欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (9): 2341-2357.doi: 10.3724/SP.J.1006.2025.51011

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

青稞HvERF039基因的克隆及功能研究

马娟娥(), 姚有华, 姚晓华, 吴昆仑*(), 崔永梅*()   

  1. 青海大学农林科学院 / 青海大学省部共建三江源生态与高原农牧业国家重点实验室 / 青藏高原种质资源研究与利用实验室 / 青海省青稞遗传育种重点实验室, 青海西宁 810016
  • 收稿日期:2025-01-24 接受日期:2025-06-01 出版日期:2025-09-12 网络出版日期:2025-06-19
  • 通讯作者: *吴昆仑, E-mail: wklqaaf@sina.com; 崔永梅, E-mail: 15251892177@163.com
  • 作者简介:E-mail: 18393567953@163.com
  • 基金资助:
    本研究由省部共建三江源生态与高原农牧业国家重点实验室自主研究项目(2023-ZZ-01);青海大学青年科研基金项目(2022-QNY-3);青海省农林科学院创新基金项目(2022-NKY-04);青藏高原种质资源研究与利用实验室项目(2025)

Cloning and functional analysis of HvERF039 gene in Qingke (Hordeum vulgare L. var. nudum Hook. f)

MA Juan-E(), YAO You-Hua, YAO Xiao-Hua, WU Kun-Lun*(), CUI Yong-Mei*()   

  1. Academy of Agriculture and Forestry Sciences, Qinghai University / State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University / Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources / Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining 810016, Qinghai, China
  • Received:2025-01-24 Accepted:2025-06-01 Published:2025-09-12 Published online:2025-06-19
  • Contact: *E-mail: wklqaaf@sina.com; E-mail: 15251892177@163.com
  • Supported by:
    Open Project of State Key Laboratory of Plateau Ecology and Agriculture(2023-ZZ-01);Qinghai University Natural Science Foundation for Young Scholars(2022-QNY-3);Innovation Fund of Qinghai Academy of Agricultural and Forestry Sciences(2022-NKY-04);Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources(2025)

摘要:

AP2/ERF (APETALA2/ethylene responsive factor)转录因子在植物非生物胁迫响应中起重要作用, 但青稞中该类基因的功能研究较少。本研究克隆了青稞HvERF039基因, 并通过生物信息学、qRT-PCR、拟南芥异源过表达等方法研究了其在低温胁迫中的功能。生物信息学分析结果显示, HvERF039是具有典型AP2保守结构域的亲水性不稳定蛋白, 其启动子区域含有与光响应、植物激素响应、低温胁迫响应等相关的顺式作用元件。亚细胞定位和转录自激活活性试验表明, HvERF039是一个定位于质膜和细胞核上、具有转录激活活性的转录因子。qRT-PCR分析表明, HvERF039在低温胁迫下显著上调表达, 其在不同组织中均有表达, 且在叶中的表达量最高。低温胁迫下的功能验证结果显示, 拟南芥HvERF039过表达株系的萌发率和存活率显著高于野生型, 且抗逆生理指标离子渗漏率、H2O2含量、MDA含量和CAT活性优于野生型。此外, HvERF039与多个逆境胁迫相关蛋白之间存在物理互作关系。本研究表明, HvERF039在青稞低温胁迫响应中具有正调控作用, 为青稞耐低温品种改良提供了新的基因资源。

关键词: 青稞, HvERF039, 转录因子, 异源表达, 低温胁迫

Abstract:

AP2/ERF (APETALA2/ethylene responsive factor) transcription factors play crucial roles in responses to abiotic stresses, but their functions remain poorly understood in Qingke (hulless barley). In this study, we cloned the HvERF039 gene and investigated its role in cold stress response through bioinformatics analysis, qRT-PCR, and heterologous expression in Arabidopsis thaliana. HvERF039 encoded a hydrophilic, unstable protein containing a typical AP2 conserved domain. The promoter region of HvERF039 contained various cis-acting elements, including those responsive to light, hormones and cold stress. Subcellular localization and transactivation assays revealed that HvERF039 protein was localized in both the membrane and nucleus and possessed transcriptional activation activity. qRT-PCR analysis showed that HvERF039 expression was significantly upregulated under cold treatment, with the highest expression observed in leaves and detectable levels in most other tissues. Functional analysis demonstrated that transgenic Arabidopsis plants overexpressing HvERF039 exhibited significantly higher germination and survival rates under cold stress compared to wild-type plants. These transgenic lines also showed enhanced physiological resistance, including lower ion leakage, reduced H2O2 and MDA contents, and increased CAT activity. Furthermore, HvERF039 was found to physically interact with multiple stress-related proteins. Collectively, these findings suggest that HvERF039 plays a positive regulatory role in cold stress tolerance and represents a promising genetic resource for improving cold resistance in Qingke cultivars.

Key words: Qingke, HvERF039, transcription factors, heterologous overexpression, cold stress

表1

本试验所用的引物"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
目的
Purpose
AT3G18780-F
AT3G18780-R
CTCCTGAAGAGCACCCTG
CCCTCGTAGATTGGCACA
拟南芥扩增内参引物
Internal reference primer for Arabidopsis
XM_045099138.1-F
XM_045099138.1-R
GCGGCGTGAGATGAACCT
CGTGGAGCAAGTCGTGTAAGA
青稞扩增内参引物
Internal reference primer for barley
ERF039-F
ERF039-R
ATGGACGACATCGCCGAGCCGA
TCAGTACTCCCACAGGAGTG
ERF039 CDS序列扩增引物
Primers for clone HvERF039 CDS sequence
ERF039-RT-F
ERF039-RT-R
ATGGACGACATCGCCGAGC
CAGATGCGCGACTTCTTGC
荧光定量扩增引物
Primers for qRT-PCR
ERF039-gateway-F

ERF039-gateway-R
GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGACGACATCGCCGAGC
GGGGACCACTTTGTACAAGAAAGCTGGGTCTCAGTACTCCCACAGGAGT
ERF039拟南芥过表达和亚细胞定位载体构建引物
Primers for Arabidopsis overexpression gernation and subcellular localization assay
P2YN-ERF039-F
P2YN-ERF039-R
CATTTACGAACGATAGTTAATTAATGTCTCGTGCGCACCTTCT
CACTGCCACCTCCTCCACTAGTCTTGGCCATCATGACCTTGA
BiFC载体构建引物
Primers for BiFC assays
P2YC-CRK2-F
P2YC-CRK2-R
CATTTACGAACGATAGTTAATTAAATGGGGCAGTGCTAC
CACTGCCACCTCCTCCACTAGT ATGTCGTCTTGTGTTTG
BiFC载体构建引物
Primers for BiFC assays
P2YC-CRK3-F
P2YC-CRK3-R
CATTTACGAACGATAGTTAATTAAATGGGGGGCTGCCAC CACTGCCACCTCCTCCACTAGTTCTCATCTTTGACAG BiFC载体构建引物
Primers for BiFC assays
P2YC-CRK4-F
P2YC-CRK4-R
CATTTACGAACGATAGTTAATTAAATGGGTCTCTGTCACG
CACTGCCACCTCCTCCACTAGTGGCTTTCGGGATCGAC
BiFC载体构建引物
Primers for BiFC assays
P2YC-MYB15-F
P2YC-MYB15-R
CATTTACGAACGATAGTTAATTAA ATGGGGAGGGCGCCGTGC
CACTGCCACCTCCTCCACTAGTCTGTGGCAAGTCTAGCGCGC
BiFC载体构建引物
Primers for BiFC assays
P2YN-CAMTA4-F
P2YN-CAMTA4-R
CATTTACGAACGATAGTTAATTAAATGAGCCAGAGTTTTGACA
CACTGCCACCTCCTCCACTAGTGCACGTGAATTTGTCGATTT
BiFC载体构建引物
Primers for BiFC assays
P2YN-SOS3-F
P2YN-SOS3-R
CATTTACGAACGATAGTTAATTAA ATGGGCTGCGTGTCGTCGT
CACTGCCACCTCCTCCACTAGTTTTGCTGATTCCGCTGTAATC
BiFC载体构建引物
Primers for BiFC assays
P2YN-HKT1;5-F
P2YN-HKT1;5-R
CATTTACGAACGATAGTTAATTAA ATGGGTTCTTTGCATGTC
CACTGCCACCTCCTCCACTAGTCACTATCCTCCATGCCTG
BiFC载体构建引物
Primers for BiFC assays
ERF039-BD-F
ERF039-BD-R
ATGGCCATGGAGGCCGAATTCATGGACGACATCGCCGAGCCGA
CCGCTGCAGGTCGACGGATCCTCAGTACTCCCACAGGAGTG
转录自激活活性验证载体构建引物
Primers for transactivation activity assays

附图1

HvERF039的载体构建流程图"

表2

青稞HvERF039蛋白理化性质分析"

理化性质
Physicochemical property
HvERF039 理化性质
Physicochemical property
HvERF039
分子质量
Molecular weight (Da)
22,527.19 脂溶指数
Aliphatic index
71.56
总原子数
Total number of atoms
3134 α 螺旋比例
Proportions of α helix (%)
18.87
分子式
Formula
C993H1546N280O310S5 延伸链比例
Proportions of extended strand (%)
7.08
亲水系数
GRAVY
-0.375 无规则卷曲比例
Proportions of random coil (%)
74.06
理论等电点
Theoretical pI
5.49 跨膜结构
Transmembrane structures
无 NO
不稳定指数
Instability index (II)
55.40 亚细胞定位预测
Prediction of subcellular localization
细胞膜, 细胞核
Cell membrane, nucleus

附图2

HvERF039基因的生物信息学分析 A: 蛋白二级结构; B: 蛋白三级结构; C: 保守结构域预测; D: 跨膜结构预测; E: 蛋白亲疏水性预测。"

图1

青稞HvERF039与其他物种同源蛋白系统进化树"

图2

青稞HvERF039与其他物种同源蛋白的多序列比对"

表3

青稞HvERF039启动子区域顺式元件分析"

元件名称
Site name
序列
Sequence
功能
Function
数量
Number
GATA-motif GATAGGA / CCATATCCAAT / GGATAAGGTG / CCACGTGGC 光响应元件
Part of a light responsive element
7
ARE AAACCA 对厌氧诱导调节顺作用元件
Cis-acting regulatory element essential for the anaerobic induction
4
TGACG-motif TGACG / CGTCA / CGTCA 参与MeJA反应性的顺式作用调节元件
Cis-acting regulatory element involved in the MeJA-responsiveness
6
TCA-element CCATCTTTTT 参与水杨酸反应性的顺式作用元件
Cis-acting element involved in salicylic acid responsiveness
1
CAAT-box CAAAT / CCCAATTT / CCAAT 启动子和增强子区域中常见的顺式作用元件
Common cis-acting element in promoter and enhancer regions
9
GC-motif CCCCCG 参与缺氧特异性诱导的增强子样元件
Enhancer-like element involved in anoxic specific inducibility
2
LTR CCGAAA 参与低温响应性的顺式作用元件
Cis-acting element involved in low-temperature responsiveness
1
G-Box CACGTG / GCCACGTGGA 参与光响应的顺式作用调节元件
Cis-acting regulatory element involved in light responsiveness
8
TATA-box ATATAT / TATAAAA 启动子核心元件
Core promoter element around -30 of transcription start
31
A-box CCGTCC 顺式作用调节元件
Cis-acting regulatory element
2
ATCT-motif AATCTAATCC 参与光响应的保守 DNA 模块的一部分
Part of a conserved DNA module involved in light responsiveness
1
ABRE CACGTG / ACGTG / CACGTG 参与脱落酸反应的顺式作用元件
Cis-acting element involved in the abscisic acid responsiveness
5

图3

HvERF039的表达模式分析 A: HvERF039基因在干旱处理下的表达模式; B: HvERF039基因在盐处理下的表达模式; C: HvERF039基因在低温处理下的表达模式; D: HvERF039基因在ABA处理下的表达模式; E: HvERF039在‘昆仑14号’中的组织特异性表达分析。数据为3个生物重复的平均值±SD。采用Student’s t-test, * 表示P < 0.05, ** 表示P < 0.01, ns表示数据之间无显著性差异。进行了3次独立试验, 结果相似。"

图4

HvERF039的亚细胞定位和转录自激活活性验证 A: HvERF039蛋白的亚细胞定位; B: HvERF039的转录自激活验证。GFP: 绿色荧光蛋白通道; BF: 明场通道; Chlorophyll: 叶绿体通道; Merged: GFP、Chlorophyll和BF的通道叠加。"

图5

HvERF039冷害胁迫下的萌发率分析 A: T3代拟南芥转基因HvERF039过表达株系的鉴定(M: DL2000 DNA marker; P: 阳性对照; W:水对照); B: 正常条件和低温处理条件下的野生型和拟南芥转基因HvERF039过表达株系的萌发生长表型; C: 正常条件下的野生型和拟南芥转基因HvERF039过表达株系的萌发率统计; D: 低温处理条件下的野生型和拟南芥转基因HvERF039过表达株系的萌发率统计。OE: 过表达。数据为3个生物重复的平均值±SD。采用Student’s t-test, * 表示P < 0.05, ** 表示P < 0.01。进行了3次独立试验, 结果相似。"

图6

HvERF039冻害胁迫下的存活率分析 A: 低温处理后野生型和拟南芥转基因HvERF039过表达株系的生长表型; B: 低温处理后野生型和拟南芥转基因HvERF039过表达株系的存活率统计; C: 野生型和拟南芥转基因HvERF039过表达株系进行直接冻害处理(NA)和冷驯化后的冻害处理(CA)的生长表型; D: NA、CA处理后的幼苗存活率统计。数据为3个生物重复的平均值±SD。采用Student’s t-test, ** 表示P < 0.01。进行了3次独立试验, 结果相似。"

图7

低温胁迫下过表达HvERF039株系的生理指标分析 低温处理前后测定野生型和拟南芥转基因HvERF039过表达株系的离子渗漏率(A)、H2O2含量(B)、MDA含量(C)和CAT活性(D)。CK: 正常生长; CT: 低温处理。采用Student’s t-test, * 表示P < 0.05, ** 表示P < 0.01, ns表示数据之间无显著性差异。进行了3次独立试验, 结果相似。"

图8

HvERF039的双分子荧光互补试验 通过双分子荧光互补在烟草中验证HvERF039与其他蛋白之间的互作。YFP: 黄色荧光蛋白通道; BF: 明场通道; Merged: 黄色荧光通道和明场通道的叠加; NE表示YFP的N端半部分, CE表示YFP的C端半部分。"

[1] 李婷婷, 姚有华, 安立昆, 白羿雄, 杨雪, 姚晓华, 吴昆仑. 青稞HvnWAK基因的克隆及其在条纹病胁迫下的表达. 麦类作物学报, 2024, 44: 26-35.
Li T T, Yao Y H, An L K, Bai Y X, Yang X, Yao X H, Wu K L. Isolation of HvnWAK gene and its expression pattern under leaf stripe disease in hulless barley. J Triticeae Crops, 2024, 44: 26-35 (in Chinese with English abstract).
[2] 郝帅, 宋艳玲, 孙爽, 王春乙. 气候变化对青藏高原青稞生产影响的研究综述. 中国农业气象, 2023, 44: 398-409.
Hao S, Song Y L, Sun S, Wang C Y. Review on the impacts of climate change on highland barley production in Tibet Plateau. Chin J Agrometeorol, 2023, 44: 398-409 (in Chinese with English abstract).
doi: 10.3969/j.issn.1000-6362.2023.05.005
[3] Jahed K R, Saini A K, Sherif S M. Coping with the cold: unveiling cryoprotectants, molecular signaling pathways, and strategies for cold stress resilience. Front Plant Sci, 2023, 14: 1246093.
[4] Ruelland E, Vaultier M N, Zachowski A, Hurry V. Chapter 2 cold signalling and cold acclimation in plants. Adv Bot Res, 2009, 49: 35-150.
[5] 周艳华, 曹红利, 岳川, 王璐, 郝心愿, 王新超, 杨亚军. 冷驯化不同阶段茶树DNA甲基化模式的变化. 作物学报, 2015, 41: 1047-1055.
doi: 10.3724/SP.J.1006.2015.01047
Zhou Y H, Cao H L, Yue C, Wang L, Hao X Y, Wang X C, Yang Y J. Changes of DNA methylation levels and patterns in tea plant (Camellia sinensis) during cold acclimation. Acta Agron Sin, 2015, 41: 1047-1055 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2015.01047
[6] Chinnusamy V, Zhu J K, Sunkar R. Gene regulation during cold stress acclimation in plants. Methods Mol Biol, 2010, 639: 39-55.
doi: 10.1007/978-1-60761-702-0_3 pmid: 20387039
[7] 赵杨, 杨永青, 丁杨林, 张蘅, 谢彦杰, 赵春钊, 刘林川, 王鹏程. 植物非生物逆境学科发展综述. 植物生理学报, 2024, 60: 248-270.
Zhao Y, Yang Y Q, Ding Y L, Zhang H, Xie Y J, Zhao C Z, Liu L C, Wang P C. Plant abiotic stress biology: a decade update. Plant Physiol J, 2024, 60: 248-270 (in Chinese with English abstract).
[8] 悦曼芳, 张春, 吴忠义. 植物转录因子AP2/ERF家族蛋白结构和功能的研究进展. 生物技术通报, 2022, 38(12): 11-26.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0432
Yue M F, Zhang C, Wu Z Y. Research progress in the structural and functional analysis of plant transcription factor AP2/ERF protein family. Biotechnol Bull, 2022, 38(12): 11-26 (in Chinese with English abstract).
[9] 苟艳丽, 张乐, 郭欢, 马红萍, 包爱科. 植物AP2/ERF类转录因子研究进展. 草业科学, 2020, 37: 1150-1159.
Gou Y L, Zhang L, Guo H, Ma H P, Bao A K. Research progress on the AP2/ERF transcription factor in plants. Pratac Sci, 2020, 37: 1150-1159 (in Chinese with English abstract).
[10] 卞云迪, 张驰, 王雪晴, 杨晨晓, 王光钰, 刘晓颖, 王颖, 方芳, 王振英. 小麦AP2/ERF转录因子家族生物信息学分析. 天津师范大学学报(自然科学版), 2022, 42(4): 39-45.
Bian Y D, Zhang C, Wang X Q, Yang C X, Wang G Y, Liu X Y, Wang Y, Fang F, Wang Z Y. Bioinformatics analysis of TaAP2/ERF transcription factor family in wheat. J Tianjin Norm Univ (Nat Sci Edn), 2022, 42(4): 39-45 (in Chinese with English abstract).
[11] 陈宇姝, 张军保, 于梦迪, 田诗, 王雪松, 刘丽杰. AP2/ERF转录因子家族在植物逆境响应中的作用. 高师理科学刊, 2023, 43(5): 78-81.
Chen Y S, Zhang J B, Yu M D, Tian S, Wang X S, Liu L J. Role of AP2/ERF transcription factor family in plant stress response. J Sci Teach Coll Univ, 2023, 43(5): 78-81 (in Chinese with English abstract).
[12] 董婷婷, 张冬菊, 杨再强, 赵安琪, 王月悦, 伊冬梅. AP2/ERF转录因子响应植物涝渍胁迫的研究进展. 分子植物育种, 2022, 20: 4665-4676.
Dong T T, Zhang D J, Yang Z Q, Zhao A Q, Wang Y Y, Yin D M. Advances of AP2/ERF transcription factor response to waterlogging stress in plants. Mol Plant Breed, 2022, 20: 4665-4676 (in Chinese with English abstract).
[13] 崔喜艳, 张莹莹, 周莹. 植物响应干旱胁迫转录因子研究进展. 吉林农业大学学报, 2022, 44: 505-511.
Cui X Y, Zhang Y Y, Zhou Y. Research progress of plant transcription factors in response to drought stress. J Jilin Agric Univ, 2022, 44: 505-511 (in Chinese with English abstract).
[14] 兰孟焦, 后猛, 肖满秋, 李臣, 潘皓, 张允刚, 卢凌志, 侯隆英, 葛瑞华, 吴问胜, 李强. AP2/ERF转录因子参与植物次生代谢和逆境胁迫响应的研究进展. 植物遗传资源学报, 2023, 24: 1223-1235.
doi: 10.13430/j.cnki.jpgr.20230322001
Lan M J, Kou M, Xiao M Q, Li C, Pan H, Zhang Y G, Lu L Z, Hou L Y, Ge R H, Wu W S, Li Q. Research progress of AP2/ERF transcription factors participating in plant secondary metabolism and stress response. J Plant Genet Resour, 2023, 24: 1223-1235 (in Chinese with English abstract).
doi: 10.13430/j.cnki.jpgr.20230322001
[15] Feng K, Hou X L, Xing G M, Liu J X, Duan A Q, Xu Z S, Li M Y, Zhuang J, Xiong A S. Advances in AP2/ERF super-family transcription factors in plant. Crit Rev Biotechnol, 2020, 40: 750-776.
doi: 10.1080/07388551.2020.1768509 pmid: 32522044
[16] Nie J, Wen C, Xi L, Lyu S H, Zhao Q C, Kou Y P, Ma N, Zhao L J, Zhou X F. The AP2/ERF transcription factor CmERF053 of Chrysanthemum positively regulates shoot branching, lateral root, and drought tolerance. Plant Cell Rep, 2018, 37: 1049-1060.
[17] 王艺, 陈明堃, 欧悦, 柯玉洁, 马山虎, 郑清冬, 刘仲健, 艾叶. AP2/ERF转录因子调控兰科植物生长发育和非生物胁迫响应的研究进展. 分子植物育种, 2022, 20: 7778-7784.
Wang Y, Chen M K, Ou Y, Ke Y J, Ma S H, Zheng Q D, Liu Z J, Ai Y. Advances in AP2/ERF transcription factors of Orchidaceae in regulating growth and development and abiotic stress response. Mol Plant Breed, 2022, 20: 7778-7784 (in Chinese with English abstract).
[18] Ni J B, Bai S L, Zhao Y, Qian M J, Tao R Y, Yin L, Gao L, Teng Y W. Ethylene response factors Pp4ERF24 and Pp12ERF96 regulate blue light-induced anthocyanin biosynthesis in ‘Red Zaosu’pear fruits by interacting with MYB114. Plant Mol Biol, 2019, 99: 67-78.
[19] Koyama T, Sato F. The function of ETHYLENE RESPONSE FACTOR genes in the light-induced anthocyanin production of Arabidopsis thaliana leaves. Plant Biotechnol, 2018, 35: 87-91.
[20] Chung M Y, Vrebalov J, Alba R, Lee J, McQuinn R, Chung J D, Klein P, Giovannoni J. A tomato (Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening. Plant J, 2010, 64: 936-947.
[21] Hawku M D, Goher F, Islam M A, Guo J, He F X, Bai X X, Yuan P, Kang Z S, Guo J. TaAP2-15, an AP2/ERF transcription factor, is positively involved in wheat resistance to Puccinia striiformis f.sp. tritici. Int J Mol Sci, 2021, 22: 2080.
[22] 陈忠良. 玉米转录因子EREB58在虫害应答中的功能分析. 中国农业科学院硕士学位论文, 北京, 2016.
Chen Z L. Functional Analysis of Maize Transcription Factor EREB58 in Pest Response. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2016 (in Chinese with English abstract).
[23] Scarpeci T E, Frea V S, Zanor M I, Valle E M. Overexpression of AtERF019 delays plant growth and senescence, and improves drought tolerance in Arabidopsis. J Exp Bot, 2017, 68: 673-685.
doi: 10.1093/jxb/erw429 pmid: 28204526
[24] Oliveira P N, Matias F, Martínez-Andújar C, Martinez-Melgarejo P A, Prudencio Á S, Galeano E, Pérez-Alfocea F, Carrer H. Overexpression of TgERF1, a transcription factor from Tectona grandis, increases tolerance to drought and salt stress in tobacco. Int J Mol Sci, 2023, 24: 4149.
[25] 强小林, 巴桑玉珍, 扎西罗布. 青藏高原区域青稞生产现状调研考察初报. 西藏农业科技, 2011, 33(1): 36-38.
Qiang X L, Ba Sang Y Z, Zha X L B. Preliminary study of analysis on highland barley production in Qinghai-Tibet plateau area Suggested countermeasure. Tibet J Agric Sci, 2011, 33(1): 36-38 (in Chinese with English abstract).
[26] 姚晓华, 吴昆仑. 青稞脂质转运蛋白基因blt4.9的克隆及其对非生物胁迫的响应. 作物学报, 2016, 42: 399-406.
doi: 10.3724/SP.J.1006.2016.00399
Yao X H, Wu K L. Isolation of blt4.9 gene encoding LTP protein in hulless barley and its response to abiotic stresses. Acta Agron Sin, 2016, 42: 399-406 (in Chinese with English abstract).
[27] 弓开元, 何亮, 邬定荣, 吕昌河, 李俊, 周文彬, 杜军, 于强. 青藏高原高寒区青稞光温生产潜力和产量差时空分布特征及其对气候变化的响应. 中国农业科学, 2020, 53: 720-733.
doi: 10.3864/j.issn.0578-1752.2020.04.005
Gong K Y, He L, Wu D R, Lyu C H, Li J, Zhou W B, Du J, Yu Q. Spatial-temporal variations of photo-temperature potential productivity and yield gap of highland barley and its response to climate change in the cold regions of the Tibetan Plateau. Sci Agric Sin, 2020, 53: 720-733 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2020.04.005
[28] Chang T L, Zhao Y, He H Y, Xi Q Q, Fu J Y, Zhao Y W. Exogenous melatonin improves growth in hulless barley seedlings under cold stress by influencing the expression rhythms of circadian clock genes. Peer J, 2021, 9: e10740.
[29] Yuan H J, Zeng X Q, Ling Z H, Wei Z X, Wang Y L, Zhuang Z H, Xu Q J, Tang Y W, Tashi N. Transcriptome profiles reveal cold acclimation and freezing tolerance of susceptible and tolerant hulless barley genotypes. Acta Physiol Plant, 2017, 39: 275.
[30] Wang Z A, An L K, Cui Y M, Bai Y X, Du G P, Wu K L. Assessment of tolerance of different varieties of hulless barley seedlings to low-temperature stress. Phyton Int J Exp Bot, 2024, 93: 2755-2766.
[31] 洛桑曲珍. 高寒地区青稞种植技术的应用与推广. 种子科技, 2019, 37(14): 50.
Luo Sang Q Z. Application and promotion of highland barley cultivation techniques in alpine regions. Seed Sci Technol, 2019, 37(14): 50 (in Chinese with English abstract).
[32] Chang T L, Xi Q Q, Wei X Y, Xu L, Wang Q Q, Fu J Y, Ling C, Zuo Y, Zhao Y, He H Y, et al. Rhythmical redox homeostasis can be restored by exogenous melatonin in hulless barley (Hordeum vulgare L. var. nudum) under cold stress. Environ Exp Bot, 2022, 194: 104756.
[33] 周彪, 邵陈禹, 朱倩, 刘仲华, 刘硕谦, 田娜. 茶树CsDREB2C基因的克隆、生物信息学及低温表达分析. 分子植物育种, 网络首发[2025-03-03]. http://kns.cnki.net/kcms/detail/46.1068.S.20250228.0944.003.
Zhou B, Shao C Y, Zhou Q, Liu Z H, Liu S Q, Tian N. Cloning, bioinformatics, and low-temperature expression analysis of CsDREB2C gene in camellia sinensis. Mol Plant Breed, Published online [2025-03-03], http://kns.cnki.net/kcms/detail/46.1068.S.20250228.0944.003 (in Chinese with English abstract).
[34] Pfaffl M W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res, 2001, 29: e45.
[35] Zhang L, Cui Y M, An L K, Li J, Yao Y H, Bai Y X, Li X, Yao X H, Wu K L. Genome-wide identification of the CNGC gene family and negative regulation of drought tolerance by HvCNGC3 and HvCNGC16 in transgenic Arabidopsis thaliana. Plant Physiol Biochem, 2024, 210: 108593.
[36] Hao D, Ohme-Takagi M, Sarai A. Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant. J Biol Chem, 1998, 273: 26857-26861.
doi: 10.1074/jbc.273.41.26857 pmid: 9756931
[37] Zhang Z J, Huang R F. Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis. Plant Mol Biol, 2010, 73: 241-249.
doi: 10.1007/s11103-010-9609-4 pmid: 20135196
[38] Sun X M, Zhu Z F, Zhang L L, Fang L C, Zhang J S, Wang Q F, Li S H, Liang Z C, Xin H P. Overexpression of ethylene response factors VaERF080 and VaERF087 from Vitis amurensis enhances cold tolerance in Arabidopsis. Sci Hortic, 2019, 243: 320-326.
[39] Zhang H W, Zhang J F, Quan R D, Pan X W, Wan L Y, Huang R F. EAR motif mutation of rice OsERF3 alters the regulation of ethylene biosynthesis and drought tolerance. Planta, 2013, 237: 1443-1451.
[40] Zhao M J, Yin L J, Liu Y, Ma J, Zheng J C, Lan J H, Fu J D, Chen M, Xu Z S, Ma Y Z. The ABA-induced soybean ERF transcription factor gene GmERF75 plays a role in enhancing osmotic stress tolerance in Arabidopsis and soybean. BMC Plant Biol, 2019, 19: 506.
[41] Zhou M Q, Shen C, Wu L H, Tang K X, Lin J. CBF-dependent signaling pathway: a key responder to low temperature stress in plants. Crit Rev Biotechnol, 2011, 31: 186-192.
doi: 10.3109/07388551.2010.505910 pmid: 20919819
[42] Chinnusamy V, Zhu J H, Zhu J K. Cold stress regulation of gene expression in plants. Trends Plant Sci, 2007, 12: 444-451.
doi: 10.1016/j.tplants.2007.07.002 pmid: 17855156
[43] Kim Y, Park S, Gilmour S J, Thomashow M F. Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis. Plant J, 2013, 75: 364-376.
[44] Lissarre M, Ohta M, Sato A, Miura K. Cold-responsive gene regulation during cold acclimation in plants. Plant Signal Behav, 2010, 5: 948-952.
doi: 10.4161/psb.5.8.12135 pmid: 20699657
[45] Zhen Y, Ungerer M C. Relaxed selection on the CBF/DREB1 regulatory genes and reduced freezing tolerance in the southern range of Arabidopsis thaliana. Mol Biol Evol, 2008, 25: 2547-2555.
[46] Bernardo A N, Ma H X, Zhang D D, Bai G H. Single nucleotide polymorphism in wheat chromosome region harboring Fhb1 for Fusarium head blight resistance. Mol Breed, 2012, 29: 477-488.
[47] Li Y H, Zhang C, Gao Z S, Smulders M J M, Ma Z L, Liu Z X, Nan H Y, Chang R Z, Qiu L J. Development of SNP markers and haplotype analysis of the candidate gene for rhg1, which confers resistance to soybean cyst nematode in soybean. Mol Breed, 2009, 24: 63-76.
[48] Zhu J, Zhang Y H, Zhang M N, Hong Y, Sun C Q, Guo Y, Yin H X, Lyu C, Guo B J, Wang F F, et al. Natural variation and CRISPR/Cas9 gene editing demonstrate the potential for a group VII ethylene response factor HvERF62 in regulating barley (Hordeum vulgare L.) waterlogging tolerance. J Exp Bot, 2025, 76: eraf101.
[49] Mei F M, Chen B, Du L Y, Li S M, Zhu D H, Chen N, Zhang Y F, Li F F, Wang Z X, Cheng X X, et al. A gain-of-function allele of a DREB transcription factor gene ameliorates drought tolerance in wheat. Plant Cell, 2022, 34: 4472-4494.
[50] Jeong J S, Kim Y S, Baek K H, Jung H, Ha S H, Choi Y D, Kim M, Reuzeau C, Kim J K. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol, 2010, 153: 185-197.
doi: 10.1104/pp.110.154773 pmid: 20335401
[1] 万慧兰, 吴华英, 曾丹, 钱禛锋, 赵昌祖, 廖然超, 何丽莲, 李富生. 蔗茅耐寒相关基因EfWRKY51克隆分析及功能验证[J]. 作物学报, 2025, 51(8): 2048-2059.
[2] 杨海洋, 吴林宣, 李博纹, 石翰峰, 袁禧龙, 刘金朝, 蔡海荣, 陈诗怡, 郭涛, 王慧. 基于QTL定位发现的OsWRI3调控水稻种子的落粒性[J]. 作物学报, 2025, 51(7): 1712-1724.
[3] 文璇, 钟秀丽, 王尚文, 金涛, 彭君, 刘恩科. 基于耐性指数的青稞苗期耐低氮种质筛选及不同氮效率类型综合评价[J]. 作物学报, 2025, 51(7): 1949-1958.
[4] 旺姆, 卓嘎, 扎桑, 西若曲宗, 达瓦顿珠, 郭刚刚, 张京, 卓嘎, 伦珠朗杰. 基于6个表型性状的青稞种质遗传多样性分析及综合评价[J]. 作物学报, 2025, 51(6): 1526-1537.
[5] 方应浩, 周波, 陈茹梅, 杨文竹, 秦慧民. 基于RNA-seq和PER-seq联合分析探究ZmHDZ6表达调控网络[J]. 作物学报, 2025, 51(4): 958-968.
[6] 程红娜, 秦丹丹, 许甫超, 徐晴, 彭严春, 孙龙清, 徐乐, 郭英, 杨新泉, 徐得泽, 董静. 彩色青稞和彩色小麦籽粒的代谢组学比较分析[J]. 作物学报, 2025, 51(4): 932-942.
[7] 潘炬忠, 韦萍, 朱德平, 邵胜雪, 陈珊珊, 韦雅倩, 高维维. 水稻转录因子OsERF104的克隆和功能研究[J]. 作物学报, 2025, 51(4): 900-913.
[8] 王林, 陈晓雨, 张文梦龙, 汪思琦, 程冰云, 程靖秋, 潘锐, 张文英. 大麦HvMYB2分子特性及响应干旱胁迫的功能分析[J]. 作物学报, 2025, 51(4): 873-887.
[9] 侯天钰, 杜孝敬, 赵志强, 热依木·艾尼瓦尔, 伊达耶图拉·阿不拉, 布哈丽且木·阿不力孜, 袁杰, 张燕红, 王奉斌. 粳稻品种芽期耐冷性评价及耐冷种质筛选[J]. 作物学报, 2025, 51(3): 812-822.
[10] 宋倩娜, 宋慧洋, 李京昊, 段永红, 梅超, 冯瑞云. 马铃薯转录因子StFBH3对非生物逆境胁迫的响应分析[J]. 作物学报, 2025, 51(1): 247-259.
[11] 杨景发, 余鑫莲, 姚有华, 姚晓华, 王蕾, 吴昆仑, 李新. 青稞分蘖角度的QTL定位[J]. 作物学报, 2025, 51(1): 260-272.
[12] 郭飞翔, 李春霞, 周爽, 郭彬彬, 张均, 马超. 绿豆R2R3-MYB转录因子家族鉴定及其类黄酮合成调控基因的筛选[J]. 作物学报, 2025, 51(1): 117-133.
[13] 刘宸铭, 赵克勇, 悦曼芳, 赵延明, 吴忠义, 张春. 玉米转录因子ZmEREB180调控根系生长发育及耐逆的功能研究[J]. 作物学报, 2024, 50(8): 1920-1933.
[14] 折萌, 郑登俞, 柯照, 吴忠义, 邹华文, 张中保. 玉米ZmGRAS13基因的克隆及功能研究[J]. 作物学报, 2024, 50(6): 1420-1434.
[15] 殷祥贞, 赵健鑫, 郝翠翠, 潘丽娟, 陈娜, 许静, 姜骁, 赵旭红, 王恩琪, 曹欢, 禹山林, 迟晓元. 花生转录因子基因AhWRI1的克隆及表达分析[J]. 作物学报, 2024, 50(12): 3155-3164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!