欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (07): 1000-1008.doi: 10.3724/SP.J.1006.2016.01000

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝型油菜BnFAD2基因的克隆、表达及功能分析

刘睿洋,刘芳,官春云   

  1. 湖南农业大学农学院 / 国家油料改良中心湖南分中心, 湖南长沙 410128
  • 收稿日期:2016-01-11 修回日期:2016-05-09 出版日期:2016-07-12 网络出版日期:2016-05-11
  • 通讯作者: 官春云, E-mail: guancy2011@yahoo.com.cn
  • 基金资助:

    本研究由湖南省科技创新项目(CX2013A012)和国家重点基础研究发展规划项目(2015CB150200)资助。

Cloning and Analyses of Expression and for BnFAD2 Genes in Brassica napus

LIU Rui-Yang,LIU Fang,GUAN Chun-Yun   

  1. College of Agronomy, Hunan Agricultural University / National Oilseed Crops Improvement Center in Hunan, Changsha 410128, China
  • Received:2016-01-11 Revised:2016-05-09 Published:2016-07-12 Published online:2016-05-11
  • Contact: 官春云, E-mail: guancy2011@yahoo.com.cn
  • Supported by:

    This study was supported by Graduate Innovation Foundation of Hunan (CX2013A012) and the Major State Basic Research Development Program of China (2015CB150200).

摘要:

高油酸油具备较高的营养价值,在甘蓝型油菜中,脂肪酸去饱和酶基因(FAD2)是控制油酸含量的关键基因。本研究克隆了甘蓝型油菜A5、C5、A1连锁群上3个BnFAD2基因的全长cDNA序列,分别命名为BnFAD2-A5BnFAD2-C5BnFAD2-A1,各自编码384、384、136个氨基酸。分别使用TMHMM、Clust X软件分析FAD2基因的跨膜结构域和酶活中心表明,BnFAD2-A1不具备脱氢酶活性。采用酵母功能互补实验对4个基因(含已发表的BnFAD2-C1)进行功能验证,发现BnFAD2-A5BnFAD2-C5基因去饱和能力接近,均大于BnFAD2-C1基因。采用qRT-PCR分析4个基因在甘蓝型油菜不同组织中的表达规律及血凝素标签法分析BnFAD2-C1、BnFAD2-A5和BnFAD2-C5的蛋白稳定性,表明BnFAD2-A5BnFAD2-C5是影响油菜种子油酸积累的主效基因。

关键词: 甘蓝型油菜, BnFAD2基因, 生物信息学, 蛋白活力, 蛋白稳定性

Abstract:

The oil containing high oleic acid is high nutritional. In Brassica napus, the fatty acid desaturase gene (FAD2) is the key gene controlling oleic acid content. In this study, the full-length cDNA sequences of three genes located on chromosome A5, C5 and A1 in Brassica napus were cloned and named BnFAD2-A5, BnFAD2-C5 and BnFAD2-A1. The three genes encode proteins with 384, 384 and 136 amino acid residues, respectively. TMHMM was used to predict transmembrane domain and Clust X software was used to analyze the activity center of FAD2 genes. Both of the results showed that BnFAD2-A1 did not have the function of dehydrogenase. The yeast complementary experiment on four genes (including published BnFAD2-C1 gene) showed that the desaturation capability of BnFAD2-A5 gene was next to that of BnFAD2-C5 gene, and both of them were greater than that of BnFAD2-C1 gene. The expression patterns of the four genes were analyzed by using qRT-PCR technique in different tissues and the protein stability of BnFAD2-C1, BnFAD2-A5 and BnFAD2-C5 was analyzed by using Hemagglutinin labeling method. Both of the results revealed that BnFAD2-A5 and BnFAD2-C5 aremajor genes affecting the accumulation of oleic acid in rape seed.

Key words: Brassica napus, BnFAD2, Bioinformation, Protein activity, Protein stability

[1]Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browseai J. Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell, 1994, 6: 147–158
[2]Tanhuanpää P, Vilkki J, Vihinen M. Mapping and cloning of FAD2 gene to develop allele-specific PCR for oleic acid in spring turnip rape (Brassica rapa ssp. oleifera). Mol Breed, 1998, 4: 543–550
[3]Hobbs D H, Flintham J E, Hills M J. Genetic control of storage oil synthesis in seeds of Arabidopsis. Plant Physiol, 2004, 136: 3341–3349
[4]Schierholt A, Becker H C, Ecke W. Mapping a high oleic acid mutation in winter oilseed rape (Brassica napus L.). Theor Appl Genet, 2000, 101: 897–901
[5]Hu X, Sullivan-Gilbert M, Gupta M. Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.). Theor Appl Genet, 2006, 113: 497–507
[6]杨燕宇, 杨盛强, 陈哲红, 官春云, 陈社员, 刘忠松. 无芥酸甘蓝型油菜十八碳不饱和脂肪酸含量的QTL定位. 作物学报, 2011, 37: 1342–1350
Yang Y Y, Yang S Q, Chen Z H, Guan C Y, Chen S Y, Liu Z S. QTL analysis of 18-C unsaturated fatty acid contents in zero-erucic rapeseed (Brassica napus L.). Acta Agron Sin, 2011, 37: 1342-1350
[7]Scheffler J A, Sharpe A G, Schmidt H, Sperling P, Parkin I A P, Lühs W, Lydiate D J, Heinz E. Desaturase multigene families of Brassica napus arose through genome duplication. Theor Appl Genet, 1997, 94: 583-591
[8]Smooker A M, Wells R, Morgan C, Beaudoin F, Cho K, Fraser F, Bancroft I. The identification and mapping of candidate genes and QTL involved in the fatty acid desaturation pathway in Brassica napus. Theor Appl Genet, 2011, 122: 1075–1090
[9]肖钢, 张宏军, 彭琪, 官春云. 甘蓝型油菜油酸脱氢酶基因(FAD2)多个拷贝的发现及分析. 作物学报, 2008, 34: 1563–1568
Xiao G, Zhang H J, Peng Q, Guan C Y. Screening and analysis of mutiple copy of oleate desaturase gene (fad2) in Brassica napus. Acta Agron Sin, 2008, 34: 1563–1568
[10]肖钢, 张振乾, 邬贤梦, 谭太龙, 官春云. 六个甘蓝型油菜油酸脱氢酶(FAD2)假基因的克隆和分析. 作物学报, 2010, 36: 435–441
Xiao G, Zhang Z Q, Wu X M, Tan T L, Guan C Y. Cloning and characterization of six oleic acid desaturase pseudogenes of Brassica napus. Acta Agron Sin, 2010, 36: 435−441
[11]Yang Q Y, Fan C C, Guo Z H, Qin J, Wu J Z, Li Q Y, Fu T D, Zhou Y G. Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents. Theor Appl Genet, 2012, 125: 715–729
[12]Kiefer E, Heller W, Ernst D. A simple and efficient protocol for isolation of functional RNA from plant tissues rich in secondary metabolites. Plant Mol Biol Rep, 2000, 18: 33–39
[13]Li L, Wang X, Gai J, Yu D. Isolation and characterization of a seed-specific isoform of microsomal omega-6 fatty acid desaturase gene (FAD2-1B) from soybean. Mito DNA, 2008, 19:28–36
[14]Chen Z, Wang M, Barkley N, Pittman R. A simple allele-specific PCR assay for detecting FAD2 alleles in both A and B genomes of the cultivated peanut for high-oleate trait selection. Plant Mol Biol Rep, 2010, 28: 542–548
[15]Zavallo D, Lopez Bilbao M, Hopp H, Heinz R. Isolation and functional characterization of two novel seed-specific promoters from sunflower (Helianthus annuus L.). Plant Cell Rep, 2010, 29: 239–248
[16]Mikkilineni V, Rocheford T R. Sequence variation and genomic organization of fatty acid desaturase-2 (fad2) and fatty acid desaturase-6 (fad6) cDNAs in maize. Theor Appl Genet, 2003, 106: 1326–1332
[17]Zhang D, Pirtle I, Park S, Nampaisansuk M, Neogi P, Wanjie S, Pirtle R, Chapman K. Identification and expression of a new delta-12 fatty acid desaturase (FAD2-4) gene in upland cotton and its functional expression in yeast and Arabidopsis thaliana plants. Plant Physiol Biochem, 2009, 47: 462–471
[18]Cao S J, Zhou X R, Wood C C, Green A G, Singh S P, Liu L X, Liu Q. A large and functionally diverse family of fad2 genes in safflower. BMC Plant Biol, 2013, 13: 5
[19]徐荣华, 邱丽俊, 阳天泉, 王如玲, 田波, 刘爱忠. 小桐子磷脂二酰甘油酰基转移酶(JcPDAT1) cDNA的克隆与功能鉴定. 中国油料作物学报, 2013, 35: 123–130
Xu R H, Qiu L J, Yang T Q, Wang R L, Tian B, Li A Z. Cloning and functioning of phospholipids: diacylglycerol acyltransferase (JcPDAT1) cDNA from Jatropha curcas. Chin J Oil Crop Sci, 2013, 35: 123–130
[20]O’Quin J B, Bourassa L, Zhang D, Shockey J M, Gidda S K, Fosnot S, Chapman K D, Mullen R T, Dyer J M. Temperature-sensitive post-translational regulation of plant omega-3 fatty-acid desaturases is mediated by the endoplasmic reticulum-associated degradation pathway. J Biol Chem, 2010, 285: 21781–21796
[21]鲁少平. 甘蓝型油菜转磷脂酶D (PLD)基因在干旱及氮响应中的作用及应用. 华中农业大学博士学位论文, 湖北武汉, 2013. pp 27–29
Lu S P. Roles and Potential Applications of Phospholipase Ds in Brassica napus Response to Drought and Nitrogen. PhD Dissertation of Huazhong Agricultural University, Wuhan, China, 2013. pp 27–29
[22]Sakai H, Kajiwara S. Cloning and functional characterization of a Δ12 fatty acid desaturase gene from the basidiomycete Lentinula edodes. Mol Genet Genom, 2005, 273: 336–341
[23]Mahmood T, Ekuere U, Yeh F, Good A G, Stringam G R. RFLP linkage analysis and mapping genes controlling the fatty acid profile of Brassica juncea using reciprocal DH populations. Theor Appl Genet, 2003, 107: 283–290
[24]Burns M J, Barnes S R, Bowman J G, Clarke M H E, Werner C P, Kearsey M J. QTL analysis of an intervarietal set of substitution lines in Brassica napus: (i) Seed oil content and fatty acid composition. Heredity, 2003, 90: 39–48
[25]Zhao J, Dimov Z, Becker H, Ecke W, Möllers C. Mapping QTL controlling fatty acid composition in a doubled haploid rapeseed population segregating for oil content. Mol Breed, 2008, 21: 115–125
[26]张洁夫, 戚存扣, 浦惠明, 陈松, 陈锋, 高建芹, 陈新军, 顾慧, 傅寿仲. 甘蓝型油菜主要脂肪酸组成的QTL定位. 2008, 34: 54–60
Zhang J F, Qi C K, Pu H M, Chen S, Chen F, Gao J Q, Chen X J, Gu H, Fu S Z. QTL identification for fatty acid content in rapeseed (Brassica napus L.). Acta Agron Sin, 2008, 34: 54–60
[27]McCartney A W, Dyer J M, Dhanoa P K, Kim P K, Andrews D W, McNew J A, Mullen R T. Membrane-bound fatty acid desaturases are inserted co-translationally into the ER and contain different ER retrieval motifs at their carboxy termini. Plant J, 2004, 37: 156–173
[28]Cheung F, Trick M, Drou N, Lim Y P, Park J Y, Kwon S J, Kim J A, Scott R, Pires J C, Paterson A H, Town C, Bancroft I. Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence. Plant Cell, 2009, 21: 1912–1928
[29]Jung J H, Kim H, Go Y S. Identification of functional BrFAD2-1 gene encoding microsomal delta-12 fatty acid desaturase from Brassica rapa and development of Brassica napus containing high oleic acid contents. Plant Cell Rep, 2011, 30: 1881–1892
[30]崔峰, 夏家辉. 关于假基因的研究进展. 生命科学研究, 1999, 3: 203–209
Cui F, Xia J H. On Research Progress of Pseudogene. Life Sci Res, 1999, 3: 203–209
[31]O’Quin J B, Mullen R T, Dyer J M. Addition of an N-terminal epitope tag significantly increases the activity of plant fatty acid desaturases expressed in yeast cells. Appl Microbiol Biot, 2009, 83: 117–125
[32]Laga B, Seurinck J, Verhoye T, Lambert B. Molecular breeding for high oleic and low linolenic fatty acid composition in Brassica napus. Pflanzenschutz-Nachrichten Bayer, 2004, 54: 87–92
 
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[4] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[5] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[6] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[7] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[8] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[9] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[10] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[11] 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893.
[12] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[13] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[14] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[15] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!