作物学报 ›› 2025, Vol. 51 ›› Issue (9): 2341-2357.doi: 10.3724/SP.J.1006.2025.51011
马娟娥(), 姚有华, 姚晓华, 吴昆仑*(
), 崔永梅*(
)
MA Juan-E(), YAO You-Hua, YAO Xiao-Hua, WU Kun-Lun*(
), CUI Yong-Mei*(
)
摘要:
AP2/ERF (APETALA2/ethylene responsive factor)转录因子在植物非生物胁迫响应中起重要作用, 但青稞中该类基因的功能研究较少。本研究克隆了青稞HvERF039基因, 并通过生物信息学、qRT-PCR、拟南芥异源过表达等方法研究了其在低温胁迫中的功能。生物信息学分析结果显示, HvERF039是具有典型AP2保守结构域的亲水性不稳定蛋白, 其启动子区域含有与光响应、植物激素响应、低温胁迫响应等相关的顺式作用元件。亚细胞定位和转录自激活活性试验表明, HvERF039是一个定位于质膜和细胞核上、具有转录激活活性的转录因子。qRT-PCR分析表明, HvERF039在低温胁迫下显著上调表达, 其在不同组织中均有表达, 且在叶中的表达量最高。低温胁迫下的功能验证结果显示, 拟南芥HvERF039过表达株系的萌发率和存活率显著高于野生型, 且抗逆生理指标离子渗漏率、H2O2含量、MDA含量和CAT活性优于野生型。此外, HvERF039与多个逆境胁迫相关蛋白之间存在物理互作关系。本研究表明, HvERF039在青稞低温胁迫响应中具有正调控作用, 为青稞耐低温品种改良提供了新的基因资源。
[1] | 李婷婷, 姚有华, 安立昆, 白羿雄, 杨雪, 姚晓华, 吴昆仑. 青稞HvnWAK基因的克隆及其在条纹病胁迫下的表达. 麦类作物学报, 2024, 44: 26-35. |
Li T T, Yao Y H, An L K, Bai Y X, Yang X, Yao X H, Wu K L. Isolation of HvnWAK gene and its expression pattern under leaf stripe disease in hulless barley. J Triticeae Crops, 2024, 44: 26-35 (in Chinese with English abstract). | |
[2] | 郝帅, 宋艳玲, 孙爽, 王春乙. 气候变化对青藏高原青稞生产影响的研究综述. 中国农业气象, 2023, 44: 398-409. |
Hao S, Song Y L, Sun S, Wang C Y. Review on the impacts of climate change on highland barley production in Tibet Plateau. Chin J Agrometeorol, 2023, 44: 398-409 (in Chinese with English abstract).
doi: 10.3969/j.issn.1000-6362.2023.05.005 |
|
[3] | Jahed K R, Saini A K, Sherif S M. Coping with the cold: unveiling cryoprotectants, molecular signaling pathways, and strategies for cold stress resilience. Front Plant Sci, 2023, 14: 1246093. |
[4] | Ruelland E, Vaultier M N, Zachowski A, Hurry V. Chapter 2 cold signalling and cold acclimation in plants. Adv Bot Res, 2009, 49: 35-150. |
[5] |
周艳华, 曹红利, 岳川, 王璐, 郝心愿, 王新超, 杨亚军. 冷驯化不同阶段茶树DNA甲基化模式的变化. 作物学报, 2015, 41: 1047-1055.
doi: 10.3724/SP.J.1006.2015.01047 |
Zhou Y H, Cao H L, Yue C, Wang L, Hao X Y, Wang X C, Yang Y J. Changes of DNA methylation levels and patterns in tea plant (Camellia sinensis) during cold acclimation. Acta Agron Sin, 2015, 41: 1047-1055 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2015.01047 |
|
[6] |
Chinnusamy V, Zhu J K, Sunkar R. Gene regulation during cold stress acclimation in plants. Methods Mol Biol, 2010, 639: 39-55.
doi: 10.1007/978-1-60761-702-0_3 pmid: 20387039 |
[7] | 赵杨, 杨永青, 丁杨林, 张蘅, 谢彦杰, 赵春钊, 刘林川, 王鹏程. 植物非生物逆境学科发展综述. 植物生理学报, 2024, 60: 248-270. |
Zhao Y, Yang Y Q, Ding Y L, Zhang H, Xie Y J, Zhao C Z, Liu L C, Wang P C. Plant abiotic stress biology: a decade update. Plant Physiol J, 2024, 60: 248-270 (in Chinese with English abstract). | |
[8] |
悦曼芳, 张春, 吴忠义. 植物转录因子AP2/ERF家族蛋白结构和功能的研究进展. 生物技术通报, 2022, 38(12): 11-26.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0432 |
Yue M F, Zhang C, Wu Z Y. Research progress in the structural and functional analysis of plant transcription factor AP2/ERF protein family. Biotechnol Bull, 2022, 38(12): 11-26 (in Chinese with English abstract). | |
[9] | 苟艳丽, 张乐, 郭欢, 马红萍, 包爱科. 植物AP2/ERF类转录因子研究进展. 草业科学, 2020, 37: 1150-1159. |
Gou Y L, Zhang L, Guo H, Ma H P, Bao A K. Research progress on the AP2/ERF transcription factor in plants. Pratac Sci, 2020, 37: 1150-1159 (in Chinese with English abstract). | |
[10] | 卞云迪, 张驰, 王雪晴, 杨晨晓, 王光钰, 刘晓颖, 王颖, 方芳, 王振英. 小麦AP2/ERF转录因子家族生物信息学分析. 天津师范大学学报(自然科学版), 2022, 42(4): 39-45. |
Bian Y D, Zhang C, Wang X Q, Yang C X, Wang G Y, Liu X Y, Wang Y, Fang F, Wang Z Y. Bioinformatics analysis of TaAP2/ERF transcription factor family in wheat. J Tianjin Norm Univ (Nat Sci Edn), 2022, 42(4): 39-45 (in Chinese with English abstract). | |
[11] | 陈宇姝, 张军保, 于梦迪, 田诗, 王雪松, 刘丽杰. AP2/ERF转录因子家族在植物逆境响应中的作用. 高师理科学刊, 2023, 43(5): 78-81. |
Chen Y S, Zhang J B, Yu M D, Tian S, Wang X S, Liu L J. Role of AP2/ERF transcription factor family in plant stress response. J Sci Teach Coll Univ, 2023, 43(5): 78-81 (in Chinese with English abstract). | |
[12] | 董婷婷, 张冬菊, 杨再强, 赵安琪, 王月悦, 伊冬梅. AP2/ERF转录因子响应植物涝渍胁迫的研究进展. 分子植物育种, 2022, 20: 4665-4676. |
Dong T T, Zhang D J, Yang Z Q, Zhao A Q, Wang Y Y, Yin D M. Advances of AP2/ERF transcription factor response to waterlogging stress in plants. Mol Plant Breed, 2022, 20: 4665-4676 (in Chinese with English abstract). | |
[13] | 崔喜艳, 张莹莹, 周莹. 植物响应干旱胁迫转录因子研究进展. 吉林农业大学学报, 2022, 44: 505-511. |
Cui X Y, Zhang Y Y, Zhou Y. Research progress of plant transcription factors in response to drought stress. J Jilin Agric Univ, 2022, 44: 505-511 (in Chinese with English abstract). | |
[14] |
兰孟焦, 后猛, 肖满秋, 李臣, 潘皓, 张允刚, 卢凌志, 侯隆英, 葛瑞华, 吴问胜, 李强. AP2/ERF转录因子参与植物次生代谢和逆境胁迫响应的研究进展. 植物遗传资源学报, 2023, 24: 1223-1235.
doi: 10.13430/j.cnki.jpgr.20230322001 |
Lan M J, Kou M, Xiao M Q, Li C, Pan H, Zhang Y G, Lu L Z, Hou L Y, Ge R H, Wu W S, Li Q. Research progress of AP2/ERF transcription factors participating in plant secondary metabolism and stress response. J Plant Genet Resour, 2023, 24: 1223-1235 (in Chinese with English abstract).
doi: 10.13430/j.cnki.jpgr.20230322001 |
|
[15] |
Feng K, Hou X L, Xing G M, Liu J X, Duan A Q, Xu Z S, Li M Y, Zhuang J, Xiong A S. Advances in AP2/ERF super-family transcription factors in plant. Crit Rev Biotechnol, 2020, 40: 750-776.
doi: 10.1080/07388551.2020.1768509 pmid: 32522044 |
[16] | Nie J, Wen C, Xi L, Lyu S H, Zhao Q C, Kou Y P, Ma N, Zhao L J, Zhou X F. The AP2/ERF transcription factor CmERF053 of Chrysanthemum positively regulates shoot branching, lateral root, and drought tolerance. Plant Cell Rep, 2018, 37: 1049-1060. |
[17] | 王艺, 陈明堃, 欧悦, 柯玉洁, 马山虎, 郑清冬, 刘仲健, 艾叶. AP2/ERF转录因子调控兰科植物生长发育和非生物胁迫响应的研究进展. 分子植物育种, 2022, 20: 7778-7784. |
Wang Y, Chen M K, Ou Y, Ke Y J, Ma S H, Zheng Q D, Liu Z J, Ai Y. Advances in AP2/ERF transcription factors of Orchidaceae in regulating growth and development and abiotic stress response. Mol Plant Breed, 2022, 20: 7778-7784 (in Chinese with English abstract). | |
[18] | Ni J B, Bai S L, Zhao Y, Qian M J, Tao R Y, Yin L, Gao L, Teng Y W. Ethylene response factors Pp4ERF24 and Pp12ERF96 regulate blue light-induced anthocyanin biosynthesis in ‘Red Zaosu’pear fruits by interacting with MYB114. Plant Mol Biol, 2019, 99: 67-78. |
[19] | Koyama T, Sato F. The function of ETHYLENE RESPONSE FACTOR genes in the light-induced anthocyanin production of Arabidopsis thaliana leaves. Plant Biotechnol, 2018, 35: 87-91. |
[20] | Chung M Y, Vrebalov J, Alba R, Lee J, McQuinn R, Chung J D, Klein P, Giovannoni J. A tomato (Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening. Plant J, 2010, 64: 936-947. |
[21] | Hawku M D, Goher F, Islam M A, Guo J, He F X, Bai X X, Yuan P, Kang Z S, Guo J. TaAP2-15, an AP2/ERF transcription factor, is positively involved in wheat resistance to Puccinia striiformis f.sp. tritici. Int J Mol Sci, 2021, 22: 2080. |
[22] | 陈忠良. 玉米转录因子EREB58在虫害应答中的功能分析. 中国农业科学院硕士学位论文, 北京, 2016. |
Chen Z L. Functional Analysis of Maize Transcription Factor EREB58 in Pest Response. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2016 (in Chinese with English abstract). | |
[23] |
Scarpeci T E, Frea V S, Zanor M I, Valle E M. Overexpression of AtERF019 delays plant growth and senescence, and improves drought tolerance in Arabidopsis. J Exp Bot, 2017, 68: 673-685.
doi: 10.1093/jxb/erw429 pmid: 28204526 |
[24] | Oliveira P N, Matias F, Martínez-Andújar C, Martinez-Melgarejo P A, Prudencio Á S, Galeano E, Pérez-Alfocea F, Carrer H. Overexpression of TgERF1, a transcription factor from Tectona grandis, increases tolerance to drought and salt stress in tobacco. Int J Mol Sci, 2023, 24: 4149. |
[25] | 强小林, 巴桑玉珍, 扎西罗布. 青藏高原区域青稞生产现状调研考察初报. 西藏农业科技, 2011, 33(1): 36-38. |
Qiang X L, Ba Sang Y Z, Zha X L B. Preliminary study of analysis on highland barley production in Qinghai-Tibet plateau area Suggested countermeasure. Tibet J Agric Sci, 2011, 33(1): 36-38 (in Chinese with English abstract). | |
[26] |
姚晓华, 吴昆仑. 青稞脂质转运蛋白基因blt4.9的克隆及其对非生物胁迫的响应. 作物学报, 2016, 42: 399-406.
doi: 10.3724/SP.J.1006.2016.00399 |
Yao X H, Wu K L. Isolation of blt4.9 gene encoding LTP protein in hulless barley and its response to abiotic stresses. Acta Agron Sin, 2016, 42: 399-406 (in Chinese with English abstract). | |
[27] |
弓开元, 何亮, 邬定荣, 吕昌河, 李俊, 周文彬, 杜军, 于强. 青藏高原高寒区青稞光温生产潜力和产量差时空分布特征及其对气候变化的响应. 中国农业科学, 2020, 53: 720-733.
doi: 10.3864/j.issn.0578-1752.2020.04.005 |
Gong K Y, He L, Wu D R, Lyu C H, Li J, Zhou W B, Du J, Yu Q. Spatial-temporal variations of photo-temperature potential productivity and yield gap of highland barley and its response to climate change in the cold regions of the Tibetan Plateau. Sci Agric Sin, 2020, 53: 720-733 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2020.04.005 |
|
[28] | Chang T L, Zhao Y, He H Y, Xi Q Q, Fu J Y, Zhao Y W. Exogenous melatonin improves growth in hulless barley seedlings under cold stress by influencing the expression rhythms of circadian clock genes. Peer J, 2021, 9: e10740. |
[29] | Yuan H J, Zeng X Q, Ling Z H, Wei Z X, Wang Y L, Zhuang Z H, Xu Q J, Tang Y W, Tashi N. Transcriptome profiles reveal cold acclimation and freezing tolerance of susceptible and tolerant hulless barley genotypes. Acta Physiol Plant, 2017, 39: 275. |
[30] | Wang Z A, An L K, Cui Y M, Bai Y X, Du G P, Wu K L. Assessment of tolerance of different varieties of hulless barley seedlings to low-temperature stress. Phyton Int J Exp Bot, 2024, 93: 2755-2766. |
[31] | 洛桑曲珍. 高寒地区青稞种植技术的应用与推广. 种子科技, 2019, 37(14): 50. |
Luo Sang Q Z. Application and promotion of highland barley cultivation techniques in alpine regions. Seed Sci Technol, 2019, 37(14): 50 (in Chinese with English abstract). | |
[32] | Chang T L, Xi Q Q, Wei X Y, Xu L, Wang Q Q, Fu J Y, Ling C, Zuo Y, Zhao Y, He H Y, et al. Rhythmical redox homeostasis can be restored by exogenous melatonin in hulless barley (Hordeum vulgare L. var. nudum) under cold stress. Environ Exp Bot, 2022, 194: 104756. |
[33] | 周彪, 邵陈禹, 朱倩, 刘仲华, 刘硕谦, 田娜. 茶树CsDREB2C基因的克隆、生物信息学及低温表达分析. 分子植物育种, 网络首发[2025-03-03]. http://kns.cnki.net/kcms/detail/46.1068.S.20250228.0944.003. |
Zhou B, Shao C Y, Zhou Q, Liu Z H, Liu S Q, Tian N. Cloning, bioinformatics, and low-temperature expression analysis of CsDREB2C gene in camellia sinensis. Mol Plant Breed, Published online [2025-03-03], http://kns.cnki.net/kcms/detail/46.1068.S.20250228.0944.003 (in Chinese with English abstract). | |
[34] | Pfaffl M W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res, 2001, 29: e45. |
[35] | Zhang L, Cui Y M, An L K, Li J, Yao Y H, Bai Y X, Li X, Yao X H, Wu K L. Genome-wide identification of the CNGC gene family and negative regulation of drought tolerance by HvCNGC3 and HvCNGC16 in transgenic Arabidopsis thaliana. Plant Physiol Biochem, 2024, 210: 108593. |
[36] |
Hao D, Ohme-Takagi M, Sarai A. Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant. J Biol Chem, 1998, 273: 26857-26861.
doi: 10.1074/jbc.273.41.26857 pmid: 9756931 |
[37] |
Zhang Z J, Huang R F. Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis. Plant Mol Biol, 2010, 73: 241-249.
doi: 10.1007/s11103-010-9609-4 pmid: 20135196 |
[38] | Sun X M, Zhu Z F, Zhang L L, Fang L C, Zhang J S, Wang Q F, Li S H, Liang Z C, Xin H P. Overexpression of ethylene response factors VaERF080 and VaERF087 from Vitis amurensis enhances cold tolerance in Arabidopsis. Sci Hortic, 2019, 243: 320-326. |
[39] | Zhang H W, Zhang J F, Quan R D, Pan X W, Wan L Y, Huang R F. EAR motif mutation of rice OsERF3 alters the regulation of ethylene biosynthesis and drought tolerance. Planta, 2013, 237: 1443-1451. |
[40] | Zhao M J, Yin L J, Liu Y, Ma J, Zheng J C, Lan J H, Fu J D, Chen M, Xu Z S, Ma Y Z. The ABA-induced soybean ERF transcription factor gene GmERF75 plays a role in enhancing osmotic stress tolerance in Arabidopsis and soybean. BMC Plant Biol, 2019, 19: 506. |
[41] |
Zhou M Q, Shen C, Wu L H, Tang K X, Lin J. CBF-dependent signaling pathway: a key responder to low temperature stress in plants. Crit Rev Biotechnol, 2011, 31: 186-192.
doi: 10.3109/07388551.2010.505910 pmid: 20919819 |
[42] |
Chinnusamy V, Zhu J H, Zhu J K. Cold stress regulation of gene expression in plants. Trends Plant Sci, 2007, 12: 444-451.
doi: 10.1016/j.tplants.2007.07.002 pmid: 17855156 |
[43] | Kim Y, Park S, Gilmour S J, Thomashow M F. Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis. Plant J, 2013, 75: 364-376. |
[44] |
Lissarre M, Ohta M, Sato A, Miura K. Cold-responsive gene regulation during cold acclimation in plants. Plant Signal Behav, 2010, 5: 948-952.
doi: 10.4161/psb.5.8.12135 pmid: 20699657 |
[45] | Zhen Y, Ungerer M C. Relaxed selection on the CBF/DREB1 regulatory genes and reduced freezing tolerance in the southern range of Arabidopsis thaliana. Mol Biol Evol, 2008, 25: 2547-2555. |
[46] | Bernardo A N, Ma H X, Zhang D D, Bai G H. Single nucleotide polymorphism in wheat chromosome region harboring Fhb1 for Fusarium head blight resistance. Mol Breed, 2012, 29: 477-488. |
[47] | Li Y H, Zhang C, Gao Z S, Smulders M J M, Ma Z L, Liu Z X, Nan H Y, Chang R Z, Qiu L J. Development of SNP markers and haplotype analysis of the candidate gene for rhg1, which confers resistance to soybean cyst nematode in soybean. Mol Breed, 2009, 24: 63-76. |
[48] | Zhu J, Zhang Y H, Zhang M N, Hong Y, Sun C Q, Guo Y, Yin H X, Lyu C, Guo B J, Wang F F, et al. Natural variation and CRISPR/Cas9 gene editing demonstrate the potential for a group VII ethylene response factor HvERF62 in regulating barley (Hordeum vulgare L.) waterlogging tolerance. J Exp Bot, 2025, 76: eraf101. |
[49] | Mei F M, Chen B, Du L Y, Li S M, Zhu D H, Chen N, Zhang Y F, Li F F, Wang Z X, Cheng X X, et al. A gain-of-function allele of a DREB transcription factor gene ameliorates drought tolerance in wheat. Plant Cell, 2022, 34: 4472-4494. |
[50] |
Jeong J S, Kim Y S, Baek K H, Jung H, Ha S H, Choi Y D, Kim M, Reuzeau C, Kim J K. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol, 2010, 153: 185-197.
doi: 10.1104/pp.110.154773 pmid: 20335401 |
[1] | 万慧兰, 吴华英, 曾丹, 钱禛锋, 赵昌祖, 廖然超, 何丽莲, 李富生. 蔗茅耐寒相关基因EfWRKY51克隆分析及功能验证[J]. 作物学报, 2025, 51(8): 2048-2059. |
[2] | 杨海洋, 吴林宣, 李博纹, 石翰峰, 袁禧龙, 刘金朝, 蔡海荣, 陈诗怡, 郭涛, 王慧. 基于QTL定位发现的OsWRI3调控水稻种子的落粒性[J]. 作物学报, 2025, 51(7): 1712-1724. |
[3] | 文璇, 钟秀丽, 王尚文, 金涛, 彭君, 刘恩科. 基于耐性指数的青稞苗期耐低氮种质筛选及不同氮效率类型综合评价[J]. 作物学报, 2025, 51(7): 1949-1958. |
[4] | 旺姆, 卓嘎, 扎桑, 西若曲宗, 达瓦顿珠, 郭刚刚, 张京, 卓嘎, 伦珠朗杰. 基于6个表型性状的青稞种质遗传多样性分析及综合评价[J]. 作物学报, 2025, 51(6): 1526-1537. |
[5] | 方应浩, 周波, 陈茹梅, 杨文竹, 秦慧民. 基于RNA-seq和PER-seq联合分析探究ZmHDZ6表达调控网络[J]. 作物学报, 2025, 51(4): 958-968. |
[6] | 程红娜, 秦丹丹, 许甫超, 徐晴, 彭严春, 孙龙清, 徐乐, 郭英, 杨新泉, 徐得泽, 董静. 彩色青稞和彩色小麦籽粒的代谢组学比较分析[J]. 作物学报, 2025, 51(4): 932-942. |
[7] | 潘炬忠, 韦萍, 朱德平, 邵胜雪, 陈珊珊, 韦雅倩, 高维维. 水稻转录因子OsERF104的克隆和功能研究[J]. 作物学报, 2025, 51(4): 900-913. |
[8] | 王林, 陈晓雨, 张文梦龙, 汪思琦, 程冰云, 程靖秋, 潘锐, 张文英. 大麦HvMYB2分子特性及响应干旱胁迫的功能分析[J]. 作物学报, 2025, 51(4): 873-887. |
[9] | 侯天钰, 杜孝敬, 赵志强, 热依木·艾尼瓦尔, 伊达耶图拉·阿不拉, 布哈丽且木·阿不力孜, 袁杰, 张燕红, 王奉斌. 粳稻品种芽期耐冷性评价及耐冷种质筛选[J]. 作物学报, 2025, 51(3): 812-822. |
[10] | 宋倩娜, 宋慧洋, 李京昊, 段永红, 梅超, 冯瑞云. 马铃薯转录因子StFBH3对非生物逆境胁迫的响应分析[J]. 作物学报, 2025, 51(1): 247-259. |
[11] | 杨景发, 余鑫莲, 姚有华, 姚晓华, 王蕾, 吴昆仑, 李新. 青稞分蘖角度的QTL定位[J]. 作物学报, 2025, 51(1): 260-272. |
[12] | 郭飞翔, 李春霞, 周爽, 郭彬彬, 张均, 马超. 绿豆R2R3-MYB转录因子家族鉴定及其类黄酮合成调控基因的筛选[J]. 作物学报, 2025, 51(1): 117-133. |
[13] | 刘宸铭, 赵克勇, 悦曼芳, 赵延明, 吴忠义, 张春. 玉米转录因子ZmEREB180调控根系生长发育及耐逆的功能研究[J]. 作物学报, 2024, 50(8): 1920-1933. |
[14] | 折萌, 郑登俞, 柯照, 吴忠义, 邹华文, 张中保. 玉米ZmGRAS13基因的克隆及功能研究[J]. 作物学报, 2024, 50(6): 1420-1434. |
[15] | 殷祥贞, 赵健鑫, 郝翠翠, 潘丽娟, 陈娜, 许静, 姜骁, 赵旭红, 王恩琪, 曹欢, 禹山林, 迟晓元. 花生转录因子基因AhWRI1的克隆及表达分析[J]. 作物学报, 2024, 50(12): 3155-3164. |
|