欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (6): 1629-1642.doi: 10.3724/SP.J.1006.2025.44150

• 耕作栽培·生理生化 • 上一篇    下一篇

钾肥用量对油菜产量和钾素积累及因冻害减产程度的影响

崔鑫1(), 谷贺贺1, 宋毅1, 张哲2, 刘诗诗1, 陆志峰1, 任涛1,*(), 鲁剑巍1   

  1. 1华中农业大学资源与环境学院/农业农村部长江中下游耕地保育重点实验室/华中农业大学微量元素研究中心, 湖北武汉 430070
    2全国农业技术推广服务中心, 北京 100125
  • 收稿日期:2024-09-11 接受日期:2025-03-26 出版日期:2025-06-12 网络出版日期:2025-04-01
  • 通讯作者: *任涛, E-mail: rentao@mail.hzau.edu.cn
  • 作者简介:E-mail: cuixin@webmail.hzau.edu.cn
  • 基金资助:
    本研究由国家重点研发计划项目(2023YFD1901100);湖北省现代农业产业技术体系油菜产业技术体系项目(2023HBSTX4-03);财政部和农业农村部国家现代农业产业技术体系专项(CARS-12)

Effects of potassium fertilizer application rates on rapeseed yield and potassium absorption and yield reduction caused by frost damage

CUI Xin1(), GU He-He1, SONG Yi1, ZHANG Zhe2, LIU Shi-Shi1, LU Zhi-Feng1, REN Tao1,*(), LU Jian-Wei1   

  1. 1College of Resources and Environment, Huazhong Agricultural University / Key Laboratory of Arable Land Conservation in Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs / Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, Hubei, China
    2National Agricultural Technical Extension and Service Center, Beijing 100125, China
  • Received:2024-09-11 Accepted:2025-03-26 Published:2025-06-12 Published online:2025-04-01
  • Contact: *E-mail: rentao@mail.hzau.edu.cn
  • Supported by:
    the National Key Research and Development Program of China(2023YFD1901100);the Hubei Province Agriculture Research System Rapeseed Research System(2023HBSTX4-03);the China Agriculture Research System of MOF and MARA(CARS-12)

摘要: 冬油菜越冬期与蕾薹期遭遇低温冻害是影响油菜产量的主要不利因素, 增施钾肥是提高冬油菜抗逆性、减少油菜遭遇低温冻害所带来产量损失的有效措施。为明确不同钾肥用量对冻害后油菜产量损失程度的影响, 本研究利用2022/2023和2023/2024年在湖北省两地开展钾肥定位田间试验, 对比了2023/2024年极端低温天气下钾肥用量(0、60、120、180、240 kg hm-2)对冻害后油菜产量及产量构成因子、地上部钾养分含量及分配、钾养分利用效率的影响, 明确了低温冻害下油菜适宜的钾肥用量。结果表明, 与2022/2023年度相比, 2023/2024年的极端低温天气造成武汉和武穴试验点相同处理下的油菜分别减产13.4%~24.1%和35.7%~51.7%, 地上部总生物量的降幅分别为32.3%~42.5%和23.9%~38.9%, 产量降低分别主要表现在单株角果数(35.5%~56.0%)和千粒重(28.1%~31.6%)的降低。施钾缓解了冻害后油菜产量的降低程度, 且在钾肥用量为180 kg hm-2时油菜的减产程度最低。冻害后油菜籽粒钾含量及分配比例增加, 地上部钾积累量显著降低, 但钾素吸收利用率和钾肥偏生产力降低, 施钾提高了油菜籽钾含量的增加幅度, 减缓了地上部钾吸收量的降低, 促进了非籽粒部分钾养分向籽粒的转移。线性加平台模型的拟合表明, 冻害后武汉和武穴试验点的适宜钾肥用量分别为163.1 kg hm-2和147.9 kg hm-2, 相比2022/2023年适宜施钾量平均增加35.2 kg hm-2。综上所述, 在遇到低温冻害天气时, 适当追施钾肥有助于改善油菜生长, 缓解由于低温冻害对油菜造成的产量损失。

关键词: 钾肥用量, 油菜产量, 养分吸收, 冻害程度, 适宜钾用量

Abstract:

Low-temperature frost damage during the overwintering and budding stages of winter rapeseed significantly affects yield formation. Increasing potassium fertilizer application is an effective strategy to enhance stress resistance and mitigate yield losses caused by frost damage. This study aimed to evaluate the effects of different potassium fertilizer rates on rapeseed yield reduction following frost damage. Field experiments were conducted in Wuxue city and Wuhan city, Hubei province, during the 2022/2023 and 2023/2024 growing seasons. The study compared the effects of varying potassium fertilizer rates (0, 60, 120, 180, and 240 kg hm-2) on rapeseed yield, yield components, aboveground nutrient content and distribution, and potassium nutrient use efficiency under extreme low-temperature conditions in the 2023/2024 season. The results indicated that, compared to the 2022/2023 season, the 2023/2024 frost conditions led to a 13.4%-24.1% yield reduction at the Wuhan site and a more pronounced 35.7%-57.1% reduction at the Wuxue site under the same treatments. This was accompanied by a decline in total aboveground biomass, ranging from 32.3%-42.5% in Wuhan and 23.9%-38.9% in Wuxue. The primary factors contributing to yield loss were a substantial decrease in pod number per plant (35.5%-56.0%) and a reduction in 1000-seed weight (28.1%-31.6%). Potassium application alleviated yield losses, with the K180 treatment exhibiting the smallest yield reduction. After frost damage, the potassium content and its distribution within rapeseed increased, although aboveground potassium accumulation declined significantly. Additionally, potassium absorption efficiency and the partial factor productivity of potassium fertilizer decreased. Potassium application enhanced potassium accumulation in rapeseed, slowed the decline in aboveground potassium absorption, and promoted the transfer of potassium from non-seed tissues to seeds. Model fitting using a linear-plus-plateau approach suggested optimal potassium application rates of 163.1 kg hm-2 for Wuhan and 147.9 kg hm-2 for Wuxue, representing an average increase of 35.2 kg hm-2 compared to the 2022/2023 season. In conclusion, appropriate potassium fertilization during low-temperature frost periods can significantly improve rapeseed growth and mitigate yield losses caused by severe climatic fluctuations.

Key words: potassium fertilizer application rates, rapeseed yield, nutrient absorption, frost damage severity, optimal potassium application rate

图1

2022/2023年和2023/2024年油菜季武汉和武穴气候情况"

表1

2022/2023年和2023/2024年武汉、武穴试验点气候差异统计"

地点
Site
年份
Year
积温
Cumulative temperature
(℃)
降雨量Rainfall
(mm)
低温频率及分布Low temperature frequency and distributions (d)
<-5℃ <-3℃ <0℃ <5℃
12月
Dec.
1月
Jan.
2月
Feb.
12月
Dec.
1月
Jan.
2月
Feb.
12月
Dec.
1月
Jan.
2月
Feb.
3月
Mar.
武汉
Wuhan
2022/2023 2469.4 512.3 3 3 0 7 11 0 24 21 7 9
2023/2024 1987.3 651.5 3 5 1 9 8 10 14 13 21 11
武穴
Wuxue
2022/2023 2139.2 592.3 0 0 0 2 4 0 10 10 0 1
2023/2024 1962.4 604.6 1 2 0 4 2 0 7 4 7 4

表2

2022/2023年和2023/2024年钾肥用量对油菜籽产量和地上部生物量的影响"

地点
Site
钾肥用量
K fertilizer
application rates
(kg hm-2)
产量
Yield (kg hm-2)
地上部生物量
Aboveground biomass (kg hm-2)
2022/2023 2023/2024 降幅
Reduction (%)
2022/2023 2023/2024 降幅
Reduction (%)
武汉
Wuhan
0 1932.0 c 1465.9 c 24.1 8133.9 c 4676.0 c 42.5
60 2158.5 b 1664.6 bc 22.9 8589.5 bc 5108.4 c 40.5
120 2348.2 a 1921.1 ab 18.2 10,129.3 ab 6042.3 b 40.3
180 2417.8 a 2093.6 a 13.4 11,332.3 a 7667.7 a 32.3
240 2391.8 a 2056.1 a 14.0 10,997.8 a 7330.3 a 33.3
武穴
Wuxue
0 1008.8 d 487.7 d 51.7 3995.2 d 2442.0 e 38.9
60 1596.3 c 844.0 c 47.1 5657.5 c 3734.3 d 34.0
120 1956.0 b 1167.6 b 40.3 6588.9 b 4597.7 c 30.2
180 2328.0 a 1496.2 a 35.7 7525.8 a 5729.3 a 23.9
240 2277.0 a 1431.8 ab 37.1 7409.2 a 5378.2 b 27.4
方差分析ANOVA FF-value
钾肥用量K fertilizer application rates (K) 87.2*** 109.8***
地点Site (S) 289.8*** 534.7***
年份Year (Y) 282.9*** 563.0***
S×K 10.6*** 2.3ns
Y×K 0.4ns 0.6ns
S×Y 24.2*** 60.5***
S×Y×K 1.5ns 0.2ns

表3

2022/2023年和2023/2024年钾肥用量对油菜产量构成因子的影响"

地点Site 钾肥用量
K fertilizer application rates
(kg hm-2)
单株角果数
Siliques per plant
每角粒数
Seed number per silique
千粒重
1000-seed weight (g)
2022/2023 2023/2024 降幅
Reduction (%)
2022/2023 2023/2024 降幅
Reduction (%)
2022/2023 2023/2024 降幅
Reduction (%)
武汉
Wuhan
0 323.0 c 142.0 c 56.0 18.9 c 18.6 c 1.6 4.21 a 3.62 a 14.0
60 373.3 b 189.5 b 49.2 21.9 b 21.4 b 2.2 4.39 a 3.79 a 13.7
120 384.3 ab 209.0 b 45.6 23.4 ab 23.0 ab 1.6 4.29 a 3.73 a 13.1
180 389.3 ab 251.0 a 35.5 24.3 a 23.7 a 2.5 4.17 a 3.71 a 11.2
240 404.0 a 258.4 a 36.1 24.7 a 24.0 a 2.8 3.80 b 3.35 b 11.7
武穴
Wuxue
0 186.0 c 131.3 d 29.4 19.0 b 16.3 b 14.0 4.34 ab 2.97 a 31.6
60 194.3 c 166.3 c 14.4 20.9 a 18.3 ab 12.2 4.61 a 3.20 a 30.5
120 252.4 b 219.3 b 13.1 22.5 a 20.0 ab 11.0 4.20 ab 2.93 a 30.2
180 314.4 a 275.3 a 12.4 23.3 a 20.8 a 10.7 4.06 ab 2.92 a 28.1
240 313.0 a 267.0 a 14.7 23.0 a 20.1 a 12.8 3.94 b 2.82 a 28.3
方差分析ANOVA F F-value
钾肥用量
K fertilizer
application rates (K)
81.4*** 39.1*** 8.0***
地点Sites (S) 151.2*** 45.7*** 27.3***
年份 Year (Y) 434.6*** 28.7*** 232.7***
S×K 7.1*** 0.9ns 1.0ns
Y×K 1.0ns 0.1ns 0.6ns
S×Y 160.8*** 13.5** 38.1***
S×Y×K 1.3ns 0ns 0.1ns

图2

2022/2023年和2023/2024年钾肥用量对油菜植株钾含量的影响 不同小写字母表示相同年份不同处理间差异达到显著水平(P < 0.05)。*, **, ***分别表示相同处理的不同年份在P < 0.05、P < 0.01、P < 0.001水平下差异达到显著水平; ns表示差异不显著。"

图3

2022/2023年和2023/2024年钾肥用量对油菜钾积累与分配的影响 柱上不同小写字母分别表示相同年份不同处理间籽粒、非籽粒钾积累量差异达到显著水平(P < 0.05)。*, **, ***分别表示不同年份相同处理的地上部总钾积累量在P < 0.05、P < 0.01、P < 0.001水平下差异达到显著水平; ns表示差异不显著。"

表4

2022/2023年和2023/2024年钾肥用量对冻害后油菜钾利用效率的影响"

地点
Site
钾肥用量
K fertilizer
application rates
(kg hm-2)
钾素吸收利用率KUE (kg kg-1) 钾肥偏生产力PEP (kg kg-1)
2022/2023 2023/2024 降幅
Reduction (%)
2022/2023 2023/2024 降幅
Reduction (%)
武汉
Wuhan
0
60 0.56 b 0.48 b 15.6 35.98 a 27.74 a 22.9
120 0.72 a 0.64 ab 10.8 19.57 b 16.01 b 18.2
180 0.82 a 0.80 a 2.2 13.43 c 11.63 c 13.4
240 0.81 a 0.62 ab 24.8 9.97 d 8.57 d 14.0
武穴
Wuxue
0
60 0.52 b 0.30 a 42.2 26.61 a 14.07 a 47.1
120 0.43 b 0.26 b 41.0 16.30 b 9.73 b 40.3
180 0.68 a 0.25 b 63.5 12.93 c 8.31 c 35.7
240 0.53 b 0.26 b 51.3 9.49 d 5.55 d 37.1

图4

2022/2023年和2023/2024年基于油菜产量的钾肥适宜用量 箭头旁的灰色数字代表2年武汉和武穴试验点的钾肥适宜用量(2022/2023年武汉和武穴适宜钾肥用量大致相同), 水平箭头下的数字由上至下分别代表武穴和武汉试验点增施的钾肥用量, 中间数字代表平均增施钾肥用量。"

表5

2019-2024年武汉和武穴试验点油菜季主要气象数据统计"

年份
Year
有效积温
Accumulated temperature (℃)
日照时数
Sunshine hours (h)
降雨量
Rainfall (mm)
武汉
Wuhan
武穴
Wuxue
武汉
Wuhan
武穴
Wuxue
武汉
Wuhan
武穴
Wuxue
2019-2020 2582.0 2162.6 998.4 488.1 332.0 760.0
2020-2021 2151.3 1981.1 661.0 698.3 169.7 466.1
2021-2022 2160.9 1490.8 813.1 491.7 622.3 584.9
2022-2023 2469.4 2139.2 840.0 767.8 512.3 592.3
2023-2024 1987.3 1962.4 823.6 738.3 651.5 604.6
平均Mean 2206.8 2045.0 827.2 705.1 457.6 607.8
[1] 刘成, 冯中朝, 肖唐华, 马晓敏, 周广生, 黄凤洪, 李加纳, 王汉中. 我国油菜产业发展现状、潜力及对策. 中国油料作物学报, 2019, 41: 485-489.
doi: 10.7505/j.issn.1007-9084.2019.04.001
Liu C, Feng Z C, Xiao T H, Ma X M, Zhou G S, Huang F H, Li J N, Wang H Z. Development, potential and adaptation of Chinese rapeseed industry. Chin J Oil Crop Sci, 2019, 41: 485-489 (in Chinese with English abstract).
doi: 10.7505/j.issn.1007-9084.2019.04.001
[2] 张智.长江流域冬油菜产量差与养分效率差特征解析. 华中农业大学博士学位论文, 湖北武汉, 2018.
Zhang Z. Characteristic Analysis of Yield Gap and Nutrient Use Efficiency Gap of Winter Oilseed Rape in Yangtze River Basin. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2018 (in Chinese with English abstract).
[3] 黄稳清, 黄洪宇, 蒋范晨, 叶智燕, 闫超. 气候变化影响下我国冬油菜物候期时空演变分析. 贵州大学学报(自然科学版), 2022, 39(4): 34-41.
Huang W Q, Huang H Y, Jiang F C, Ye Z Y, Yan C. Spatial-temporal evolution of winter rapeseed phenology under climate change in China. J Guizhou Univ (Nat Sci), 2022, 39(4): 34-41 (in Chinese with English abstract).
[4] 胡立勇, 丁艳锋. 作物栽培学. 北京: 高等教育出版社, 2008.
Hu L Y, Ding Y F. Crop Cultivation. Beijing: Higher Education Press, 2008 (in Chinese).
[5] 黄进, 张方敏, 胡正华. 我国冬油菜的气候灾损变化及其对ENSO响应. 灾害学, 2024, 39(4): 108-114.
Huang J, Zhang F M, Hu Z H. Changes in climatic disaster losses of winter rapeseed in China and their responses to ENSO. J Catastrophology, 2024, 39(4): 108-114 (in Chinese with English abstract).
[6] 从日环, 张智, 鲁剑巍. 长江流域不同种植区气候因子对冬油菜产量的影响. 中国油料作物学报, 2019, 41: 894-903.
Cong R H, Zhang Z, Lu J W. Climate impacts on yield of winter oilseed rape in different growth regions of the Yangtze River Basin. Chin J Oil Crop Sci, 2019, 41: 894-943 (in Chinese with English abstract).
doi: 10.19802/j.issn.1007-9084.2019046
[7] 刘自刚, 孙万仓, 杨宁宁, 王月, 何丽, 赵彩霞, 史鹏飞, 杨刚, 李学才, 武军艳, 等. 冬前低温胁迫下白菜型冬油菜抗寒性的形态及生理特征. 中国农业科学, 2013, 46: 4679-4687.
doi: 10.3864/j.issn.0578-1752.2013.22.005
Liu Z G, Sun W C, Yang N N, Wang Y, He L, Zhao C X, Shi P F, Yang G, Li X C, Wu J Y, et al. Morphology and physiological characteristics of cultivars with different levels of cold-resistance in winter rapeseed (Brassica campestris L.) during cold acclimation. Sci Agric Sin, 2013, 46: 4679-4687 (in Chinese with English abstract).
[8] 米文博, 刘自刚, 徐春梅, 邹娅, 徐明霞, 郑国强, 曹小东, 方新玲. 低温胁迫下甘蓝型冬油菜蛋白质组学及光合特性分析. 分子植物育种, 2021, 19: 7222-7231.
Mi W B, Liu Z G, Xu C M, Zou Y, Xu M X, Zheng G Q, Cao X D, Fang X L. Proteomics and photosynthetic characteristics analysis of winter rape (Brassica napus L.) under low temperature stress. Mol Plant Breed, 2021, 19: 7222-7231 (in Chinese with English abstract).
[9] Larden A, Triboi-Blondel A M. Freezing injury to ovules, pollen and seeds in winter rape. J Exp Bot, 1994, 45: 1177-1181.
[10] 鲁剑巍, 任涛, 李小坤, 丛日环, 陆志峰, 张洋洋, 刘诗诗, 廖世鹏, 朱俊. 我国冬油菜养分精准调控策略与高效施肥技术体系. 华中农业大学学报, 2023, 42(6): 18-25.
Lu J W, Ren T, Li X K, Cong R H, Lu Z F, Zhang Y Y, Liu S S, Liao S P, Zhu J. Strategy of precision controlling nutrient and system of efficient fertilization technology for winter rapeseed in China. J Huazhong Agric Univ, 2023, 42(6): 18-25 (in Chinese with English abstract).
[11] 李静, 闫金垚, 胡文诗, 李小坤, 丛日环, 任涛, 鲁剑巍. 氮钾配施对油菜产量及氮素利用的影响. 作物学报, 2019, 45: 941-948.
doi: 10.3724/SP.J.1006.2019.84146
Li J, Yan J Y, Hu W S, Li X K, Cong R H, Ren T, Lu J W. Effects of combined application of nitrogen and potassium on seed yield and nitrogen utilization of winter oilseed rape (Brassica napus L.). Acta Agron Sin, 2019, 45: 941-948 (in Chinese with English abstract).
[12] Mahiwal S, Pandey G K. Potassium: a vital nutrient mediating stress tolerance in plants. J Plant Biochem Biotechnol, 2022, 31: 705-719.
[13] 李静, 周杨果, 陆志峰, 丛日环, 李小坤, 任涛, 鲁剑巍. 氮钾配施对冬油菜角果皮光合作用及光合器官氮分配的影响. 植物营养与肥料学报, 2022, 28: 869-879.
Li J, Zhou Y G, Lu Z F, Cong R H, Li X K, Ren T, Lu J W. The effects of combined nitrogen and potassium application on photosynthesis and nitrogen allocation in photosynthetic organs of winter oilseed rape (Brassica napus L.) silique wall. J Plant Nutr Fert, 2022, 28: 869-879 (in Chinese with English abstract).
[14] 何紫瑶, 陈其睿, 胡文诗, 谷贺贺, 宋毅, 叶晓磊, 张洋洋, 陆志峰, 任涛, 鲁剑巍. 不同钾素供应和光强对油菜叶片光合能力的影响. 中国油料作物学报, 2024, 46: 843-854.
doi: 10.19802/j.issn.1007-9084.2022354
He Z Y, Chen Q R, Hu W S, Gu H H, Song Y, Ye X L, Zhang Y Y, Lu Z F, Ren T, Lu J W. Effects of different potassium supply and light intensity on photosynthetic capacity of oilseed rape leaves. Chin J Oil Crop Sci, 2024, 46: 843-854 (in Chinese with English abstract).
[15] 宋毅, 陈航航, 崔鑫, 陆志峰, 廖世鹏, 张洋洋, 李小坤, 丛日环, 任涛, 鲁剑巍. 钾营养状况介导的油菜叶片生长及其对叶际微生物的影响. 植物学报, 2024, 59: 54-65.
doi: 10.11983/CBB23076
Song Y, Chen H H, Cui X, Lu Z F, Liao S P, Zhang Y Y, Li X K, Cong R H, Ren T, Lu J W. Potassium nutrient status-mediated leaf growth of oilseed rape (Brassica napus) and its effect on phyllosphere microorganism. Chin Bull Bot, 2024, 59: 54-65 (in Chinese with English abstract).
[16] Qu Y, Bao G Z, Pan X Y, Guo J C, Xiang T, Fan X Y, Zhang X, Yang Y N, Yan B R, Zhao H W, et al. Resistance of highland barley seedlings to alkaline salt and freeze-thaw stress with the addition of potassium fulvic acid. Plant Soil Environ, 2022, 68: 299-308.
[17] Ma Q F, Bell R, Biddulph B. Potassium application alleviates grain sterility and increases yield of wheat (Triticum aestivum) in frost-prone Mediterranean-type climate. Plant Soil, 2019, 434: 203-216.
[18] 娄洪祥, 黄肖玉, 江萌, 宁宁, 卞孟磊, 张磊, 罗东旭, 秦梦倩, 蒯婕, 汪波, 等. 长江流域迟播甘蓝型油菜播种期和播种量优化配置研究. 作物学报, 2024, 50: 2091-2105.
doi: 10.3724/SP.J.1006.2024.34166
Lou H X, Huang X Y, Jiang M, Ning N, Bian M L, Zhang L, Luo D X, Qin M Q, Kuai J, Wang B, et al. Optimal allocation of sowing date and sowing rate of late-sowing rapeseed in the Yangtze River Basin. Acta Agron Sin, 2024, 50: 2091-2105 (in Chinese with English abstract).
[19] 李春燕, 杨景, 张玉雪, 姚梦浩, 朱新开, 郭文善. 小麦分蘖期冻害后增施恢复肥的产量挽回效应及其生理机制. 中国农业科学, 2017, 50: 1781-1791.
doi: 10.3864/j.issn.0578-1752.2017.10.004
Li C Y, Yang J, Zhang Y X, Yao M H, Zhu X K, Guo W S. Retrieval effects of remedial fertilizer after freeze injury on wheat yield and its mechanism at tillering stage. Sci Agric Sin, 2017, 50: 1781-1791 (in Chinese with English abstract).
[20] 吕佳佳, 朱海霞, 宫丽娟, 王铭, 刘泽恩, 连萍, 李秀芬, 姜丽霞. 1971-2016年寒地大豆霜冻害时空演变特征及对产量影响. 大豆科学,2020, 39: 260-268.
Lyu J J, Zhu H X, Gong L J, Wang M, Liu Z E, Lian P, Li X F, Jiang L X. Spatial-temporal characteristics of frost damage on soybean and its effect on soybean yield from 1971 to 2016 in cold regions. Soybean Sci, 2020, 39: 260-268 (in Chinese with English abstract).
[21] Chen R W, Wang J, Li Y, Song Y, Huang M X, Feng P Y, Qu Z J, Liu L. Quantifying the impact of frost damage during flowering on apple yield in Shaanxi province, China. Eur J Agron, 2023, 142: 126642.
[22] 侯雯嘉, 陈长青, 乔辉, 孙新素, 周曙东. 1980—2009年长江下游地区油菜冻害时空特征研究. 长江流域资源与环境, 2018, 27: 1501-1508.
Hou W J, Chen C Q, Qiao H, Sun X S, Zhou S D.Temporal-spatial characteristics of rape freezing injury in the lower reaches of the Yangtze River during 1980-2009. Resour Environ Yangtze Basin, 2018, 27: 1501-1508 (in Chinese with English abstract).
[23] 王先领, 姜岳, 雷贻忠, 肖胜男, 厍惠洁, 段圣省, 黄铭, 蒯婕, 汪波, 王晶, 等. 外源物质浸种对迟播油菜越冬期抗寒性及产量的影响. 作物学报, 2024, 50: 1271-1286.
doi: 10.3724/SP.J.1006.2024.34134
Wang X L, Jiang Y, Lei Y Z, Xiao S N, She H J, Duan S X, Huang M, Kuai J, Wang B, Wang J, et al. Effects of seed soaking with exogenous substances on late-seeded rapeseed cold resistance of during overwintering period and yield. Acta Agron Sin, 2024, 50: 1271-1286 (in Chinese with English abstract).
[24] 张晓红, 冯梁杰, 杨特武, 徐正华, 胡立勇. 冬季低温胁迫对油菜抗寒生理特性的影响. 植物生理学报, 2015, 51: 737-746.
Zhang X H, Feng L J, Yang T W, Xu Z H, Hu L Y. Effects of chilling stress on physiological characteristics of rapeseed seedlings in winter. Plant Physiol J, 2015, 51: 737-746 (in Chinese with English abstract).
[25] Haj Sghaier A, Tarnawa Á, Khaeim H, Kovács G P, Gyuricza C, Kende Z. The effects of temperature and water on the seed germination and seedling development of rapeseed (Brassica napus L.). Plants (Basel), 2022, 11: 2819.
[26] 宋丰萍, 蒙祖庆, 窦胜玮, 刘丹. 春播半冬性甘蓝型油菜光温因子与产量及农艺性状的典型相关分析. 中国生态农业学报, 2015, 23: 987-993.
Song F P, Meng Z Q, Dou S W, Liu D.Canonical correlations of light and temperature with yield and agronomic traits of semi- winter rapeseed (Brassica napus L.) sowed in spring. Chin J Eco- Agric, 2015, 23: 987-993 (in Chinese with English abstract).
[27] 王乐政, 华方静, 曹鹏鹏, 高凤菊, 夏文荣. 不同播期夏播小豆产量性能动态指标与光温水效应. 草业学报, 2021, 30(1): 116-129.
doi: 10.11686/cyxb2020088
Wang L Z, Hua F J, Cao P P, Gao F J, Xia W R. Yield and dynamic responses of yield components of adzuki bean to insolation, temperature and rainfall across five sowing dates. Acta Pratac Sin, 2021, 30(1): 116-129 (in Chinese with English abstract).
[28] Zhang J L, Li J, Geng G T, Hu W S, Ren T, Cong R H, Li X K, Lu J W. Combined application of nitrogen and potassium reduces seed yield loss of oilseed rape caused by Sclerotinia stem rot disease. Agron J, 2020, 112: 5143-5157.
[29] Li J, Zhou Y G, Gu H H, Lu Z F, Cong R H, Li X K, Ren T, Lu J W. Synergistic effect of nitrogen and potassium on seed yield and nitrogen use efficiency in winter oilseed rape (Brassica napus L.). Eur J Agron, 2023, 148: 126875.
[30] Wang L L, Meng L H, Luo J. Florivory modulates the seed number-seed weight relationship in Halenia elliptica (Gentianaceae). Sci World J, 2015, 2015: 610735.
[31] Kumagai E, Yabiku T, Hasegawa T. A strong negative trade-off between seed number and 100-seed weight stalls genetic yield gains in northern Japanese soybean cultivars in comparison with Midwestern US cultivars. Field Crops Res, 2022, 283: 108539.
[32] de Bang T C, Husted S, Laursen K H, Persson D P, Schjoerring J K. The molecular-physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytol, 2021, 229: 2446-2469.
doi: 10.1111/nph.17074 pmid: 33175410
[33] Wang H, Zhong L, Fu X Q, Huang S Y, Zhao D S, He H H, Chen X R. Physiological analysis reveals the mechanism of accelerated growth recovery for rice seedlings by nitrogen application after low temperature stress. Front Plant Sci, 2023, 14: 1133592.
[34] Liu Z L, Tao L Y, Liu T T, Zhang X H, Wang W, Song J M, Yu C L, Peng X L. Nitrogen application after low-temperature exposure alleviates tiller decrease in rice. Environ Exp Bot, 2019, 158: 205-214.
[35] Li C Y, Liu M M, Dai C H, Zhu Y Y, Zhu M, Ding J F, Zhu X K, Zhou G S, Guo W S. Morphology and nitrogen uptake and distribution of wheat plants as influenced by applying remedial urea prior to or post low-temperature stress at seedling stage. Agronomy, 2022, 12: 2338.
[36] Yoshida S, Sakai A. Phospholipid degradation in frozen plant cells associated with freezing injury. Plant Physiol, 1974, 53: 509-511.
doi: 10.1104/pp.53.3.509 pmid: 16658734
[37] 侯立刚, 马巍, 齐春艳, 刘亮, 孙洪娇. 低温条件下磷肥对水稻幼苗耐冷性及相关生理特性的影响. 东北农业大学学报, 2013, 44(7): 39-45.
Hou L G, Ma W, Qi C Y, Liu L, Sun H J. Effect of phosphate fertilizer application on cold tolerance and its related physiological parameters in rice under low temperature stress. J Northeast Agric Univ, 2013, 44(7): 39-45 (in Chinese with English abstract).
[38] 王天, 宋佳承, 闫士朋, 李朝周. 低温胁迫下磷肥施用量对油橄榄生长发育的影响. 植物营养与肥料学报, 2020, 26: 879-890.
Wang T, Song J C, Yan S P, Li C Z. Growth and development of olive under low temperature stress influenced by phosphate fertilizer application. J Plant Nutr Fert, 2020, 26: 879-890 (in Chinese with English abstract).
[39] Khan F, Siddique A B, Shabala S, Zhou M X, Zhao C C. Phosphorus plays key roles in regulating plants’ physiological responses to abiotic stresses. Plants (Basel), 2023, 12: 2861.
[40] Xu H, Hassan M A, Sun D Y, Wu Z C, Jiang G, Liu B B, Ni Q Q, Yang W K, Fang H, Li J C, et al. Effects of low temperature stress on source-sink organs in wheat and phosphorus mitigation strategies. Front Plant Sci, 2022, 13: 807844.
[41] Mostofa M G, Rahman M M, Ghosh T K, Kabir A H, Abdelrahman M, Rahman Khan M A, Mochida K, Tran L P. Potassium in plant physiological adaptation to abiotic stresses. Plant Physiol Biochem, 2022, 186: 279-289.
[42] Johnson R, Vishwakarma K, Hossen M S, Kumar V, Shackira A M, Puthur J T, Abdi G, Sarraf M, Hasanuzzaman M. Potassium in plants: growth regulation, signaling, and environmental stress tolerance. Plant Physiol Biochem, 2022, 172: 56-69.
[43] Norozi M, ValizadehKaji B, Karimi R, Solgi M. Potassium and zinc-induced frost tolerance in pistachio flowers is associated with physiological and biochemical changes. Trees, 2020, 34: 1021-1032.
[44] Grewal J S, Singh S N. Effect of potassium nutrition on frost damage and yield of potato plants on alluvial soils of the Punjab (India). Plant Soil, 1980, 57: 105-110.
[45] Malhi S S. Relative response of forage and seed yield of alfalfa to sulfur, phosphorus, and potassium fertilization. J Plant Nutr, 2011, 34: 888-908.
[46] Ramírez-Cuevas Y, Rodríguez-Trejo D A. Frost resistance in Pinus hartwegii subjected to different potassium treatments. Rchscfa, 2010, 16: 79-85.
[47] ValizadehKaji B, Nikoogoftar Sedghi M. Enhancement of frost tolerance of almond flowers using potassium. J Plant Nutr, 2020, 43: 2822-2832.
doi: 10.1080/01904167.2020.1793179
[48] 陈卫东, 张玉霞, 丛百明, 孙明雪, 田永雷, 张庆昕, 杜晓艳. 钾肥对紫花苜蓿抗寒性及糖类物质变化的影响. 西北农林科技大学学报(自然科学版), 2022, 50(3): 67-74.
Chen W D, Zhang Y X, Cong B M, Sun M X, Tian Y L, Zhang Q X, Du X Y. Effect of potassium fertilizer on cold tolerance and carbohydrate changes of alfalfa. J Northwest A&F Univ (Nat Sci Edn), 2022, 50(3): 67-74 (in Chinese with English abstract).
[49] Sarikhani H, Haghi H, Ershadi A, Esna-Ashari M, Pouya M. Foliar application of potassium sulphate enhances the cold-hardiness of grapevine (Vitis vinifera L.). J Hortic Sci Biotechnol, 2014, 89: 141-146.
[50] 黄春燕, 苏文斌, 张少英, 樊福义, 郭晓霞, 李智, 菅彩媛, 任霄云, 宫前恒. 施钾量对膜下滴灌甜菜光合性能以及对产量和品质的影响. 作物学报, 2018, 44: 1496-1505.
doi: 10.3724/SP.J.1006.2018.01496
Huang C Y, Su W B, Zhang S Y, Fan F Y, Guo X X, Li Z, Jian C Y, Ren X Y, Gong Q H. Effects of potassium application on photosynthetic performance, yield, and quality of sugar beet with mulching-drip irrigation. Acta Agron Sin, 2018, 44: 1496-1505 (in Chinese with English abstract).
[51] 张丽, 王寅, 鲁剑巍, 任涛, 李小坤, 丛日环. 施钾对直播油菜产量及钾钙镁养分吸收的影响. 中国油料作物学报, 2015, 37: 336-343.
doi: 10.7505/j.issn.1007-9084.2015.03.012
Zhang L, Wang Y, Lu J W, Ren T, Li X K, Cong R H. Effect of potassium application on absorption of potassium, calcium and magnesium for direct-sowing winter rapeseed. Chin J Oil Crop Sci, 2015, 37: 336-343 (in Chinese with English abstract).
doi: 10.7505/j.issn.1007-9084.2015.03.012
[52] 王贺正, 陈明灿, 贺文闯, 李友军, 付国占, 徐国伟. 磷钾对小麦幼苗抗寒性的影响. 麦类作物学报, 2009, 29: 141-145.
Wang H Z, Chen M C, He W C, Li Y J, Fu G Z, Xu G W. Effect of phosphorus and potassium on cold resistance of wheat seedling. J Triticeae Crops, 2009, 29: 141-145 (in Chinese with English abstract).
[53] Chen E W, Yu H Q, He J, Peng D, Zhu P P, Pan S X, Wu X, Wang J C, Ji C, Chao Z F, et al. The transcription factors ZmNAC128 and ZmNAC130 coordinate with Opaque2 to promote endosperm filling in maize. Plant Cell, 2023, 35: 4066-4090.
[54] 宋杰, 王少祥, 李亮, 黄金苓, 赵斌, 张吉旺, 任佰朝, 刘鹏. 施钾量对夏玉米氮、磷、钾吸收利用和籽粒产量的影响. 作物学报, 2023, 49: 539-551.
doi: 10.3724/SP.J.1006.2023.13067
Song J, Wang S X, Li L, Huang J L, Zhao B, Zhang J W, Ren B Z, Liu P. Effects of potassium application rate on NPK uptake and utilization and grain yield in summer maize (Zea mays L.). Acta Agron Sin, 2023, 49: 539-551 (in Chinese with English abstract).
[55] 李俊.亚低温及钾肥对温室番茄生理生态特性与营养吸收的影响. 西北农林科技大学硕士学位论文, 陕西杨凌, 2013.
Li J. Effects of Sub-low Temperature and Potassium Fertilizer on Ecophysiological and Characteristics and Nutrient Absorption of Greenhouse Tomato. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2013 (in Chinese with English abstract).
[56] 刘婷婷, 蒯婕, 孙盈盈, 杨阳, 吴莲蓉, 吴江生, 周广生. 氮、磷、钾肥用量对油菜角果抗裂性相关性状的影响. 作物学报, 2015, 41: 1416-1425.
doi: 10.3724/SP.J.1006.2015.01416
Liu T T, Kuai J, Sun Y Y, Yang Y, Wu L R, Wu J S, Zhou G S. Effects of N, P, and K fertilizers on silique shatter resistance and related traits of rapeseed. Acta Agron Sin, 2015, 41: 1416-1425 (in Chinese with English abstract).
[57] Lu Z F, Pan Y H, Hu W S, Cong R H, Ren T, Guo S W, Lu J W. The photosynthetic and structural differences between leaves and siliques of Brassica napus exposed to potassium deficiency. BMC Plant Biol, 2017, 17: 240.
[58] Zhou Y, Zhang T Y, Li X C. Tropical sea surface temperature variability and its impact on oilseed crop yields in China. Earths Future, 2024, 12: e2023EF004251.
[59] 张树杰, 王汉中. 我国油菜生产应对气候变化的对策和措施分析. 中国油料作物学报, 2012, 34: 114-122.
Zhang S J, Wang H Z. Policies and strategies analyses of rapeseed production response to climate change in China. Chin J Oil Crop Sci, 2012, 34: 114-122 (in Chinese with English abstract).
[60] 张庆昕, 张玉霞, 孙明雪, 夏全超, 王显国, 刘庭玉, 杜晓艳. 钾肥对苜蓿低温胁迫下抗氧化酶活性的影响. 中国农业科技导报, 2023, 25(8): 186-195.
Zhang Q X, Zhang Y X, Sun M X, Xia Q C, Wang X G, Liu T Y, Du X Y. Effects of potassium fertilizer on alfalfa antioxidant enzyme activity under low temperature stress. J Agric Sci Technol, 2023, 25(8): 186-195 (in Chinese with English abstract).
[61] 陈风雷, 龙文, 柳太卫. 钾素营养调节剂对烤烟抗旱性的影响. 中国烟草科学, 2010, 31(2): 34-37.
Chen F L, Long W, Liu T W. Effect of potassium nutrient regulator on drought tolerance of flue-cured tobacco. Chin Tob Sci, 2010, 31(2): 34-37 (in Chinese with English abstract).
[62] 左丽娟, 赵正雄, 杨焕文, 段凤云, 王德勋, 徐发华, 吕芬. 增加施钾量对红花大金元烤烟部分生理生化参数及“两黑病”发生的影响. 作物学报, 2010, 36: 856-862.
doi: 10.3724/SP.J.1006.2010.00856
Zuo L J, Zhao Z X, Yang H W, Duan F Y, Wang D X, Xu F H, Lyu F. Effect of increasing K application rate on partial physiological & biochemical parameters and occurrence of black shank and black root rot in tobacco variety Hongda. Acta Agron Sin, 2010, 36: 856-862 (in Chinese with English abstract).
[63] 朱波, 徐绮雯, 马淑敏, 刘帮艳, 段美春, 王龙昌. 干旱胁迫下施钾水平对油菜生长特性、籽粒品质和钾素利用的影响. 植物营养与肥料学报, 2021, 27: 1016-1026.
Zhu B, Xu Q W, Ma S M, Liu B Y, Duan M C, Wang L C. Effects of potassium fertilizer rate on growth, seed quality and potassium use efficiency in Brassica napus under drought stress. J Plant Nutr Fert, 2021, 27: 1016-1026 (in Chinese with English abstract).
[64] 邹国元, 杨志福, 李晓林. 低温下钾在植物水分调节中的作用. 中国农业大学学报, 1999, 4(1): 21-25.
Zou G Y, Yang Z F, Li X L. Effect of potassium application on water regulation of maize plant under low temperature. J China Agric Univ, 1999, 4(1): 21-25 (in Chinese with English abstract).
[65] 胡文诗.钾营养调控冬油菜叶片光合面积和光合速率的机制. 华中农业大学博士学位论文, 湖北武汉, 2021.
Hu W S. Studies on the Mechanisms of Photosynthetic Area and Rate of Brassica napus under Regulation of Potassium Nutrition. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2021 (in Chinese with English abstract).
[66] 胡鑫慧, 谷淑波, 朱俊科, 王东. 分期施钾对不同质地土壤麦田冬小麦干物质积累和产量的影响. 作物学报, 2021, 47: 2258-2267.
doi: 10.3724/SP.J.1006.2021.01081
Hu X H, Gu S B, Zhu J K, Wang D. Effects of applying potassium at different growth stages on dry matter accumulation and yield of winter wheat in different soil-texture fields. Acta Agron Sin, 2021, 47: 2258-2267 (in Chinese with English abstract).
[67] 张东东, 李琪, 储宝华, 邹养军. 追施钾肥对苹果叶片光合作用、矿质营养及果实品质的影响. 西北农林科技大学学报(自然科学版), 2023, 51(4): 102-109.
Zhang D D, Li Q, Chu B H, Zou Y J. Effects of topdressing potassium fertilizer on photosynthesis, mineral nutrition of apple leaves and fruit quality. J Northwest A&F Univ(Nat Sci Edn), 2023, 51(4): 102-109 (in Chinese with English abstract).
[1] 杨翠华, 李诗豪, 易徐徐, 郑飞雄, 杜雪竹, 盛锋. 聚-γ-谷氨酸对水稻产量、品质和养分吸收的影响[J]. 作物学报, 2025, 51(3): 785-796.
[2] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[3] 王成, 马杨明, 王春雨, 李志欣, 罗健升, 彭政岚, 刘儒宏基, 黄兴海, 曹云, 彭政菠, 马均. 种植方式与施氮量对杂交籼稻养分吸收特性及根系活力的影响[J]. 作物学报, 2024, 50(12): 3069-3082.
[4] 宋杰, 王少祥, 李亮, 黄金苓, 赵斌, 张吉旺, 任佰朝, 刘鹏. 施钾量对夏玉米氮、磷、钾吸收利用和籽粒产量的影响[J]. 作物学报, 2023, 49(2): 539-551.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[7] 田明慧, 杨硕, 杜嘉琪, 张晨曦, 何堂庆, 张学林. 不同氮肥水平下丛枝菌根真菌对玉米籽粒灌浆期磷和钾吸收的影响[J]. 作物学报, 2022, 48(12): 3166-3178.
[8] 张学林, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 周亚男, 郝晓峰, 杨青华. 丛枝菌根真菌对玉米籽粒产量和氮素吸收的影响[J]. 作物学报, 2021, 47(8): 1603-1615.
[9] 程乙,刘鹏,刘玉文,庞尚水,董树亭,张吉旺,赵斌,任佰朝. 黄淮海区域现代夏玉米品种产量与养分吸收规律[J]. 作物学报, 2019, 45(11): 1699-1714.
[10] 周泉, 王龙昌, 马淑敏, 张小短, 邢毅, 张赛. 西南旱地油菜间作紫云英和秸秆覆盖的生产效应[J]. 作物学报, 2018, 44(03): 431-441.
[11] 王劲松,焦晓燕,丁玉川,董二伟,白文斌,王立革,武爱莲. 粒用高粱养分吸收、产量及品质对氮磷钾营养的响应[J]. 作物学报, 2015, 41(08): 1269-1278.
[12] 张凡,睢宁,余超然,刘瑞显,杨长琴,宋光雷,孟亚利,周治国. 小麦秸秆还田和施钾对棉花产量与养分吸收的效应[J]. 作物学报, 2014, 40(12): 2169-2175.
[13] 王亚江,魏海燕*,颜希亭,葛梦婕,孟天瑶,张洪程,戴其根,霍中洋,许轲,费新茹. 光、氮及其互作对超级粳稻产量和氮、磷、钾吸收的影响[J]. 作物学报, 2014, 40(07): 1235-1244.
[14] 王寅,鲁剑巍,李小坤,任涛,丛日环,占丽平. 长江流域直播冬油菜氮磷钾硼肥施用效果[J]. 作物学报, 2013, 39(08): 1491-1500.
[15] 于天一,逄焕成,唐海明,杨光立,李玉义,肖小平,汤文光,陈阜,任天志. 不同母质发育的土壤对双季稻产量及养分吸收特性的影响[J]. 作物学报, 2013, 39(05): 896-904.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!