欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (9): 2330-2340.doi: 10.3724/SP.J.1006.2025.53013

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

兼容双平台的玉米糯质基因InDel功能标记开发与应用

朱维佳1,2**(), 王蕊1**(), 薛英杰1, 田红丽1, 范亚明1, 王璐1, 李松1, 徐丽1, 卢柏山1, 史亚兴1, 易红梅1, 陆大雷2, 杨扬1,*(), 王凤格1,*()   

  1. 1北京市农林科学院玉米研究所 / 农业农村部农作物DNA指纹创新利用重点实验室(部省共建) / 玉米DNA指纹及分子育种北京市重点实验室, 北京 100097
    2扬州大学 / 江苏省作物遗传生理国家重点实验室培育点 / 粮食作物现代产业技术协同创新中心, 江苏扬州 225009
  • 收稿日期:2025-02-25 接受日期:2025-06-01 出版日期:2025-09-12 网络出版日期:2025-06-13
  • 通讯作者: *王凤格, E-mail: gege0106@163.com; 杨扬, E-mail: caurwx@163.com
  • 作者简介:朱维佳, E-mail: 2994945163@qq.com;王蕊, E-mail: wangrui@baafs.net.cn
    **同等贡献
  • 基金资助:
    本研究由北京市农林科学院科技创新能力建设专项(KJCX20230303);本研究由北京市农林科学院科技创新能力建设专项(KJCX20230301)

Development and application of functional insertion and deletion (InDel) markers associated with maize Waxy gene compatible with dual-platform

ZHU Wei-Jia1,2**(), WANG Rui1**(), XUE Ying-Jie1, TIAN Hong-Li1, FAN Ya-Ming1, WANG Lu1, LI Song1, XU Li1, LU Bai-Shan1, SHI Ya-Xing1, YI Hong-Mei1, LU Da-Lei2, YANG Yang1,*(), WANG Feng-Ge1,*()   

  1. 1Maize Research Institute, Beijing Academy of Agricultural and Forestry Sciences / Key Laboratory of Crop DNA Fingerprinting Innovation and Utilization (Co-construction by Ministry and Province) / Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097, China
    2Yangzhou University / Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou 225009, Jiangsu, China
  • Received:2025-02-25 Accepted:2025-06-01 Published:2025-09-12 Published online:2025-06-13
  • Contact: *E-mail: gege0106@163.com; E-mail: caurwx@163.com
  • About author:**Contributed equally to this work
  • Supported by:
    Construction of Scientific and Technological Innovation Capacity of Beijing Academy of Agriculture and Forestry Sciences(KJCX20230303);Construction of Scientific and Technological Innovation Capacity of Beijing Academy of Agriculture and Forestry Sciences(KJCX20230301)

摘要: 为了实现糯玉米中糯质基因变异类型的快速鉴定、了解其在现代糯玉米育种中的应用情况, 本研究针对wx-D7、wx-D10、wx-124、wx-hAT等4种常见的糯质基因InDel变异开发功能标记, 以普通玉米、糯玉米、甜玉米和甜糯玉米为研究对象, 通过多种分子检测平台验证糯质功能标记的特异性和有效性。结果显示, 4种Waxy功能标记在KASP平台和荧光毛细管电泳平台均能够实现特异性基因分型, 且能够有效区分普通玉米与糯质玉米, 并确定糯玉米中Waxy基因的变异类型。针对玉米自交系, 当检出特异性糯质功能标记时, 可依据4种糯质变异类型确定待测样品的糯质基因单倍型并判断其糯质表型, 对于未检测到4种糯质变异的玉米种质则为非糯性或糯质稀有突变。当待测样本为玉米杂交种时, 可能存在隐性纯合基因型、隐性等位糯性杂合基因型、糯/非糯杂合基因型及显性纯合基因型等4种情况, 依据糯质单倍型结果判定。在检测出的糯玉米中85%以上为wx-D7变异类型, 表明wx-D7为我国当前糯玉米育种中主要的应用类型。同时, 在糯玉米杂交种中发现有D7/D10两种糯质变异类型同时存在的现象, 但糯质自交系中仅存在单一的糯质变异类型, 意味着在糯玉米杂交育种中可通过聚合不同类型的糯质变异实现遗传改良。本研究为糯质基因设计了一套适用于多种分子检测平台的功能标记组合, 为鉴定、筛选玉米糯质性状提供了有效的方案。

关键词: 糯玉米, 糯质基因, 功能标记, InDel, KASP, 荧光毛细管电泳

Abstract:

To enable rapid identification of variation types associated with the Waxy gene in waxy maize and to support its application in modern waxy maize breeding, we developed functional markers targeting four common InDel variations of the Waxy gene: wx-D7, wx-D10, wx-124, and wx-hAT. The specificity and effectiveness of these markers were validated across multiple molecular detection platforms, including in common maize, waxy maize, sweet maize, and sweet-waxy maize. Results showed that the four Waxy-associated functional markers enabled specific genotyping on both the KASP and fluorescence capillary electrophoresis platforms. These markers effectively distinguished common maize from waxy maize and identified the Waxy gene variation types in waxy maize lines. The waxy phenotype could be inferred based on the Waxy gene haplotype when specific functional markers were detected in inbred lines. Maize germplasms lacking these four waxy variations exhibited either non-waxy phenotypes or rare waxy variants. For hybrid maize samples, four possible genotypic combinations were observed based on Waxy haplotype analysis: recessive homozygous, recessive allele heterozygous, waxy/non-waxy heterozygous, and dominant homozygous genotypes. Notably, over 85% of waxy maize carried the wx-D7 variation, indicating that wx-D7 is the predominant allele used in modern waxy maize breeding in China. Additionally, we found that multiple Waxy gene variations, such as D7/D10, coexisted in waxy maize hybrids, while only a single variation type was present in waxy inbred lines. This suggests that the aggregation of different Waxy variations may contribute to genetic improvement in waxy maize breeding. In summary, we developed a set of functional markers for the Waxy gene that are compatible with multiple molecular detection platforms, providing an efficient tool for the identification and screening of waxy maize germplasm.

Key words: waxy maize, Waxy gene, functional marker, indel, KASP, fluorescence capillary electrophoresis

图1

玉米糯质基因突变类型及功能标记引物设计示意图 A: 玉米糯质基因突变类型及等位变异图; B: wx-D7、wx-D10功能标记包含3条引物, wx-124、wx-hAT功能标记包含4条引物; 方括号里的序列表示变异序列, 标有不同类型箭头的序列表示引物序列, 其中标有直线箭头的序列代表F1, 标有短划线箭头的序列代表F2, 标有双线箭头的序列代表R1和R2; e1~e10: 玉米糯质基因10个外显子。"

图2

4种糯质基因功能标记在KASP和荧光毛细管电泳平台的基因分型结果 A: 基于KASP平台的wx-D7、wx-D10、wx-124和wx-hAT功能标记基因分型结果。每1个点代表一个玉米材料的基因分型结果, 其中蓝色和红色点分别代表纯合的突变基因型和参考基因型, 黑色点代表空白对照。B: 基于荧光毛细管电泳平台的wx-D7、wx-D10、wx-124和wx-hAT功能标记基因分型峰图。蓝色峰为FAM荧光标记的糯质变异。NTC: 无模板对照。"

表1

糯质基因功能标记引物信息"

变异类型
Variation type
等位基因
Allele
荧光修饰
Fluorescence modification
产物大小
Product size
(bp)
引物序列
Primer sequence (5′-3′)
wx-D7 wx-D7/non-wxD7 FAM 44 F1: ATCTACAGGGACGCCGT
R1: GACGAGGTATACGAGCATGGA
HEX 48 F2: CTCTGAACTGAACAACGC
R2: GACGAGGTATACGAGCATGGA
wx-D10 wx-D10/non-wxD10 FAM 37 F1: GCCTGCAGCGCCTT
R1: GGTGTCCGGTTCAGGC
HEX 52 F2: GCCTGCAGCGCCTC
R2: GGTGTCCGGTTCAGGC
wx-124 wx-124/non-wx124 FAM 48 F1: TGCTCTTGAGGTAGCACGAGG
R1: CCATCGACAAATTCAGAGGATCCCAA
HEX 64 F2: GTTGCTCTTGAGGTAGCACGAGA
R2: GAGGACGTCGTGTTCGTCTGCAA
wx-hAT wx-hAT/non-wxhAT FAM 59 F1: GTCCCAGGCGTCCTTGTACTC
R1: AGCTCGGCATACTCTAACTTAAAATCCTA
HEX 45 F2: GTCCCAGGCGTCCTTGTACTG
R2: TCATGGTCGTCTCTCCCCGCTA

图3

基于KASP平台的不同类型玉米种质糯质基因类型鉴定 A: 302份玉米种质的4种糯质基因变异的基因分型结果。B: 5份糯×非糯型玉米杂交组合的4种糯质基因变异的基因分型结果。"

表2

302份玉米种质的糯质基因类型统计"

基因型
Genotype
糯玉米
Waxy maize
普通玉米
Common maize
甜玉米自交系
Sweet maize inbred line
甜糯玉米杂交种
Sweet-waxy maize hybrid
甜糯双隐基因型玉米自交系
Double recessive sweet-waxy maize inbred line
杂交种
Hybrid
自交系
Inbred line
杂交种
Hybrid
自交系
Inbred line
D7/D7 47 136 0 0 0 3 1
D10/D10 1 7 0 0 0 0 0
124/124 0 1 0 0 0 0 0
hAT/hAT 1 10 0 0 0 0 0
D7/D10 8 0 0 0 0 0 0
Wx/Wx 0 0 10 19 58 0 0
总计Total 57 154 10 19 58 3 1

表3

三联体玉米种质的糯质基因型鉴定"

序号
Number
三联体
Triplet
基因型
Genotype
1 京科糯2000 Jingkenuo 2000 D7/D7
京糯6 Jingnuo 6 D7/D7
BN2 D7/D7
2 京科糯623 Jingkenuo 623 D7/D10
京糯2 Jingnuo 2 D10/D10
D6644-2 D7/D7

表4

玉米糯质基因单倍型、基因型、表现型的对应关系"

Waxy基因
Waxy gene
变异类型
Variation type
单倍型
Haplotype
基因型Genotype 表现型
Phenotype
自交系Inbred line 杂交种
Hybrid
隐性基因wx
Recessive gene wx
wx-D7 wD7WD10W124WhAT (D7) D7/D7
D7/D7, D7/D10, D7/124, D7/hAT, D7/mut 糯性
Waxy
wx-D10 WD7wD10W124WhAT (D10) D10/D10
D10/D10, D7/D10, D10/124, D10/hAT, D10/mut
wx-124 WD7WD10w124WhAT (124) 124/124
124/124, D7/124, D10/124, 124/hAT, 124/mut
wx-hAT WD7WD10W124whAT (hAT) hAT/hAT
hAT/hAt, D7/hAT, D10/hAT, 124/ hAT, hAT/mut
wx-mut WD7WD10W124WhAT (mut) mut/mut mut/mut, D7/mut, D10/mut, 124/mut, hAT/mut
显性基因Wx
Dominant gene Wx
Wx WD7WD10W124WhAT (Wx) Wx/Wx Wx/Wx, Wx/D7, Wx/D10, Wx/124, Wx/hAT, Wx/mut 非糯性
Non-waxy

表5

糯玉米糯质基因类型占比"

基因型
Genotype
糯玉米杂交种
Waxy maize hybrid
(%)
糯玉米自交系
Waxy maize inbred line (%)
D7/D7 82.46 88.31
D10/D10 1.75 4.55
124/124 0 0.65
hAT/hAT 1.75 6.49
D7/D10 14.04 0
总计Total 100.00 100.00
[1] Huang L, Sreenivasulu N, Liu Q. Waxy editing: old meets new. Trends Plant Sci, 2020, 25: 963-966.
doi: S1360-1385(20)30239-9 pmid: 32828690
[2] Yang Y, Zhou L H, Feng L H, Jiang J Y, Huang L C, Liu Q, Zhang Y D, Zhang C Q, Liu Q Q. Deciphering the role of Waxy gene mutations in enhancing rice grain quality. Foods, 2024, 13: 1624.
[3] Yang J, Wang J, Fan F J, Zhu J Y, Chen T, Wang C L, Zheng T Q, Zhang J, Zhong W G, Xu J L. Development of AS-PCR marker based on a key mutation confirmed by resequencing of Wx-mp in Milky Princess and its application in japonica soft rice (Oryza sativa L.) breeding. Plant Breed, 2013, 132: 595-603.
[4] Nakamura T, Yamamori M, Hirano H, Hidaka S, Nagamine T. Production of waxy (amylose-free) wheats. Mol Gen Genet, 1995, 248: 253-259.
[5] 韩蕾. 糯玉米距离分析、杂种优势及特殊配合力的关系. 吉林农业大学硕士学位论文, 吉林长春, 2006.
Han L. Relationship among Distance Analysis and Heterosis and Specific Combining Ability in Waxy Corn. MS Thesis of Jilin Agricultural University, Changchun, Jilin, China, 2006 (in Chinese with English abstract).
[6] 杨明花, 嵇闯, 崔亚坤, 刘强, 彭云承, 赵文明, 孟庆长, 张美景, 陈艳萍. 鲜食糯玉米货架期苞叶相关性状的配合力及其遗传效应分析. 玉米科学, 2023, 31(6): 10-16.
Yang M H, Ji C, Cui Y K, Liu Q, Peng Y C, Zhao W M, Meng Q C, Zhang M J, Chen Y P. Analysis on combining ability and genetic effect of bract related traits related characters of fresh waxy corn. J Maize Sci, 2023, 31(6): 10-16 (in Chinese with English abstract).
[7] 李芳芳, 刘松涛, 么大轩, 刘云婷, 代亮, 段会军. 一个糯玉米突变体的遗传鉴定. 河北农业大学学报, 2018, 41(1): 6-10.
doi: 10.13320 / j.cnki.jauh.2018.0002
Li F F, Liu S T, Yao D X, Liu Y T, Dai L, Duan H J. Genetic identification of a waxy maize mutant. J Hebei Agric Univ, 2018, 41(1): 6-10 (in Chinese with English abstract).
[8] Wessler S R. The maize transposable Ds1 element is alternatively spliced from exon sequences. Mol Cell Biol, 1991, 11: 6192-6196.
doi: 10.1128/mcb.11.12.6192-6196.1991 pmid: 1658627
[9] 田孟良, 黄玉碧, 谭功燮, 刘永建, 荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析. 作物学报, 2008, 34: 729-736.
doi: 10.3724/SP.J.1006.2008.00729
Tian M L, Huang Y B, Tan G X, Liu Y J, Rong T Z. Sequence polymorphism of waxy genes in landraces of waxy maize from Southwest China. Acta Agron Sin, 2008, 34: 729-736 (in Chinese with English abstract).
[10] Okagaki R J, Neuffer M G, Wessler S R. A deletion common to two independently derived waxy mutations of maize. Genetics, 1991, 128: 425-431.
doi: 10.1093/genetics/128.2.425 pmid: 2071021
[11] 武晓阳, 隆文杰, 陈丹, 周国雁, 杜娟, 伍少云, 蔡青. 云南糯玉米地方品种糯性等位基因wx-xuanwei的分子特征. 江西农业学报, 2020, 32(3): 35-41.
Wu X Y, Long W J, Chen D, Zhou G Y, Du J, Wu S Y, Cai Q. Molecular characteristics of waxy allele wx-xuanwei in Yunnan waxy maize landraces. Acta Agric Jiangxi, 2020, 32(3): 35-41 (in Chinese with English abstract).
[12] Luo M J, Shi Y X, Yang Y, Zhao Y X, Zhang Y X, Shi Y M, Kong M S, Li C H, Feng Z, Fan Y L, et al. Sequence polymorphism of the waxy gene in waxy maize accessions and characterization of a new waxy allele. Sci Rep, 2020, 10: 15851.
[13] 姚坚强, 鲍坚东, 朱金庆, 桂毅杰, 沈秋芳, 胡伟民, 樊龙江. 中国糯玉米wx基因种质资源遗传多样性. 作物学报, 2013, 39: 43-49.
doi: 10.3724/SP.J.1006.2013.00043
Yao J Q, Bao J D, Zhu J Q, Gui Y J, Shen Q F, Hu W M, Fan L J. Genetic diversity of waxy gene in Chinese glutinous maize. Acta Agron Sin, 2013, 39: 43-49 (in Chinese with English abstract).
[14] Fukunaga K, Kawase M, Kato K. Structural variation in the Waxy gene and differentiation in foxtail millet [Setaria italica (L.) P. Beauv.]: implications for multiple origins of the waxy phenotype. Mol Genet Genomics, 2002, 268: 214-222.
pmid: 12395195
[15] Fan L J, Quan L Y, Leng X D, Guo X Y, Hu W M, Ruan S L, Ma H S, Zeng M Q. Molecular evidence for post-domestication selection in the Waxy gene of Chinese waxy maize. Mol Breed, 2008, 22: 329-338.
[16] 石建斌, 周红, 王宁, 许庆华, 乔文青, 严根土. 棉花SSR标记种质资源纯度鉴定及遗传多样性分析. 生物技术通报, 2018, 34(7): 138-146.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-1070
Shi J B, Zhou H, Wang N, Xu Q H, Qiao W Q, Yan G T. Purity identification and genetic diversity analysis of cotton germplasm resources using SSR markers. Biotechnol Bull, 2018, 34(7): 138-146 (in Chinese with English abstract).
[17] 徐辰武, 徐扬, 焦宇馨, 李成, 于广宁. 玉米糯性基因的KASP分子标记的开发方法及应用. 中国专利: CN202210282537.6. [2022-06-10].
Xu C W, Xu Y, Jiao Y X, Li C, Yu G N. The development method and application of KASP molecular markers for the waxy gene in maize. Chinese Patent: CN202210282537.6. [2022-06-10]
[18] 袁文娅, 赵晓雷, 周旭梅, 王磊, 彭勃, 王奕. waxy基因功能标记开发及在糯玉米育种中的应用. 作物杂志, 2020, (4): 99-106.
Yuan W Y, Zhao X L, Zhou X M, Wang L, Peng B, Wang Y. The development of waxy gene function marker and its application in waxy maize breeding. Crops, 2020, (4): 99-106 (in Chinese with English abstract).
[19] 宋伟, 王凤格, 易红梅, 李翔, 赵久然. 功能标记及在品种鉴定和辅助育种中的应用前景. 分子植物育种, 2009, 7: 612-618.
Song W, Wang F G, Yi H M, Li X, Zhao J R. Functional markers and their potential application in varieties identification and MAS breeding. Mol Plant Breed, 2009, 7: 612-618 (in Chinese with English abstract).
[20] 任佳丽. 转基因玉米标准物质-质粒阳性物质构建与检测方法的建立. 新疆农业大学硕士学位论文, 新疆乌鲁木齐, 2021.
Ren J L. Construction of Transgenic Maize Standard Substance-plasmid Positive Substance and Establishment of Detection Method for Transgenic Maize. MS Thesis of Xinjiang Agricultural University, Urumqi, Xinjiang, China, 2021 (in Chinese with English abstract).
[21] 梁紫越, 刘志浩, 马世鹏, 赵怡锟, 许理文, 康定明, 王凤格. 基于双平台的InDel标记玉米杂交种纯度鉴定方法. 玉米科学, 2022, 30(3): 32-39.
Liang Z Y, Liu Z H, Ma S P, Zhao Y K, Xu L W, Kang D M, Wang F G. Using indel markers for purity identification method of hybrid seeds in maize based on dual platforms. J Maize Sci, 2022, 30(3): 32-39 (in Chinese with English abstract).
[22] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33: 1870-1874.
doi: 10.1093/molbev/msw054 pmid: 27004904
[23] Rasheed A, Wen W E, Gao F M, Zhai S N, Jin H, Liu J D, Guo Q, Zhang Y J, Dreisigacker S, Xia X C, et al. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor Appl Genet, 2016, 129: 1843-1860.
doi: 10.1007/s00122-016-2743-x pmid: 27306516
[24] 王蕊, 施龙建, 田红丽, 易红梅, 杨扬, 葛建镕, 范亚明, 任洁, 王璐, 陆大雷, 等. 玉米杂交种纯度鉴定SNP核心引物的确定及高通量检测方案的建立. 作物学报, 2021, 47: 770-779.
doi: 10.3724/SP.J.1006.2021.03031
Wang R, Shi L J, Tian H L, Yi H M, Yang Y, Ge J R, Fan Y M, Ren J, Wang L, Lu D L, et al. Identification of SNP core primer and establishment of high throughput detection scheme for purity identification in maize hybrids. Acta Agron Sin, 2021, 47: 770-779 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.03031
[25] 易红梅, 王凤格, 赵久然, 王璐, 郭景伦, 原亚萍. 玉米品种SSR标记毛细管电泳荧光检测法与变性PAGE银染检测法的比较研究. 华北农学报, 2006, 21(5): 64-67.
doi: 10.3321/j.issn:1000-7091.2006.05.016
Yi H M, Wang F G, Zhao J R, Wang L, Guo J L, Yuan Y P. Comparison of two maize SSR detection methods: capillary electrophoresis with fluorescence detection method and denaturing PAGE silver-staining detection method. Acta Agric Boreali-Sin, 2006, 21(5): 64-67 (in Chinese with English abstract).
[26] 仇律雯, 杨扬, 范亚明, 田红丽, 易红梅, 王璐, 任洁, 葛建镕, 王凤格, 陆大雷. 国家东南区鲜食糯玉米品质及农艺性状与SSR标记遗传多样性分析. 江苏农业科学, 2022, 50(18): 130-135.
Qiu L W, Yang Y, Fan Y M, Tian H L, Yi H M, Wang L, Ren J, Ge J R, Wang F G, Lu D L. Genetic diversity analysis of quality, agronomic traits and SSR markers of fresh waxy maize in Southeastern China. Jiangsu Agric Sci, 2022, 50(18): 130-135 (in Chinese with English abstract).
[27] 雷开荣. SSR标记与玉米籽粒赖氨酸含量的关系及优质蛋白玉米(QPM)的分子标记辅助选择. 重庆大学硕士学位论文, 重庆, 2005.
Lei K R. The Relation between SSR Marker and the Lysine Content of Maize and Molecule Marker Selection for QPM. MS Thesis of Chongqing University, Chongqing, China, 2005 (in Chinese with English abstract).
[1] 王婵, 吴莹莹, 李文奇, 李霞, 王芳权, 周彤, 杨杰. 基于HRM技术开发水稻抗条纹叶枯病基因STV11功能标记[J]. 作物学报, 2025, 51(9): 2547-2556.
[2] 雍瑞, 胡文静, 吴迪, 汪尊杰, 李东升, 赵蝶, 尤俊超, 肖永贵, 王春平. 小麦穗粒数QTL分析及其对千粒重多效性评价[J]. 作物学报, 2025, 51(2): 312-323.
[3] 高维东, 胡城祯, 张龙, 张艳艳, 张沛沛, 杨德龙, 陈涛. 小麦泛素结合酶TaUBC16基因的克隆与功能分析[J]. 作物学报, 2024, 50(8): 1971-1988.
[4] 毕俊鸽, 曾占奎, 李琼, 洪壮壮, 颜群翔, 赵越, 王春平. 两个RIL群体中小麦籽粒品质相关性状QTL定位及KASP标记开发[J]. 作物学报, 2024, 50(7): 1669-1683.
[5] 王蕊, 孙擘, 张云龙, 张茗起, 范亚明, 田红丽, 赵怡锟, 易红梅, 匡猛, 王凤格. 叶绿体标记在玉米种质资源快速分组中的应用分析[J]. 作物学报, 2024, 50(7): 1867-1876.
[6] 韩洁楠, 张泽, 刘晓丽, 李冉, 上官小川, 周婷芳, 潘越, 郝转芳, 翁建峰, 雍洪军, 周志强, 徐晶宇, 李新海, 李明顺. o2突变引起糯玉米籽粒淀粉积累差异研究[J]. 作物学报, 2024, 50(5): 1207-1222.
[7] 娄菲, 左怿平, 李萌, 代鑫萌, 王健, 韩金玲, 吴舒, 李向岭, 段会军. 有机肥替代部分化肥氮对糯玉米产量、品质及氮素利用的影响[J]. 作物学报, 2024, 50(4): 1053-1064.
[8] 张天星, 李梦, 吴林楠, 赵惠贤, 胡胜武, 马猛. 小麦籽粒大小相关基因TaCYP78A17的功能标记开发[J]. 作物学报, 2024, 50(12): 3025-3034.
[9] 宋旭东, 朱广龙, 张舒钰, 章慧敏, 周广飞, 张振良, 冒宇翔, 陆虎华, 陈国清, 石明亮, 薛林, 周桂生, 郝德荣. 长江中下游地区糯玉米花期耐热性鉴定及评价指标筛选[J]. 作物学报, 2024, 50(1): 172-186.
[10] 宋兆建, 冯紫旖, 屈天歌, 吕品苍, 杨晓璐, 湛明月, 张献华, 何玉池, 刘育华, 蔡得田. 四倍体水稻回复二倍体品系的籼粳属性鉴定和杂种优势利用初探[J]. 作物学报, 2023, 49(8): 2039-2050.
[11] 陶顺玉, 吴贝, 刘念, 罗怀勇, 黄莉, 周小静, 陈伟刚, 郭建斌, 喻博伦, 雷永, 廖伯寿, 姜慧芳. 花生InDel标记开发及其在含油量QTL定位中的应用[J]. 作物学报, 2023, 49(5): 1222-1230.
[12] 严昕, 项超, 刘荣, 李冠, 李孟伟, 李正丽, 宗绪晓, 杨涛. 基于BSA-seq技术对豌豆花色基因的精细定位[J]. 作物学报, 2023, 49(4): 1006-1015.
[13] 张逸宁, 张艳菲, 汪敏, 王景一, 李龙, 李超男, 杨德龙, 毛新国, 景蕊莲. 小麦转录因子基因TaPHR1参与调控每穗小穗数[J]. 作物学报, 2023, 49(12): 3176-3187.
[14] 黄婷苗, 詹昕, 陆乃昆, 乔月静, 陈杰, 杨珍平, 高志强. 叶喷有机硒对黑糯玉米硒吸收及籽粒花青素和铁锰铜锌的影响[J]. 作物学报, 2023, 49(10): 2845-2853.
[15] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!