欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (12): 3069-3082.doi: 10.3724/SP.J.1006.2024.42012

• 耕作栽培·生理生化 • 上一篇    下一篇

种植方式与施氮量对杂交籼稻养分吸收特性及根系活力的影响

王成(), 马杨明(), 王春雨, 李志欣, 罗健升, 彭政岚, 刘儒宏基, 黄兴海, 曹云, 彭政菠, 马均()   

  1. 四川农业大学水稻研究所 / 农业农村部西南作物生理生态与耕作重点实验室, 四川温江 611130
  • 收稿日期:2024-02-29 接受日期:2024-08-15 出版日期:2024-12-12 网络出版日期:2024-09-03
  • 通讯作者: *马均, E-mail: majunp2002@163.com
  • 作者简介:王成, E-mail: 15608025707@163.com;
    马杨明, E-mail: 18581562114@163.com**同等贡献
  • 基金资助:
    国家重点研发计划重点专项(2016YFDO300506);国家科技支撑计划项目(2013BAD07B13);四川省教育厅重点项目(16ZA0044);四川省学术和技术带头人培养支持经费资助。

Effects of cropping practices and nitrogen application on nutrient uptake characteristics and root vigor of hybrid indica rice

WANG Cheng(), MA Yang-Ming(), WANG Chun-Yu, LI Zhi-Xin, LUO Jian-Sheng, PENG Zheng-Lan, LIU Ru-Hong-Ji, HUANG Xing-Hai, CAO Yun, PENG Zheng-Bo, MA Jun()   

  1. Rice Research Institute of Sichuan Agricultural University / Southwest Key Laboratory of Crop Physiology, Ecology and Tillage, Ministry of Agriculture and Rural Affairs, Wenjiang 611130, Sichuan, China
  • Received:2024-02-29 Accepted:2024-08-15 Published:2024-12-12 Published online:2024-09-03
  • Contact: *E-mail: majunp2002@163.com
  • About author:**Contributed equally to this work
  • Supported by:
    National Key Research and Key Development Program(2016YFDO300506);National Key Technologies R & D Program of China(2013BAD07B13);Key Projects of Sichuan Provincial Department of Education(16ZA0044);and the Sichuan Academic and Technical Leaders Training Support Funding.

摘要:

为探明不同种植方式与施氮量对杂交籼稻养分吸收特性、产量及根系活力的影响, 以杂交籼稻F优498为试验材料, 采用二因素裂区设计, 主区为3种种植方式(毯苗机插、湿润精量穴直播和人工移栽), 副区为4个施氮量(0 kg hm-2、90 kg hm-2、135 kg hm-2和180 kg hm-2), 探究F优498在不同处理下对养分积累、根系活力、产量及其构成因子的影响。结果表明,水稻抽穗期及成熟期的氮积累量均为人工移栽>机插>直播, 拔节期磷积累总量和抽穗期钾积累总量均为人工移栽最大, 拔节前直播稻的氮、磷和钾积累速率最高, 分别比机插和人工移栽高40.68%~63.64%和19.42%~71.43%, 不同种植方式下均在拔节至抽穗期养分积累速率达到最大; 人工移栽和机插方式下水稻产量差异不显著, 直播与人工移栽相比, 减产8.09%~15.00%, 人工移栽的水稻千粒重、穗粒数和结实率均高于机插和直播, 但有效穗数显著降低, 分别比机插和直播低15.99%~41.77%和23.19%~29.60%, 施氮后产量的显著提高是由于提高了单位面积有效穗数和每穗粒数; 各种植方式的地上部和根系干物重分别在成熟期和抽穗期达到最大, 就不同施氮量而言, 施氮处理的群体根系干物重显著高于不施氮处理; 水稻抽穗后单茎和群体伤流强度降低, 机插的单茎及群体根系活力显著高于人工移栽和直播。机插稻施氮量在中低氮水平(90~135 kg hm-2)较适宜, 直播稻和人工移栽稻施氮量在中高氮水平(135~180 kg hm-2)较适宜。

关键词: 水稻, 施氮量, 种植方式, 养分吸收特性, 根系

Abstract:

To explore the effects of different planting methods and nitrogen application rates on nutrient absorption characteristics, root activity, and yield of hybrid indica rice, F You 498 was used as the experimental material in a two-factor split-plot design. The main plot consisted of carpet seedling machine transplanting, wet precision hole direct seeding, and manual transplanting, while the sub-plot included four nitrogen application rates (0 kg hm-2, 90 kg hm-2, 135 kg hm-2, and 180 kg hm-2). The effects on nitrogen, phosphorus, and potassium accumulation, root activity, yield, and yield components of hybrid indica rice under different treatments were studied. The results showed that the total nitrogen accumulation at the heading and maturity stages was highest in manually transplanted rice, followed by mechanical transplanting, and then direct seeding. The total phosphorus accumulation at the jointing stage and potassium accumulation at the heading stage were also highest in manually transplanted rice. The nutrient accumulation rate of nitrogen, phosphorus, and potassium before jointing was highest in direct-seeded rice, being 40.68%-63.64% and 19.42%-71.43% higher than in mechanical and manual transplanting, respectively. The nutrient accumulation rate peaked from jointing to heading stage under different planting methods. There was no significant difference in rice yield between manual and mechanical transplanting. However, compared to manual transplanting, direct seeding reduced rice yield by 8.09%-15.00%. The 1000-grain weight, grain number per panicle, and seed setting rate of manually transplanted rice were higher than those of mechanical transplanting and direct seeding, but the effective panicle number was significantly reduced, being 15.99%-41.77% and 23.19%-29.60% lower than those of mechanical transplanting and direct seeding, respectively. The dry matter accumulation of shoots and roots reached its maximum at the maturity and heading stages, respectively. Under manual transplanting conditions, the dry weight of shoots and roots at maturity was greater than that of mechanical transplanting and direct seeding. As the growth process advanced, the bleeding intensity of single stems and populations after heading gradually decreased, and the root activity of single stems and populations in mechanical transplanting was significantly higher than in manual transplanting and direct seeding. The optimal nitrogen application rate for machine-transplanted rice was in the middle to low range (90-135 kg hm-2), while for direct-seeded and manually transplanted rice, it was in the middle to high range (135-180 kg hm-2).

Key words: rice, nitrogen application, cropping practices, nutrient uptake characteristics, root system

图1

水稻生育时期气温与降雨量"

表1

基础土样理化性质"

年份
Year
全氮
Total N
(g kg-1)
碱解氮
Alkali hydrolysable N
(mg kg-1)
速效磷
Olsen P
(mg kg-1)
速效钾
Exchangeable K
(mg kg-1)
有机质
Organic matter
(g kg-1)
pH 容重
Bulk density
(g cm-3)
2016 1.07 118.42 14.10 49.70 25.07 6.61 1.71
2017 1.19 88.96 12.26 59.91 20.13 6.45 1.88

表2

水稻主要生育时期"

年份
Year
种植方式
Transplanting methods
播种时间
Sowing date (month/day)
移栽时间
Transplanting date (month/day)
生育时期 Growth stage
拔节期Jointing (month/day) 抽穗期Heading
(month/day)
成熟期Maturity
(month/day)
2016 T1 04/15 05/21 06/28 08/01 09/12
T2 05/23 07/14 08/17 09/25
T3 04/15 05/23 06/28 08/01 09/12
2017 T1 04/05 05/08 06/19 07/26 09/07
T2 05/08 06/30 08/04 09/18
T3 04/05 05/08 06/19 07/22 08/30

表3

不同种植方式与施氮量对产量及构成因子的影响"

处理
Treatment
水稻产量及其构成因子 Rice yield and its components
有效穗
Effective panicles (×104 hm-2)
穗粒数
Spikeletes per
panicle
结实率
Seed-setting rate (%)
千粒重
1000-grain weight (g)
产量
Yield
(t hm-2)
2016
T1 N0 177.32 b 194.48 c 92.83 a 31.39 a 10.46 c
N1 184.96 b 233.82 a 88.56 b 29.57 b 11.21 b
N2 205.79 a 212.74 b 84.82 c 30.04 b 11.70 a
N3 209.95 a 217.61 b 87.67 b 29.89 b 12.13 a
平均值Mean 194.50 214.66 88.47 30.22 11.38
T2 N0 190.56 b 172.58 d 82.51 a 31.38 a 9.39 b
N1 203.21 ab 224.09 c 72.51 b 30.20 b 10.06 a
N2 210.19 a 233.03 b 65.98 c 30.78 ab 10.12 a
N3 216.56 a 244.95 a 73.94 b 29.70 c 10.44 a
平均值Mean 206.57 218.66 73.73 30.52 10.00
T3 N0 150.60 b 235.31 c 95.51 a 31.73 a 10.48 b
N1 163.31 ab 277.82 a 87.99 b 29.94 c 11.47 a
N2 172.32 a 260.61 b 91.64 ab 30.05 bc 11.95 a
N3 184.55 a 262.00 b 91.75 a 30.67 b 12.10 a
平均值Mean 167.69 258.93 91.72 30.60 11.50
F
F-value
T 22.11** 59.93** 96.08** 0.32 20.83**
N 9.70** 110.25** 21.41** 19.52** 23.48**
T×N 0.21 15.14** 3.81* 1.79 0.74
2017
T1 N0 196.76 c 189.20 b 84.50 a 29.89 a 10.57 c
N1 215.97 b 205.30 a 79.62 b 29.14 b 11.14 b
N2 234.03 a 190.38 b 79.28 b 29.06 b 11.90 a
N3 241.67 a 188.33 b 76.02 c 28.83 b 12.03 a
平均值Mean 222.11 193.30 79.86 29.23 11.41
T2 N0 168.35 d 190.43 a 80.39 a 30.54 a 9.60 c
N1 202.84 c 183.67 ab 78.91 a 30.01 ab 10.18 b
N2 213.86 b 180.55 ab 78.42 a 29.68 b 10.60 b
N3 227.12 a 171.55 b 73.62 b 29.36 b 11.13 a
平均值Mean 203.04 181.55 77.84 29.90 10.38
T3 N0 135.29 c 235.35 b 92.82 a 30.77 a 9.23 c
N1 151.41 b 254.01 a 91.58 a 30.67 ab 11.35 b
N2 165.70 a 230.64 b 86.15 b 30.60 ab 11.94 a
N3 174.27 a 233.65 b 85.20 b 30.01 b 12.36 a
平均值Mean 156.67 238.41 88.94 30.51 11.22
F
F-value
T 158.89** 63.13** 77.67** 14.43* 6.71
N 123.00** 4.67* 15.79** 1.75 76.03**
T×N 2.25 1.21 1.04 3.05* 6.92**

表4

种植方式和施氮量对杂交籼稻物质积累的影响"

处理
Treatment
群体地上部干重Population shoot dry matter 群体根系干重Population root dry matter
拔节期Jointing 抽穗期Heading 成熟期Maturity 拔节期Jointing 抽穗期Heading 成熟期Maturity
2016
T1 N0 2150 c 9110 c 15,520 b 773 b 954 b 755 c
N1 2470 b 10,120 b 17,220 a 918 a 1156 a 960 a
N2 2590 b 10,800 a 17,720 a 941 a 1025 ab 926 ab
N3 3080 a 11,100 a 17,590 a 881 a 1094 a 905 b
平均值Mean 2572 10,283 17,012 878 1057 886
T2 N0 2270 c 10,020 b 16,170 b 736 b 1121 b 787 c
N1 2430 bc 10,700 a 17,170 ab 923 a 1341 a 1017 a
N2 2770 ab 10,900 a 17,530 ab 873 a 1324 a 951 ab
N3 3050 a 11,030 a 18,090 a 854 a 1263 a 946 b
平均值Mean 2630 10,660 17,240 846 1262 925
T3 N0 1610 b 9060 b 15,690 b 559 b 982 a 832 c
N1 1940 ab 9300 ab 17,190 a 874 a 1091 a 940 b
N2 2070 a 9530 ab 17,910 a 837 a 1028 a 1093 a
N3 2260 a 9930 a 18,770 a 829 a 1006 a 1006 b
平均值Mean 1970 9460 17,390 775 1027 968
F
F-value
T 8.45* 22.17** 0.28 13.77 25.39* 94.43*
N 30.66** 11.04** 8.90** 30.18** 3.61 56.99**
T×N 0.73 1.11 0.34 2.10 0.43 5.45*
2017
T1 N0 2030 c 10,230 d 15,430 d 354 c 726 b 502 b
N1 2160 c 11,300 c 16,810 c 428 b 833 a 594 a
N2 2600 b 11,760 b 17,859 b 564 a 811 a 642 a
N3 3120 a 12,130 a 18,450 a 558 a 808 a 614 a
平均值Mean 2480 11,350 17,140 476 794 588
T2 N0 1970 c 8120 d 14,250 d 498 b 684 b 517 b
N1 2250 b 9130 c 16,290 c 530 b 792 a 612 a
N2 2650 a 9730 b 16,900 b 666 a 811 a 625 a
N3 2860 a 10,560 a 17,550 a 688 a 856 a 622 a
平均值Mean 2430 9380 16,250 596 786 594
T3 N0 2380 c 8310 c 13,830 d 571 b 844 b 556 b
N1 2680 b 10,860 b 17,090 c 610 ab 945 a 596 ab
N2 3050 a 11,100 ab 17,990 b 619 ab 955 a 641 a
N3 3080 a 11,250 a 18,730 a 648 a 939 a 674 a
平均值Mean 2800 10,380 16,910 612 921 617
F
F-value
T 19.06** 119.19** 129.09** 189.80** 134.66** 9.21
N 70.26** 428.99** 196.54** 32.69** 13.43** 8.44**
T×N 2.39 21.06** 5.98** 3.54* 0.79 0.38

表5

不同种植方式下氮素水平对杂交籼稻各生育时期氮磷钾素积累量的影响"

处理
Treatment
氮素积累量N accumulation 磷素积累量P accumulation 钾素积累量K accumulation
拔节期
Jointing
抽穗期
Heading
成熟期
Maturity
拔节期
Jointing
抽穗期
Heading
成熟期
Maturity
拔节期
Jointing
抽穗期
Heading
成熟期
Maturity
2016
T1 N0 36.86 d 78.47 d 113.38 d 7.12 c 20.66 d 32.09 b 59.94 d 147.98 d 164.08 c
N1 47.15 c 115.61 c 151.81 c 9.46 b 26.91 c 34.26 b 66.83 c 168.13 c 174.79 b
N2 52.08 b 152.49 b 173.38 b 11.06 a 32.1 b 39.61 a 74.44 b 185.08 b 201.29 a
N3 58.14 a 174.34 a 192.79 a 11.84 a 36.97 a 43.04 a 83.89 a 190.93 a 211.96 a
平均值Mean 48.56 130.23 157.84 9.87 26.60 37.25 71.28 173.03 188.03
T2 N0 37.72 c 90.00 d 108.52 c 5.58 c 19.09 b 33.86 b 60.73 c 143.90 d 150.51 c
N1 43.66 b 122.95 c 159.87 b 10.18 b 27.63 a 39.52 a 66.65 b 163.80 c 178.3 b
N2 48.46 a 136.67 b 168.11 b 13.21 a 28.15 a 39.69 a 75.33 a 171.45 b 193.94 a
N3 51.52 a 147.67 a 183.02 a 13.89 a 30.22 a 39.69 a 79.12 a 184.76 a 200.01 a
平均值Mean 45.34 124.32 154.88 10.71 26.27 38.19 70.46 165.98 180.69
T3 N0 38.74 c 92.14 d 123.71 d 7.02 d 20.93 c 33.88 c 60.07 b 143.57 d 166.92 c
N1 42.64 c 118.58 c 156.65 c 12.03 c 24.55 b 36.52 bc 65.24 b 173.51 c 185.14 b
N2 49.67 b 155.89 b 173.43 b 15.01 b 29.42 a 40.49 ab 74.45 a 183.54 b 207.93 a
N3 54.97 a 166.56 a 193.03 a 17.00 a 31.49 a 44.24 a 81.58 a 188.12 a 211.21 a
平均值Mean 46.51 133.29 161.71 12.76 29.16 38.78 70.34 172.18 192.8
F
F-value
T 5.10 13.65** 1.68 18.93** 7.50* 6.00 0.11 2.54 2.97
N 61.66** 405.74** 143.3** 88.16** 56.85** 21.44** 43.73** 713.78** 82.18**
T×N 1.29 11.07** 1.13 3.64* 2.24 2.00 0.32 8.14** 0.98
2017
T1 N0 32.37 d 96.61 d 136.61 d 9.97c 35.22 c 40.88 c 60.33 d 156.98 d 196.69 d
N1 36.05 c 120.63 c 169.91 c 10.28 c 41.65 b 44.94 b 72.02 c 190.62 c 224.66 c
N2 52.42 b 139.82 b 181.82 b 12.60 b 45.80 a 50.02 a 82.11 b 196.95 b 239.69 b
N3 62.73 a 151.63 a 195.75 a 14.86 a 46.74 a 53.25 a 92.78 a 213.04 a 259.52 a
平均值Mean 45.89 127.17 171.02 11.93 42.35 47.27 76.81 189.40 230.14
T2 N0 30.63 c 74.78 d 122.84 d 8.80 c 33.49 c 43.22 b 60.315 c 159.50 c 196.61 c
N1 35.37 b 112.83 c 155.82 c 10.52 b 37.34 b 50.46 a 70.705 b 188.22 b 220.11 b
N2 41.13 a 126.79 b 170.46 b 11.79 ab 39.74 b 51.00 a 76.39 ab 200.54 a 229.72 a
N3 39.88 ab 147.18 a 183.33 a 12.37 a 44.57 a 53.43 a 81.01 a 209.37 a 239.86 a
平均值Mean 36.75 115.40 158.11 10.87 38.78 49.52 72.105 189.41 221.57
T3 N0 35.31 c 102.94 d 136.74 c 10.86 b 33.27 c 37.95 c 68.84 c 162.2 d 204.72 d
N1 37.45 bc 125.23 c 174.58 b 11.04 b 42.41 b 45.01 b 80.20 b 184.1 c 219.20 c
N2 43.08 b 139.64 b 182.5 b 13.35 a 44.02 b 49.40 ab 87.39 ab 199.23 b 235.86 b
N3 49.76 a 152.14 a 195.27 a 13.74 a 48.07 a 54.40 a 92.93 a 210.48 a 251.31 a
平均值Mean 41.40 129.99 172.27 12.25 41.94 46.69 82.34 189.00 227.77
F
F-value
T 17.79 6.40 40.63* 2.23 15.28 0.59 5.85 0.01 39.23**
N 57.70** 193.42** 183.80** 25.35** 75.38** 22.66** 34.26** 114.48** 107.04**
T×N 8.49* 2.75 0.27 1.21 1.85 0.74 0.71 0.64 1.90

表6

不同种植方式下氮素水平对杂交籼稻各生育时期氮磷钾素积累速率的影响"

处理
Treatment
氮素积累速率 N accumulation rate 磷素积累速率 P accumulation rate 钾素积累速率 K accumulation rate
拔节前
Before Jointing
拔节-
抽穗期
Jointing-
Heading
抽穗-
成熟期
Heading-
Maturity
拔节前
Before Jointing
拔节-
抽穗期
Jointing-
Heading
抽穗-
成熟期
Heading-
Maturity
拔节前
Before Jointing
拔节-
抽穗期
Jointing-
Heading
抽穗-
成熟期
Heading-
Maturity
2016
T1 N0 0.50 d 1.22 d 0.83 a 0.10 c 0.40 d 0.27 a 0.81 d 2.61 c 0.38 a
N1 0.64 c 2.01 c 0.86 a 0.13 b 0.51 c 0.18 ab 0.90 c 2.96 b 0.16 b
N2 0.70 b 2.95 b 0.50 b 0.15 a 0.62 b 0.18 ab 1.01 b 3.31 a 0.39 a
N3 0.79 a 3.42 a 0.44 b 0.16 a 0.74 a 0.14 b 1.13 a 3.12 ab 0.50 a
平均值Mean 0.66 2.40 0.66 0.13 0.57 0.19 0.96 2.99 0.36
T2 N0 0.90 c 1.54 c 0.47 b 0.11 c 0.40 b 0.38 a 1.17 c 2.41 b 0.17 bd
N1 1.04 b 2.33 b 0.95 a 0.20 b 0.51 a 0.31 ab 1.28 b 2.85 a 0.37 abc
N2 1.15 a 2.60 a 0.81 a 0.25 a 0.44 ab 0.30 ab 1.45 a 2.80 a 0.58 a
N3 1.23 a 2.83 a 0.91 a 0.27 a 0.48 ab 0.24 b 1.52 a 3.03 a 0.39 ab
平均值Mean 1.08 2.32 0.78 0.21 0.46 0.31 1.35 2.77 0.38
T3 N0 0.52 b 1.57 c 0.75 a 0.09 d 0.41 a 0.31 a 0.81 b 2.51 b 0.56 a
N1 0.58 b 2.23 b 0.91 a 0.16 c 0.37 a 0.29 a 0.88 b 3.08 a 0.28 b
N2 0.67 a 3.12 a 0.42 b 0.20 b 0.42 a 0.26 a 1.01 a 3.13 a 0.58 a
N3 0.74 a 3.28 a 0.63 ab 0.23 a 0.43 a 0.30 a 1.10 a 3.10 a 0.55 a
平均值Mean 0.63 2.55 0.68 0.17 0.41 0.29 0.95 2.95 0.49
F
F-value
T 570.40** 4.22 0.66 35.17** 18.15** 14.89* 98.49** 173.17** 0.39
N 48.80** 212.28** 3.83* 104.50** 6.51** 2.66 49.57** 22.79 3.50
T×N 0.90 7.01** 2.52 6.57** 3.83* 0.56 0.40 1.18 1.47
2017
T1 N0 0.44 c 1.78 b 0.93 a 0.14 b 0.70 b 0.13 a 0.83 c 2.66 b 0.97 ab
N1 0.49 c 2.35 a 1.15 a 0.14 b 0.87 a 0.08 a 0.99 b 3.13 a 0.86 b
N2 0.72 b 2.43 a 0.98 a 0.17 a 0.92 a 0.10 a 1.12 a 3.06 a 1.04 a
N3 0.86 a 2.47 a 1.03 a 0.20 a 0.89 a 0.15 a 1.27 a 3.35 a 1.13 a
平均值Mean 0.63 2.26 1.02 0.16 0.85 0.11 1.05 3.05 1.00
T2 N0 0.71 c 1.26 c 1.07 a 0.20 c 0.71 c 0.22 a 1.40 c 2.76 c 0.83 a
N1 0.82 b 2.21 b 0.96 a 0.24 b 0.77 b 0.29 a 1.64 b 3.32 b 0.69 ab
N2 0.96 a 2.45 b 0.97 a 0.27 ab 0.80 b 0.25 a 1.77 ab 3.68 ab 0.69 ab
N3 0.93 a 3.07 a 0.80 a 0.29 a 0.92 a 0.20 a 1.88 a 3.83 a 0.58 b
平均值Mean 0.85 2.25 0.95 0.25 0.80 0.24 1.68 3.40 0.70
T3 N0 0.48 c 2.05 c 0.89 b 0.15 b 0.68 c 0.12 a 0.94 b 2.79 b 1.18 a
N1 0.51 bc 2.66 b 1.30 a 0.15 ab 0.95 b 0.07 a 1.10 a 3.21 a 0.83 b
N2 0.59 ab 2.93 ab 1.13 ab 0.18 a 0.93 b 0.14 a 1.20 a 3.40 a 1.03 ab
N3 0.68 a 3.10 a 1.14 ab 0.19 a 1.04 a 0.17 a 1.27 a 3.58 a 0.98 ab
均值Mean 0.57 2.68 1.11 0.17 0.90 0.12 1.13 3.24 1.01
F
F-value
T 66.39* 4.60 3.22 56.90* 54.32* 0.27 80.35* 8.53 104.65**
N 36.47** 70.43** 1.18 16.60** 55.15** 0.87 27.56** 15.86* 2.20
T×N 3.50* 5.24* 1.11 0.95 5.42* 0.34 0.40 0.61 1.31

图2

不同种植方式下氮素水平对抽穗后水稻单茎根系伤流强度的影响 处理同表3。"

图3

不同种植方式下氮素水平对抽穗后水稻群体根系伤流强度的影响 处理同表3。"

表7

不同生育时期根系活力与产量及其构成因素的相关关系"

时间
Time
根系参数
Root system traits
有效穗数
Effective panicles
穗粒数
Spikeletes per panicle
结实率
Seed-setting rate
产量
Yield
抽穗后0 d
0 day after heading
SBI 0.58* -0.04 -0.34 0.90**
GBI 0.91** -0.49 -0.70** 0.64*
抽穗后7 d
7 days after heading
SBI 0.45 0.13 -0.23 0.92**
GBI 0.88** -0.43 -0.67* 0.70**
抽穗后14 d
14 days after heading
SBI 0.26 0.28 -0.07 0.94**
GBI 0.82** -0.34 -0.60* 0.79**
抽穗后21 d
21 days after heading
SBI 0.14 0.39 0.07 0.84**
GBI 0.73** -0.22 -0.49 0.79**
[1] 吴宇, 刘磊, 崔克辉, 齐晓丽, 黄见良, 彭少兵. 低氮条件下超级杂交稻苗期根系特征的变化及与其高氮素积累的关系. 作物学报, 2024, 50: 414-424.
doi: 10.3724/SP.J.1006.2024.32015
Wu Y, Liu L, Cui K H, Qi X L, Huang J L, Peng S B. Changes in seedling root characteristics of super heterosis rice under low nitrogen conditions and their relationship with its high nitrogen accumulation. Acta Agron Sin, 2024, 50: 414-424 (in Chinese with English abstract).
[2] 徐冉, 陈松, 徐春梅, 刘元辉, 章秀福, 王丹英, 褚光. 施氮量对籼粳杂交稻甬优1540产量和氮肥利用效率的影响及其机制. 作物学报, 2023, 49: 1630-1642.
doi: 10.3724/SP.J.1006.2023.22040
Xu R, Chen S, Xu C M, Liu Y H, Zhang X F, Wang D Y, Chu G. Effects and mechanism of nitrogen fertilization rate on yield and nitrogen use efficiency of indica-japonica hybrid rice Yongyou 1540. Acta Agron Sin, 2023, 49: 1630-1642 (in Chinese with English abstract).
[3] 郭九信, 孔亚丽, 谢凯柳, 李东海, 冯绪猛, 凌宁, 王敏, 郭世伟. 养分管理对直播稻产量和氮肥利用率的影响. 作物学报, 2016, 42: 1016-1025.
doi: 10.3724/SP.J.1006.2016.01016
Guo J X, Kong Y L, Xie K L, Li D H, Feng X M, Ling N, Wang M, Guo S W. Effects of nutrient management on yield and nitrogen use efficiency of direct seeding rice. Acta Agron Sin, 2016, 42: 1016-1025 (in Chinese with English abstract).
[4] 李松竹. 不同配方施肥对水稻产量及肥料利用率的影响. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2019.
Li S Z. Effects of Different Fertilization Formulations on Rice Yield and Fertilizer Use Efficiency. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2019 (in Chinese with English abstract).
[5] Xu G W, Tan G L, Wang Z Q, Liu L J, Yang J C. Effects of wheat residue application and site-specific nitrogen management on growth and development in direct-seeding rice. Acta Agron Sin, 2009, 35: 685-694.
[6] Nikobakht M, Payandeh K, Gholami A. Assessment the effect of different planting pattern (rice-wheat, corn-wheat) and growth stage on soil chemical properties. J Crop Nutr Sci, 2015, 1: 40-53.
[7] Mishra A, Salokhe V M. FLOODING STRESS: the effects of planting pattern and water regime on root morphology, physiology and grain yield of rice. J Agron Crop Sci, 2010, 196: 368-378.
[8] Xing Z, Huang Z, Yao Y, Fu D, Cheng S, Tian J Y, Zhang H C. Nitrogen use traits of different rice for three planting modes in a rice-wheat rotation system. Agriculture, 2023, 13: 77.
[9] Gu J, Yang J. Nitrogen (N) transformation in paddy rice field: its effect on N uptake and relation to improved N management. Crop Environ, 2022, 1: 7-14.
[10] Liang H, Gao S, Ma J, Zhang T, Wang T Y, Zhang S, Wu Z X. Effect of nitrogen application rates on the nitrogen utilization, yield and quality of rice. Food Nutr Sci, 2021, 12: 13-27.
[11] Sun Y J, Yan F J, Sun Y Y, Xu H, Guo X, Yang Z Y, Yin Y Z, Guo C C, Ma J. Effects of different water regimes and nitrogen application strategies on grain filling characteristics and grain yield in hybrid rice. Arch Agron Soil Sci, 2018, 64: 1152-1171.
[12] Li Y, Shao X, Li D, Xiao M, Hu X, He J. Effects of water and nitrogen coupling on growth, physiology and yield of rice. Int J Agric Biol Eng, 2019, 12: 60-66.
[13] Qiu X, Zhang X, Mo Z, Pan S G, Tian H, Duan M Y, Tang X G. Effects of different tillage and fertilization methods on the yield and nitrogen leaching of fragrant rice. Agronomy, 2023, 13: 2773.
[14] Wang W X, Shen C C, Xu Q, Za S, Du B, Xing D Y. Grain yield, nitrogen use efficiency and antioxidant enzymes of rice under different fertilizer N inputs and planting density. Agronomy, 2022, 12: 430.
[15] Zhu H J, Wen T, Sun M W, Ali L, She M S, Wahab A, Tan W J, Wen C, He X, Wang X H. Enhancing rice yield and nitrogen utilization efficiency through optimal planting density and reduced nitrogen rates. Agronomy, 2023, 13: 1387.
[16] 杨波, 徐大勇, 张洪程. 直播、机插与手栽水稻生长发育、产量及稻米品质比较研究. 扬州大学学报(农业与生命科学版), 2012, 33(2): 39-44.
Yang B, Xu D Y, Zhang H C. Research on grow thvield, quality of rice under direct seeding, mechanical transplant in gand artificial transplanting. J Yangzhou Univ (Agric Life Sci Edn), 2012, 33(2): 39-44 (in Chinese with English abstract).
[17] 乔月, 朱建强, 吴启侠, 黄思情, 李明辉. 氮肥运筹下不同种植方式水稻对氮素的吸收、转运和利用. 中国土壤与肥料, 2021, (6): 180-188.
Qiao Y, Zhu J Q, Wu Q X, Huang S Q, Li M H. Effects of nitrogen fertilizer management on nitrogen absorption, translocation and utilization of rice in different planting methods. Soil Fert China, 2021, (6): 180-188 (in Chinese with English abstract).
[18] 李杰, 张洪程, 龚金龙, 常勇, 吴桂成, 郭振华, 戴其根, 霍中洋, 许轲, 魏海燕. 稻麦两熟地区不同栽培方式超级稻分蘖特性及其与群体生产力的关系. 作物学报, 2011, 37: 309-320.
doi: 10.3724/SP.J.1006.2011.00309
Li J, Zhang H C, Gong J L, Chang Y, Wu G C, Guo Z H, Dai Q G, Huo Z Y, Xu K, Wei H Y. Tillering characteristics and its relationships with population productivity of super rice under different cultivation methods in rice-wheat cropping areas. Acta Agron Sin, 2011, 37: 309-320 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2011.00309
[19] 王文霞, 周燕芝, 曾勇军, 吴自明, 谭雪明, 潘晓华, 石庆华, 曾研华. 不同机直播方式对南方优质晚籼稻产量及抗倒伏特性的影响. 中国水稻科学, 2020, 34: 46-56.
doi: 10.16819/j.1001-7216.2020.9075
Wang W X, Zhou Y Z, Zeng Y J, Wu Z M, Tan X M, Pan X H, Shi Q H, Zeng Y H. Effects of different mechanical direct seeding patterns on yield and lodging resistance of high-quality late indica-rice in South China. Chin J Rice Sci, 2020, 34: 46-56 (in Chinese with English abstract).
[20] 金朝强. 不同种植方式对水稻及其后茬小麦生长发育的影响. 华中农业大学硕士学位论文,湖北武汉, 2020.
Jin C Q. Effects of Different Planting Patterns on the Growth and Development of Rice and its Subsequent Wheat. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2020 (in Chinese with English abstract).
[21] 邓飞, 王丽, 刘利, 刘代银, 任万军, 杨文钰. 不同生态条件下栽培方式对水稻干物质生产和产量的影响. 作物学报, 2012, 38: 1930-1942.
doi: 10.3724/SP.J.1006.2012.01930
Deng F, Wang L, Liu L, Liu D Y, Ren W J, Yang W Y. Effects of cultivation methods on dry matter production and yield of rice under different ecological conditions. Acta Agron Sin, 2012, 38: 1930-1942 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2012.01930
[22] Liu T Q, Li C F, Tan W F, Wang J P, Feng J H, Hu Q Y, Cao C G. Rice-crayfish co-culture reduces ammonia volatilization and increases rice nitrogen uptake in central China. Agric Ecosyst Environ, 2022, 330: 107869.
[23] 郭鑫年, 孙娇, 梁锦绣, 周涛, 田旭东, 陈刚. 栽培方式与施磷量对水稻养分累积、分配及磷素平衡的影响. 中国土壤与肥料, 2017, (4): 104-111.
Guo X N, Sun J, Liang J X, Zhou T, Tian X D, Chen G. Effects of cultivation methods and phosphorus application rates on nutrient accumulation, distribution and phosphorus balance in rice. Soil Fert Sci China, 2017, (4): 104-111 (in Chinese with English abstract).
[24] 霍中洋, 李杰, 张洪程, 戴其根, 许轲, 魏海燕, 龚金龙. 不同种植方式下水稻氮素吸收利用的特性. 作物学报, 2012, 38: 1908-1919.
doi: 10.3724/SP.J.1006.2012.01908
Huo Z Y, Li J, Zhang H C, Dai Q G, Xu K, Wei H Y, Gong J L. Characteristics of nitrogen uptake and utilization of rice under different planting methods. Acta Agron Sin, 2012, 38: 1908-1919 (in Chinese with English abstract).
[25] 何艳, 严田蓉, 郭长春, 李娜, 彭志芸, 唐源, 马鹏, 余华清, 孙永健, 杨志远, 马均. 秸秆还田与种植方式对水稻根系生长及产量的影响. 农业工程学报, 2019, 35(7): 105-114.
He Y, Yan T R, Guo C C, Li N, Peng Z Y, Tang Y, Ma P, Yu H Q, Sun Y J, Yang Z Y, Ma J. Effects of different planting methods and straw returning on soil physicochemical properties, root growth and nitrogen use of rice. Trans CSAE, 2019, 35(7): 105-114 (in Chinese with English abstract).
[26] 王强盛, 甄若宏, 丁艳锋, 朱艳, 王绍华, 曹卫星. 钾对不同类型水稻氮素吸收利用的影响. 作物学报, 2009, 35: 704-710.
Wang Q S, Zhen R H, Ding Y F, Zhu Y, Wang S H, Cao W X. Effects of potassium on nitrogen uptake and utilization in different types of rice. Acta Agron Sin, 2009, 35: 704-710 (in Chinese with English abstract).
[27] Anil S A, Singh S Y. Effect of rate and sources of nitrogen, phosphorus and zinc fertilization on potassium nutrition of rice in different cultivation methods. Int J Bio-resour Stress Manag, 2018, 9: 460-467.
[28] Sun Y J, Sun Y Y, Xu H, Wang C Y, Yang Z Y, Li N, Yan F J, Li Y H, Wang H Y, Ma J. Effects of fertilizer levels on the absorption, translocation, and distribution of phosphorus and potassium in rice cultivars with different nitrogen-use efficiencies. J Agric Sci, 2016, 8: 38.
[29] Li M, Zhang H C, Yang X, Ge M J, Ma Q, Wei H Y, Dai Q G, Huo Z Y, Xu K, Luo D Q. Accumulation and utilization of nitrogen, phosphorus and potassium of irrigated rice cultivars with high productivities and high N use efficiencies. Field Crops Res, 2014, 161: 55-63.
[30] 孙永健, 孙园园, 李旭毅, 张荣萍, 郭翔, 马均. 水氮互作对水稻氮磷钾吸收、转运及分配的影响. 作物学报, 2010, 36: 655-664.
doi: 10.3724/SP.J.1006.2010.00655
Sun Y J, Sun Y Y, Li X Y, Zhang R P, Guo X, Ma J. Effects of water-nitrogen interaction on nitrogen uptake, transport and distribution of nitrogen, phosphorus and potassium in rice. Acta Agron Sin, 2010, 36: 655-664 (in Chinese with English abstract).
[31] 王伟妮, 鲁剑巍, 何予卿, 李小坤, 李慧. 氮、磷、钾肥施用对水稻籽粒产量、品质、养分吸收和利用的影响. 中国水稻科学, 2011, 25: 645-653.
Wang W N, Lu J W, He Y Q, Li X K, Li H. Effects of N, P, K fertilizer application on grain yield, quality, nutrient uptake and utilization of rice. Chin J Rice Sci, 2011, 25: 645-653 (in Chinese with English abstract).
[32] 刘东海, 张智, 乔艳, 李双来, 陈云峰, 李菲, 胡诚. 长期施肥对黄棕壤水稻土真菌群落结构的影响. 植物营养与肥料学报, 2023, 29: 1112-1124.
Liu D H, Zhang Z, Qiao Y, Li S L, Chen Y F, Li F, Hu C. Effects of long-term fertilization on fungal community structure in yellow-brown paddy soil. J Plant Nutr Fert, 2023, 29: 1112-1124 (in Chinese with English abstract).
[33] Yan J Y, Ren T, Wang K K, Li H Z, Li X K, Cong R H, Lu J W. Improved crop yield and phosphorus uptake through the optimization of phosphorus fertilizer rates in an oilseed rape-rice cropping system. Field Crops Res, 2022, 286: 108614.
[34] 吴昊, 张瑛, 王琛, 顾汉柱, 周天阳, 张伟阳, 顾骏飞, 刘立军, 杨建昌, 张耗. 栽培优化对长江下游水稻灌浆期根系特征和稻米淀粉特性的影响. 作物学报, 2024, 50: 478-492.
doi: 10.3724/SP.J.1006.2024.32011
Wu H, Zhang Y, Wang C, Gu H Z, Zhou T Y, Zhang W Y, Gu J F, Liu L J, Yang J C, Zhang H. Effects of cultivation optimization on root characteristics and starch properties of rice at grain filing stage in the lower reaches of the Yangtze River. Acta Agron Sin, 2024, 50: 478-492 (in Chinese with English abstract).
[35] 李杰, 张洪程, 常勇, 龚金龙, 胡雅杰, 龙厚元, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 高产栽培条件下种植方式对超级稻根系形态生理特征的影响. 作物学报, 2011, 37: 2208-2220.
doi: 10.3724/SP.J.1006.2011.02208
Li J, Zhang H C, Chang Y, Gong J L, Hu Y J, Long H Y, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H. Influence of planting methods on root system morphological and physiological characteristics of super rice under high-yielding cultivation condition. Acta Agron Sin, 2011, 37: 2208-2220 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2011.02208
[36] 张晨晖, 章岩, 李国辉, 杨子君, 查莹莹, 周驰燕, 许轲, 霍中洋, 戴其根, 郭保卫. 侧深施肥下水稻高产形成的根系形态及其生理变化特征. 作物学报, 2023, 49: 1039-1051.
doi: 10.3724/SP.J.1006.2023.22023
Zhang C H, Zhang Y, Li G H, Yang Z J, Zha Y Y, Zhou C Y, Xu K, Huo Z Y, Dai Q G, Guo B W. Root morphology and physiological characteristics for high yield formation under side-deep fertilization in rice. Acta Agron Sin, 2023, 49: 1039-1051 (in Chinese with English abstract).
[37] Ju C X, Buresh R J, Wang Z Q, Zhang H, Liu L J, Yang J C. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Res, 2015, 175: 47-55.
[38] 褚光, 周群, 薛亚光, 颜晓元, 刘立军, 杨建昌. 栽培模式对杂交粳稻常优5号根系形态生理性状和地上部生长的影响. 作物学报, 2014, 40: 1245-1258.
doi: 10.3724/SP.J.1006.2014.01245
Chu G, Zhou Q, Xue Y G, Yan X Y, Liu L J, Yang J C. Effects of cultivation patterns on root morph-physiological traits and aboveground development of japonica hybrid rice cultivar Changyou 5. Acta Agron Sin, 2014, 40: 1245-1258 (in Chinese with English abstract).
[1] 贾舒涵, 何璨, 陈敏, 刘家欣, 胡伟民, 胡晋, 关亚静. 杂交水稻不同穗萌程度种子质量差异与穗萌分级研究[J]. 作物学报, 2024, 50(9): 2310-2322.
[2] 胡丽琴, 肖正午, 方升亮, 曹放波, 陈佳娜, 黄敏. 种植季节对高直链淀粉水稻品种淀粉消化特性的影响[J]. 作物学报, 2024, 50(9): 2347-2357.
[3] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[4] 刘宸铭, 赵克勇, 悦曼芳, 赵延明, 吴忠义, 张春. 玉米转录因子ZmEREB180调控根系生长发育及耐逆的功能研究[J]. 作物学报, 2024, 50(8): 1920-1933.
[5] 延飞龙, 张振, 赵俊晔, 石玉, 于振文. 宽幅精播下施氮量对冬小麦耗水特性和产量的影响[J]. 作物学报, 2024, 50(8): 2014-2024.
[6] 宋志文, 赵蕾, 毕俊国, 唐清芸, 王国栋, 李玉祥. 滴灌条件下施氮量对不同氮效率水稻品种物质积累及养分吸收的影响[J]. 作物学报, 2024, 50(8): 2025-2038.
[7] 邵美红, 赵玲玲, 程楚, 程思明, 朱双兵, 翟来圆, 陈凯, 徐建龙. 水稻黄华占背景选择导入系的耐低氮筛选评价与利用[J]. 作物学报, 2024, 50(8): 1907-1919.
[8] 何丹丹, 舒亚洲, 周海连, 吴松果, 魏晓双, 杨明冲, 李波, 吴正丹, 韩世健, 杨娟, 王继斌, 王令强. OsRPTA18参与调控水稻叶片倾角的功能[J]. 作物学报, 2024, 50(8): 1934-1947.
[9] 郭思语, 赵克勇, 代正罡, 邹华文, 吴忠义, 张春. 玉米N-乙酰转移酶ZmNAT1基因响应非生物胁迫的功能分析[J]. 作物学报, 2024, 50(8): 2001-2013.
[10] 裴法敬, 张文轩, 张晓, 王昕钰, 彭少兵, 米甲明. 长粒香型的超短生育期水稻新品系创制[J]. 作物学报, 2024, 50(7): 1684-1698.
[11] 韩笑晨, 张贵芹, 王亚辉, 任昊, 王洪章, 刘国利, 林佃旭, 王子强, 张吉旺, 赵斌, 任佰朝, 刘鹏. 土壤调理剂对滨海盐碱地土壤盐分含量及夏玉米产量的影响[J]. 作物学报, 2024, 50(7): 1776-1786.
[12] 付景, 马梦娟, 张骐飞, 段居琦, 王越涛, 王付华, 王生轩, 白涛, 尹海庆, 王亚. 干湿交替灌溉和施氮量对粳稻光合特性和氮素吸收利用的影响[J]. 作物学报, 2024, 50(7): 1787-1804.
[13] 唐清芸, 杨晶晶, 赵蕾, 宋志文, 王国栋, 李玉祥. 施氮量对滴灌水稻根系形态构型和分形特征的影响[J]. 作物学报, 2024, 50(6): 1540-1553.
[14] 张小芳, 朱琪, 华芸堰, 贾黎惠莹, 邱士优, 陈宇杰, 马涛, 丁沃娜. 水稻OsCYP22互作蛋白的筛选及验证[J]. 作物学报, 2024, 50(6): 1628-1634.
[15] 朱忠林, 文月, 周棋, 巫燕飞, 杜雪竹, 盛锋. 水稻OsCNGC10基因抗倒伏性以及抗旱性功能研究[J]. 作物学报, 2024, 50(5): 1351-1360.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!