022, 30: 658-670.
Xu Y D. Conservation agriculture-mediated soil carbon sequestration: a review. Chin J Eco-Agric, 2022, 30: 658-670 (in Chinese with English abstract).
[13] 张秀, 赵永存, 谢恩泽, 彭雨璇, 陆访仪. 土壤有机碳时空变化研究进展与展望. 农业环境科学学报, 2020, 39: 673-679.
Zhang X, Zhao Y C, Xie E Z, Peng Y X, Lu F Y. Spatio-temporal change of soil organic carbon, progress and prospects. J Agro Environ Sci, 2020, 39: 673-679 (in Chinese with English abstract).
[14] 章晓芳, 郑生猛, 夏银行, 胡亚军, 苏以荣, 陈香碧. 红壤丘陵区土壤有机碳组分对土地利用方式的响应特征. 环境科学, 2020, 41: 1466-1473.
Zhang X F, Zheng S M, Xia Y H, Hu Y J, Su Y R, Chen X B. Responses of soil organic carbon fractions to land use types in hilly red soil regions, China. Environ Sci, 2020, 41: 1466-1473 (in Chinese with English abstract).
[15] 陈宗定, 许春雪, 安子怡, 王亚平, 孙德忠, 王苏明. 土壤碳赋存形态及分析方法研究进展. 岩矿测试, 2019, 38: 233-244.
Chen Z D, Xu C X, An Z Y, Wang Y P, Sun D Z, Wang S M. Research progress on fraction and analysis methods of soil carbon. Rock Miner Anal, 2019, 38: 233-244 (in Chinese with English abstrac).
[16] 王文颖, 王启基, 鲁子豫. 高寒草甸土壤组分碳氮含量及草甸退化对组分碳氮的影响. 中国科学(D辑: 地球科学), 2009, 39: 647-654.
Wang W Y, Wang Q J, Lu Z Y. Content of soil carbon and nitrogen in alpine meadow and the effect of meadow degradation on soil carbon and nitrogen. Sci China Ser D Earth Sci, 2009, 39: 647-654 (in Chinese).
[17] Cotrufo M F, Ranalli M G, Haddix M L, Six J, Lugato E. Soil carbon storage informed by particulate and mineral-associated organic matter. Nat Geosci, 2019, 12: 989-994.
[18] 田圣陶, 罗洋, 隋鹏祥, 王浩, 任英, 周思琪, 刘海峰, 郑金玉. 长期耕作对黑土有机碳储量及其组分的影响. 应用生态学报, 2024, 35: 2167-2175.
doi: 10.13287/j.1001-9332.202408.012
Tian S T, Luo Y, Sui P X, Wang H, Ren Y, Zhou S Q, Liu H F, Zheng J Y. Impact of long-term tillage on the soil organic carbon storage and its composition in black soil. Chin J Appl Ecol, 2024, 35: 2167-2175 (in Chinese with English abstract).
doi: 10.13287/j.1001-9332.202408.012
[19] 李鉴霖, 江长胜, 郝庆菊. 缙云山不同土地利用方式土壤有机碳组分特征. 生态学报, 2015, 35: 3733-3742.
Li J L, Jiang C S, Hao Q J. Distribution characteristics of soil organic carbon and its physical fractions under the different land uses in Jinyun Mountain. Acta Ecol Sin, 2015, 35: 3733-3742 (in Chinese with English abstract).
[20] 鲍士旦. 土壤农化分析. 第3版. 北京: 中国农业出版社, 2000.
Bao S D. Soil and Agricultural Chemistry Analysis, 3rd edn. Beijing: China Agriculture Press, 2000 (in Chinese).
[21] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科学技术出版社, 2000.
Lu R K. Methods of Soil Agrochemical Analysis. Beijing: China Agricultural Science and Technology Press, 2000 (in Chinese).
[22] Cambardella C A, Elliott E T. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Sci Soc Am J, 1992, 56: 777-783.
[23] Hamilton G J, Sheppard J, Bowey R, Fisher P. Blade loosening creates a deeper and near-stable rooting zone that raises the productivity of a structurally unstable texture contrast soil. Soil Res, 2017, 55: 101.
[24] 张维俊, 李双异, 徐英德, 刘旭, 安婷婷, 朱平, 彭畅, 汪景宽. 土壤孔隙结构与土壤微环境和有机碳周转关系的研究进展. 水土保持学报, 2019, 33(4): 1-9.
Zhang W J, Li S Y, Xu Y D, Liu X, An T T, Zhu P, Peng C, Wang J K. Advances in research on relationships between soil pore structure and soil miocroenvironment and organic carbon turnover. J Soil Water Conserv, 2019, 33(4): 1-9 (in Chinese with English abstract).
[25] 周正虎, 刘琳, 侯磊. 土壤有机碳的稳定和形成: 机制和模型. 北京林业大学学报, 2022, 44(10): 11-22.
Zhou Z H, Liu L, Hou L. Soil organic carbon stabilization and formation: mechanism and model. J Beijing For Univ, 2022, 44(10): 11-22 (in Chinese with English abstract).
[26] Rui Y C, Jackson R D, Cotrufo M F, Sanford G R, Spiesman B J, Deiss L, Culman S W, Liang C, Ruark M D. Reply to Chen et al.: soil organic carbon stocks and persistence of surface 30 cm of mollisols. Proc Natl Acad Sci USA, 2022, 119: e2204140119.
[27] 白伟, 孙占祥, 郑家明, 郝卫平, 刘勤, 刘洋, 冯良山, 蔡倩. 虚实并存耕层提高春玉米产量和水分利用效率. 农业工程学报, 2014, 30(21): 81-90.
Bai W, Sun Z X, Zheng J M, Hao W P, Liu Q, Liu Y, Feng L S, Cai Q. Furrow loose and ridge compaction plough layer improves spring maize yield and water use efficiency. Trans CSAE, 2014, 30(21): 81-90 (in Chinese with English abstract).
[28] Wang C Q, Kuzyakov Y. Soil organic matter priming: the pH effects. Glob Chang Biol, 2024, 30: e17349.
[29] 胡丹丹, 李浩, 宋惠洁, 胡志华, 叶会财, 李大明, 余喜初, 万长艳, 柳开楼. 长期施肥条件下红壤有机碳化学结构与团聚体稳定性的关系. 土壤通报, 2022, 53: 152-159.
Hu D D, Li H, Song H J, Hu Z H, Ye H C, Li D M, Yu X C, Wan C Y, Liu K L. The relationship between chemical structure of organic carbon and stability of aggregates in red soils under long-term fertilization. Chin J Soil Sci, 2022, 53: 152-159 (in Chinese with English abstract).
[30] Xue J F, Pu C, Zhao X, Wei Y H, Zhai Y L, Zhang X Q, Lal R, Zhang H L. Changes in soil organic carbon fractions in response to different tillage practices under a wheat-maize double cropping system. Land Degrad Dev, 2018, 29: 1555-1564.
[31] 苏思慧, 王美佳, 张文可, 隋鹏祥, 王沣, 齐华. 耕作方式与玉米秸秆条带还田对土壤水稳性团聚体和有机碳分布的影响. 土壤通报, 2018, 49: 841-847.
Su S H, Wang M J, Zhang W K, Sui P X, Wang F, Qi H. Effects of tillage practices and maize straw incorporation on water-stable aggregates and organic carbon in soils. Chin J Soil Sci, 2018, 49: 841-847 (in Chinese with English abstract).
[32] 薛志婧, 李霄云, 焦磊, 杨阳, 窦艳星, 王宝荣, 黄倩, 刘春晖, 屈婷婷, 周正朝, 安韶山. 土壤矿质结合态有机碳形成及稳定机制的研究进展. 水土保持学报, 2023, 37(5): 12-23.
Xue Z J, Li X Y, Jiao L, Yang Y, Dou Y X, Wang B R, Huang Q, Liu C H, Qu T T, Zhou Z C, An S S. Advance in the formation and stabilization mechanisms of soil mineral-associated organic carbon. J Soil Water Conserv, 2023, 37(5): 12-23 (in Chinese with English abstract).
[33] Tang B, Rocci K S, Lehmann A, Rillig M C. Nitrogen increases soil organic carbon accrual and alters its functionality. Glob Chang Biol, 2023, 29: 1971-1983.
[34] 苏兴雷, 渠晨晨, 康杰, 高大鑫, 蔡鹏, 陈雯莉, 黄巧云. 微生物驱动土壤矿物结合态有机碳的形成. 科学通报, 2024, 69: 3327-3338.
Su X L, Qu C C, Kang J, Gao D X, Cai P, Chen W L, Huang Q Y. Microorganisms drive the formation of mineral-associated organic carbon in soils. Chin Sci Bull, 2024, 69: 3327-3338 (in Chinese with English abstract).
[35] 贾梦圆, 黄兰媚, 李琦聪, 赵建宁, 张艳军, 杨殿林, 王慧. 耕作方式对农田土壤理化性质、微生物学特性及小麦营养品质的影响. 植物营养与肥料学报, 2022, 28: 1964-1976.
Jia M Y, Huang L M, Li Q C, Zhao J N, Zhang Y J, Yang D L, Wang H. Effects of tillage methods on physico-chemical and microbial characteristics of farmland soil and nutritional quality of wheat. J Plant Nutr Fert, 2022, 28: 1964-1976 (in Chinese with English abstract).
[36] 张常仁, 杨雅丽, 程全国, 刘亚军, 张春雨, 何红波, 鲍雪莲, 解宏图. 不同耕作模式对东北黑土微生物群落结构和酶活性的影响. 土壤与作物, 2020, 9: 335-347.
Zhang C R, Yang Y L, Cheng Q G, Liu Y J, Zhang C Y, He H B, Bao X L, Xie H T. Effects of different tillages on soil microbial community structure and enzyme activity in Mollisols of China. Soils Crops, 2020, 9: 335-347 (in Chinese with English abstract).
[37] 邓子正, 黄明镜, 张吴平, 王国芳. 旱作条件下保护性耕作对土壤结构和容重影响试验研究. 土壤通报, 2023, 54: 46-55.
Deng Z Z, Huang M J, Zhang W P, Wang G F. Effects of conservation tillage on soil structure and bulk density under dryland. Chin J Soil Sci, 2023, 54: 46-55 (in Chinese with English abstract).
[38] Hartmann M, Six J. Soil structure and microbiome functions in agroecosystems. Nat Rev Earth Environ, 2023, 4: 4-18.
[39] 张晓丽, 孔凡磊, 刘晓林, 胡立峰, 李玉义. 生物质改良剂对川西北地区高寒草地沙化土壤有机碳特征的影响. 中国生态农业学报(中英文), 2019, 27: 1732-1743.
Zhang X L, Kong F L, Liu X L, Hu L F, Li Y Y. Effects of different biomass amendments on soil organic carbon characteristics in alpine desertification grassland of Northwest Sichuan. Chin J Eco- Agric, 2019, 27: 1732-1743 (in Chinese with English abstract).
[40] 王仁杰, 蒋燚, 王勇, 刘庭薇, 唐靓茹, 刘雄盛, 黄荣林. 南亚热带不同红锥混交林土壤碳库稳定性与碳库管理指数变化. 林业科学研究, 2021, 34(2): 24-31.
Wang R J, Jiang Y, Wang Y, Liu T W, Tang J R, Liu X S, Huang R L. The change of soil carbon stabilization and carbon management index in different mixed plantations of Castanopsis hystrix in subtropical area of South China. For Res, 2021, 34(2): 24-31 (in Chinese with English abstract).
[1] 王崇铭, 陆志峰, 闫金垚, 宋毅, 王昆昆, 方娅婷, 李小坤, 任涛, 丛日环, 鲁剑巍. 磷肥用量对油稻轮作系统作物产量与磷素吸收量及其稳定性的影响[J]. 作物学报, 2025, 51(2): 447-458.
[2] 王昀杰, 樊志龙, 张刁亮, 毛守发, 胡发龙, 殷文, 柴强. 不同灌水量下玉米的产量可持续性对间作绿肥的响应[J]. 作物学报, 2024, 50(10): 2562-2574.
[3] 严威凯. 品种选育与评价的原理和方法评述[J]. 作物学报, 2022, 48(9): 2137-2154.
[4] 徐云碧, 王冰冰, 张健, 张嘉楠, 李建生. 应用分子标记技术改进作物品种保护和监管[J]. 作物学报, 2022, 48(8): 1853-1870.
[5] 白伟,孙占祥,张立祯,郑家明,冯良山,蔡倩,向午燕,冯晨,张哲. 耕层构造对土壤三相比和春玉米根系形态的影响[J]. 作物学报, 2020, 46(5): 759-771.
[6] 李庆成,黄磊,李亚洲,范超兰,谢蝶,赵来宾,张舒洁,陈雪姣,甯顺腙,袁中伟,张连全,刘登才,郝明. 小麦-黑麦6RS/6AL易位染色体的遗传稳定性及其在配子中的传递[J]. 作物学报, 2020, 46(4): 513-519.
[7] 吴玉红,郝兴顺,田霄鸿,陈浩,张春辉,崔月贞,秦宇航. 秸秆还田与化肥配施对汉中盆地稻麦轮作农田土壤固碳及经济效益的影响[J]. 作物学报, 2020, 46(02): 259-268.
[8] 郭建斌,吴贝,陈伟刚,黄莉,陈玉宁,周小静,罗怀勇,刘念,任小平,姜慧芳. 花生品种主要脂肪酸含量在不同生态区的稳定性[J]. 作物学报, 2019, 45(5): 676-682.
[9] 陈玉章,田慧慧,李亚伟,柴雨葳,李瑞,程宏波,常磊,柴守玺. 秸秆带状沟覆垄播对旱地马铃薯产量和水分利用效率的影响[J]. 作物学报, 2019, 45(5): 714-727.
[10] 伦珠朗杰,李慧慧,郭刚刚,其美旺姆,高丽云,唐亚伟,尼玛扎西,达瓦顿珠,卓嘎. 西藏青稞冬春性鉴定及抽穗期多样性与稳定性分析[J]. 作物学报, 2019, 45(12): 1796-1805.
[11] 樊廷录,王淑英,续创业,李尚中,王甲玺,王克如,赵刚,程万莉,张建军,王磊,党翼. 黄土高原旱作玉米籽粒水分与机械粒收质量的关系[J]. 作物学报, 2018, 44(9): 1411-1429.
[12] 谢军红, 李玲玲, 张仁陟, 柴强. 覆膜、沟垄作对旱作农田玉米产量和水分利用的叠加效应[J]. 作物学报, 2018, 44(02): 268-277.
[13] 刘睿洋,刘芳,官春云. 甘蓝型油菜BnFAD2基因的克隆、表达及功能分析[J]. 作物学报, 2016, 42(07): 1000-1008.
[14] 聂良鹏,郭利伟,牛海燕,魏杰,李增嘉,宁堂原. 轮耕对小麦-玉米两熟农田耕层构造及作物产量与品质的影响[J]. 作物学报, 2015, 41(03): 468-478.
[15] 韩娟,廖允成,贾志宽,韩清芳,丁瑞霞. 半湿润偏旱区沟垄覆盖种植对冬小麦产量及水分利用效率的影响[J]. 作物学报, 2014, 40(01): 101-109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!