欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (9): 2527-2537.doi: 10.3724/SP.J.1006.2025.44216

• 研究简报 • 上一篇    下一篇

烟草脂类合成关键基因NtLPAT的功能验证

吉白璐1,3,**(), 孙艺文1,**(), 刘万峰2, 钱亚新1,3, 蒋彩虹1, 耿锐梅1, 刘旦1, 程立锐1, 杨爱国1, 黄立钰3, 李晓旭2, 蒲文宣2, 高军平2,*(), 张强4,*(), 文柳璎1,*()   

  1. 1中国农业科学院烟草研究所, 山东青岛 266101
    2湖南中烟工业有限责任公司, 湖南长沙 410007
    3云南大学农学院, 云南昆明 650500
    4陕西省烟草科学研究所, 陕西西安 710061
  • 收稿日期:2024-12-24 接受日期:2025-06-04 出版日期:2025-09-12 网络出版日期:2025-06-16
  • 通讯作者: *文柳璎, E-mail: wenliuying@caas.cn; 张强, E-mail: 283240782@qq.com; 高军平, E-mail: gaojp0104@hngy.tobacco.com
  • 作者简介:吉白璐, E-mail: ji15935932310@163.com;孙艺文, E-mail: 312888167@qq.com
    **同等贡献
  • 基金资助:
    本研究由中国农业科学院科技创新工程项目(ASTIP-TRIC01);山东省自然科学基金项目(ZR2023MC139);烟草基因组计划和生物育种重大科技项目(110202201010(JY-17);中国烟草总公司陕西省公司科技项目(KJ-2023-02)

Functional verification of the key gene NtLPAT involved in lipid biosynthesis in tobacco

JI Bai-Lu1,3,**(), SUN Yi-Wen1,**(), LIU Wan-Feng2, QIAN Ya-Xin1,3, JIANG Cai-Hong1, GENG Rui-Mei1, LIU Dan1, CHENG Li-Rui1, YANG Ai-Guo1, HUANG Li-Yu3, LI Xiao-Xu2, PU Wen-Xuan2, GAO Jun-Ping2,*(), ZHANG Qiang4,*(), WEN Liu-Ying1,*()   

  1. 1Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, Shandong, China
    2China Tobacco Hunan Industrial Co., Ltd., Changsha 410007, Hunan, China
    3School of Agriculture, Yunnan University, Kunming 650500, Yunnan, China
    4Tobacco Institute of Shaanxi Province, Xi’an 710061, Shaanxi, China
  • Received:2024-12-24 Accepted:2025-06-04 Published:2025-09-12 Published online:2025-06-16
  • Contact: *E-mail: wenliuying@caas.cn; E-mail: 283240782@qq.com; E-mail: gaojp0104@hngy.tobacco.com
  • About author:**Contributed equally to this work
  • Supported by:
    Agricultural Science and Technology Innovation Program of CAAS(ASTIP-TRIC01);Natural Science Foundation of Shandong Province, China(ZR2023MC139);Natural Science Foundation of Tobacco Genome Project of State Tobacco Monopoly Administration (110202201010(JY-17);Technology Project of the Shaanxi Provincial Company of China National Tobacco Corporation(KJ-2023-02)

摘要: 溶血磷脂酰基转移酶(LPAT)是负责催化溶血磷脂酸(LPA)和脂肪酰基-辅酶A (Acyl-CoA)酯化生成磷脂酸(PA)合成途径的关键酶, 尚不清楚烟草中LPAT的基因功能。本研究从K326中克隆得到NtLPAT基因, 利用CRISPR/Cas9技术获得NtLPAT敲除植株ntlpat, 对其农艺性状和抗病性以及外观质量进行鉴定, 结合脂质组、转录组分析NtLPAT的功能。结果表明, NtLPAT受青枯病菌和黑胫病病菌的诱导。ntlpat株高降低, 对黄瓜花叶病毒病(CMV)与青枯病的抗性提高。脂质组分析表明, ntlpat中甘油酯代谢发生了重排, 三酰甘油含量显著降低, 组成类囊体膜的甘油糖脂含量(MGDG, DGDG)随之上升, 并且鞘脂和磷脂酰肌醇含量也发生变化。转录组分析表明, ntlpat的光合作用、碳固定代谢、鞘脂合成和磷脂酰肌醇信号转导途径的相关基因发生重编程, 因此推测NtLPAT具有脂酰基转移酶活性, 调控三酰甘油的从头合成途径, 并参与细胞信号传导, 影响烟草的生长和对CMV、青枯病菌的抗性, 研究结果为挖掘烟草株型及抗性改良提供基因资源和试验依据。

关键词: 溶血磷脂酰基转移酶, 烟草, 基因敲除, 脂质组学, 转录组学

Abstract:

Lysophosphatidyl transferase (LPAT) is a key enzyme in the lipid biosynthesis pathway, catalyzing the transfer of a fatty acyl group from fatty acyl-CoA (Acyl-CoA) to lysophosphatidic acid (LPA) to produce phosphatidic acid (PA). However, the functional role of LPAT in tobacco remains largely unexplored. In this study, we cloned the NtLPAT gene from the tobacco cultivar K326 and generated an NtLPAT knockout mutant (ntlpat) using CRISPR/Cas9 technology. The ntlpat mutant was evaluated for agronomic traits, disease resistance, and phenotypic appearance. In addition, lipidomic and transcriptomic analyses were conducted to assess the impact of NtLPAT loss of function. Our results showed that NtLPAT expression was induced by infection with Ralstonia solanacearum and Phytophthora parasitica. The ntlpat mutant exhibited reduced plant height but enhanced resistance to cucumber mosaic virus (CMV) and bacterial wilt. Lipidomic analysis revealed altered glyceride metabolism in the mutant: triacylglycerol (TAG) levels were significantly decreased, while the contents of two major glycerol glycolipids—monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), both critical components of the thylakoid membrane—were increased. Additionally, changes were observed in sphingolipid and phosphatidylinositol compositions. Transcriptomic analysis indicated that genes involved in photosynthesis, carbon fixation, sphingolipid biosynthesis, and phosphatidylinositol signaling pathways were reprogrammed in ntlpat. These findings suggest that NtLPAT possesses acyltransferase activity, regulates de novo TAG biosynthesis, and plays a role in cellular signaling pathways, thereby affecting tobacco growth and resistance to CMV and R. solanacearum. This study provides valuable genetic resources and an experimental basis for tobacco breeding improvement.

Key words: lysophosphatidyl transferase, tobacco, gene knock-out, lipidomics, transcriptome

图1

NtLPAT基因序列对比以及表达模式分析 图A中, M为DL 2000 marker, 1为阴性对照, 2为目的条带。图B为烟草、马铃薯、辣椒与番茄LPAT序列的比对。图C为NtLPAT在烟草不同组织中的表达量, Root: 地下部; Shoot: 地上部; Shoot apex: 苗端。图D为NtLPAT响应黑胫病的表达模式, 0、6、12、24 hpi表示接菌后0、6、12、24 h, R表示烟草抗黑胫品种BH1000-1, S表示感黑胫烟草品种小黄金1025。图E为NtLPAT响应青枯病表达模式, 3、9、24 hpi表示接菌后3、9、24 h, R表示烟草抗青枯品种反帝三号-丙, S表示烟草感青枯品种红花大金元, CK表示未接菌对照, RS表示接种青枯菌。*、**和***分别表示在0.05、0.01和0.001水平差异显著。"

图2

ntlpat对青枯病抗性鉴定 图A为转基因材料鉴定峰图; 图B为K326与ntlpat接种青枯病菌后14、18、22、25、28、32、35 d时的病情指数; 图C为K326与ntlpat接种青枯0 d与35 d时的烟苗状态。*表示P < 0.05。"

表1

ntlpat株系病毒病抗性分析"

样品Sample TMV PVY CMV
K326 38.26±8.03 b 60.93±3.51 a 39.23±8.85 b
ntlpat 63.75±11.36 a 66.35±4.31 a 20.43±4.66 a

表2

ntlpat突变株系主要农艺性状"

样品
Sample
株高
Plant height
(cm)
茎围
Stem circumference (cm)
节距
Stem pitch
(cm)
叶数
Leaf number
腰叶长
Middle leaf length (cm)
腰叶宽
Middle leaf width (cm)
K326 103.60±2.07 a 8.28±4.25 a 5.05±0.45 a 17.40±0.89 a 67.10±2.08 a 24.00±1.96 a
ntlpat 82.50±8.89 b 8.48±0.45 a 3.40±0.65 b 16.75±1.26 a 63.60±4.59 a 23.38±2.43 a

表3

ntlpat突变株系烟叶外观评价"

样品
Sample
颜色
Color
成熟度
Maturity
油分
Oil
身份
Body
结构
Structure
色度
Color intensity
总分
Score
量化总分
Quantify the total score
K326 7 8 8 9 8 6 46 7.71
ntlpat 7 8 6 9 8 5 43 7.47

图3

ntlpat突变株系脂质组分析图 图A为差异代谢物KEGG分类图; 图B为脂类代谢途径中的差异脂类示意图。TG: 甘油三脂; PG: 磷脂酰甘油; MGDG: 单半乳糖二酰基甘油; DGDG: 二半乳糖二酰基甘油; Cer: 神经酰胺; SPH: 鞘磷脂; PC: 磷脂酰甘油; LPA: 溶血磷脂酸; LPC: 溶血磷脂酰胆碱。"

图4

ntlpat突变株系代谢组分析图 图A为差异表达基因GO富集柱状图; 图B为差异表达基因KEGG富集气泡图; 图C为磷脂合成途径和光合系统复合体差异表达基因示意图。"

[1] Suh M C, Kim H U, Nakamura Y. Plant lipids: trends and beyond. J Exp Bot, 2022, 73: 2715-2720.
doi: 10.1093/jxb/erac125 pmid: 35560206
[2] Markham J E, Lynch D V, Napier J A, Dunn T M, Cahoon E B. Plant sphingolipids: function follows form. Curr Opin Plant Biol, 2013, 16: 350-357.
doi: 10.1016/j.pbi.2013.02.009 pmid: 23499054
[3] Kuźniak E, Gajewska E. Lipids and lipid-mediated signaling in plant-pathogen interactions. Int J Mol Sci, 2024, 25: 7255.
[4] Wan X Y, Wu S W, Li Z W, An X L, Tian Y H. Lipid metabolism: critical roles in male fertility and other aspects of reproductive development in plants. Mol Plant, 2020, 13: 955-983.
doi: S1674-2052(20)30144-1 pmid: 32434071
[5] Lim G H, Singhal R, Kachroo A, Kachroo P. Fatty acid- and lipid-mediated signaling in plant defense. Annu Rev Phytopathol, 2017, 55: 505-536.
[6] 李丽, 孙健, 何雪梅, 李昌宝, 零东宁, 饶川艳, 肖占仕, 盛金凤, 郑凤锦, 易萍. 逆境胁迫下植物磷脂酶D的生理功能和作用机制综述. 江苏农业科学, 2018, 46(8): 1-5.
Li L, Sun J, He X M, Li C B, Ling D N, Rao C Y, Xiao Z S, Sheng J F, Zheng F J, Yi P. Physiological function and mechanism of phospholipase D in plants under stress: a review. Jiangsu Agric Sci, 2018, 46(8): 1-5 (in Chinese with English abstract).
[7] 刘俊羽, 杨帆, 毛爽, 李书鑫, 林海蛟, 阎秀峰, 蔺吉祥. 植物脂质应答逆境胁迫生理功能的研究进展. 生物工程学报, 2021, 37: 2658-2667.
Liu J Y, Yang F, Mao S, Li S X, Lin H J, Yan X F, Lin J X. Advances in the physiological functions of plant lipids in response to stresses. Chin J Biotechnol, 2021, 37: 2658-2667 (in Chinese with English abstract).
[8] Ohlrogge J, Browse J. Lipid biosynthesis. Plant Cell, 1995, 7: 957-970.
doi: 10.1105/tpc.7.7.957 pmid: 7640528
[9] Yao H Y, Wang G L, Guo L, Wang X M. Phosphatidic acid interacts with a MYB transcription factor and regulates its nuclear localization and function in Arabidopsis. Plant Cell, 2013, 25: 5030-5042.
[10] Zhang W H, Qin C B, Zhao J, Wang X M. Phospholipase D alpha 1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc Natl Acad Sci USA, 2004, 101: 9508-9513.
doi: 10.1073/pnas.0402112101 pmid: 15197253
[11] Testerink C, Munnik T. Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci, 2005, 10: 368-375.
doi: 10.1016/j.tplants.2005.06.002 pmid: 16023886
[12] 陈四龙, 黄家权, 雷永, 任小平, 文奇根, 陈玉宁, 姜慧芳, 晏立英, 廖伯寿. 花生溶血磷脂酸酰基转移酶基因的克隆与表达分析. 作物学报, 2012, 38: 245-255.
doi: 10.3724/SP.J.1006.2012.00245
Chen S L, Huang J Q, Lei Y, Ren X P, Wen Q G, Chen Y N, Jiang H F, Yan L Y, Liao B S. Cloning and expression analysis of lysophosphatidic acid acyltransferase (LPAT) encoding gene in peanut. Acta Agron Sin, 2012, 38: 245-255 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2012.00245
[13] Maisonneuve S, Bessoule J J, Lessire R, Delseny M, Roscoe T J. Expression of rapeseed microsomal lysophosphatidic acid acyltransferase isozymes enhances seed oil content in Arabidopsis. Plant Physiol, 2010, 152: 670-684.
doi: 10.1104/pp.109.148247 pmid: 19965969
[14] Körbes A P, Kulcheski F R, Margis R, Margis-Pinheiro M, Turchetto-Zolet A C. Molecular evolution of the lysophosphatidic acid acyltransferase (LPAAT) gene family. Mol Phylogenet Evol, 2016, 96: 55-69.
doi: S1055-7903(15)00376-0 pmid: 26721558
[15] Yu B, Wakao S, Fan J L, Benning C. Loss of plastidic lysophosphatidic acid acyltransferase causes embryo-lethality in Arabidopsis. Plant Cell Physiol, 2004, 45: 503-510.
[16] Kim H U, Li Y B, Huang A H C. Ubiquitous and endoplasmic reticulum-located lysophosphatidyl acyltransferase, LPAT2, is essential for female but not male gametophyte development in Arabidopsis. Plant Cell, 2005, 17: 1073-1089.
[17] Angkawijaya A E, Nguyen V C, Nakamura Y. LYSOPHOSPHATIDIC ACID ACYLTRANSFERASES 4 and 5 are involved in glycerolipid metabolism and nitrogen starvation response in Arabidopsis. New Phytol, 2019, 224: 336-351.
doi: 10.1111/nph.16000 pmid: 31211859
[18] Shaikh A A, Alamin A, Jia C X, Gong W, Deng X J, Shen Q W, Hong Y Y. The examination of the role of rice lysophosphatidic acid acyltransferase 2 in response to salt and drought stresses. Int J Mol Sci, 2022, 23: 9796.
[19] 徐华祥, 鲁庚, 郭曦, 李圆圆, 张涛. 紫苏溶血磷脂酰转移酶基因PfLPAAT的克隆及功能研究. 作物学报, 2022, 48: 2494-2504.
doi: 10.3724/SP.J.1006.2022.14150
Xu H X, Lu G, Guo X, Li Y Y, Zhang T. Cloning and functional study of lysophosphatidic acid acyltransferase gene in Perilla frutescens. Acta Agron Sin, 2022, 48: 2494-2504 (in Chinese with English abstract).
[20] Zhang K, Nie L L, Cheng Q Q, Yin Y T, Chen K, Qi F Y, Zou D S, Liu H H, Zhao W G, Wang B S, et al. Effective editing for lysophosphatidic acid acyltransferase 2/5 in allotetraploid rapeseed (Brassica napus L.) using CRISPR-Cas9 system. Biotechnol Biofuels, 2019, 12: 225.
doi: 10.1186/s13068-019-1567-8 pmid: 31548867
[21] 魏春红, 李毅. 现代分子生物学实验技术. 北京: 高等教育出版社, 2006.
Wei C H, Li Y. Experimental Techniques in Modern Molecular Biology. Beijing: Higher Education Press, 2006 (in Chinese).
[22] Meng H, Sun M M, Jiang Z P, Liu Y T, Sun Y, Liu D, Jiang C H, Ren M, Yuan G D, Yu W L, et al. Comparative transcriptome analysis reveals resistant and susceptible genes in tobacco cultivars in response to infection by Phytophthora nicotianae. Sci Rep, 2021, 11: 809.
doi: 10.1038/s41598-020-80280-7 pmid: 33436928
[23] 刘昱彤. 烟草抗黑胫病主效位点分子标记开发及育种价值评价. 中国农业科学院硕士学位论文, 北京, 2022.
Liu Y T. Development of Molecular Markers for Major Loci Resistant to Black Shank in Tobacco and Evaluation of Their Breeding Value. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2022 (in Chinese with English abstract).
[24] 孙希芳. CORESTA青枯病共同试验分学组研究报告. 烟草科技, 2001, (11): 30-33.
Sun X F. CORESTA joint experimental subgroup report on ralstonia solanacearum. Tob Sci Technol, 2001, (11): 30-33 (in Chinese).
[25] Vasse J. Microscopic studies of intercellular infection and protoxylem invasion of tomato roots by Pseudomonas solanacearum. Mol Plant Microbe Interact, 1995, 8: 241.
[26] 翟中和, 王喜忠, 丁明孝. 细胞生物学(第4版). 北京: 高等教育出版社, 2011.
Zhai Z H, Wang X Z, Ding M X. Cell Biology, 4th edn. Beijing: Higher Education Press, 2011 (in Chinese).
[27] 鲁锦畅, 武耀康, 吕雪芹, 刘龙, 陈坚, 刘延峰. 神经酰胺类鞘脂的绿色生物制造. 合成生物学, 2024, 6: 422-444.
Lu J C, Wu Y K, Lyu X Q, Liu L, Chen J, Liu Y F. Green biomanufacturing of ceramide-based sphingolipids. Synth Biol J, 2024, 6: 422-444 (in Chinese with English abstract).
[28] Scholz J. Inositol trisphosphate a new “second messenger” for positive inotropic effects on the heart? Klin Wochenschr, 1989, 67: 271-279.
pmid: 2540380
[29] 张亚杰. 高等植物光系统II大量捕光色素蛋白复合体的稳定性研究. 中国科学院大学硕士学位论文, 北京, 2006.
Zhang Y J. Stability Study of the Major Light-Harvesting Pigment-Protein Complex in Higher Plant Photosystem II. MS Thesis of Chinese Academy of Sciences, Beijing, China, 2006 (in Chinese with English abstract).
[30] 沈梦千, 安昌, 秦源, 郑平. 植物生长和胁迫响应的脂质组学解析: 脂质调控综览. 基因组学与应用生物学, 2024, 43: 738-754.
Shen M Q, An C, Qin Y, Zheng P. Lipidomic analysis of plant growth and stress responses: an overview of lipid regulation. Genom Appl Biol, 2024, 43: 738-754 (in Chinese with English abstract).
[31] Yu L H, Zhou C, Fan J L, Shanklin J, Xu C C. Mechanisms and functions of membrane lipid remodeling in plants. Plant J, 2021, 107: 37-53.
[32] Benghezal M, Roubaty C, Veepuri V, Knudsen J, Conzelmann A. SLC1 and SLC4 encode partially redundant acyl-coenzyme A 1-acylglycerol-3-phosphate O-acyltransferases of budding yeast. J Biol Chem, 2007, 282: 30845-30855.
doi: 10.1074/jbc.M702719200 pmid: 17675291
[33] 叶雪影. 在油菜中分别超量表达AhLEC1AhLPAAT基因对油菜含油量的影响. 湖北大学硕士学位论文, 湖北武汉, 2014.
Ye X Y. Effects of Overexpression of AhLEC1 and AhLPAAT Genes on Oil Content in Rapeseed, Respectively. MS Thesis of Hubei University, Wuhan, Hubei, China, 2014 (in Chinese with English abstract).
[34] Cai Y Q, Zhai Z Y, Blanford J, Liu H, Shi H, Schwender J, Xu C C, Shanklin J. Purple acid phosphatase 2 stimulates a futile cycle of lipid synthesis and degradation, and mitigates the negative growth effects of triacylglycerol accumulation in vegetative tissues. New Phytol, 2022, 236: 1128-1139.
[35] Yang Y, Benning C. Functions of triacylglycerols during plant development and stress. Curr Opin Biotechnol, 2018, 49: 191-198.
[36] 戚维聪. 油菜发育种子中油脂积累与Kennedy途径酶活性的关系研究. 南京农业大学硕士学位论文, 江苏南京, 2008.
Qi W C. Study on the Relationship between Oil Accumulation and Kennedy Pathway Enzyme Activity in Developing Seeds of Rapeseed. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2008 (in Chinese with English abstract).
[37] Zhang K, He J J, Yin Y T, Chen K, Deng X, Yu P, Li H X, Zhao W G, Yan S X, Li M T. Lysophosphatidic acid acyltransferase 2 and 5 commonly, but differently, promote seed oil accumulation in Brassica napus. Biotechnol Biofuels Bioprod, 2022, 15: 83.
[38] Chen S L, Lei Y, Xu X, Huang J Q, Jiang H F, Wang J, Cheng Z S, Zhang J N, Song Y H, Liao B S, et al. The peanut (Arachis hypogaea L.) gene AhLPAT2 increases the lipid content of transgenic Arabidopsis seeds. PLoS One, 2015, 10: e0136170.
[39] Chen G Q, van Erp H, Martin-Moreno J, Johnson K, Morales E, Browse J, Eastmond P J, Lin J T. Expression of castor LPAT2 enhances ricinoleic acid content at the sn-2 position of triacylglycerols in Lesquerella seed. Int J Mol Sci, 2016, 17: 507.
[40] Pritchard S L, Charlton W L, Baker A, Graham I A. Germination and storage reserve mobilization are regulated independently in Arabidopsis. Plant J, 2002, 31: 639-647.
doi: 10.1046/j.1365-313x.2002.01376.x pmid: 12207653
[41] 王文霞, 李曙光, 白雪芳, 杜昱光. 不饱和脂肪酸及其衍生物在植物抗逆反应中的作用. 植物生理学通讯, 2004, 40: 741-748.
Wang W X, Li S G, Bai X F, Du Y G. Functions of unsaturated fatty acid and derivates in plant defense reactions. Plant Physiol Commun, 2004, 40: 741-748 (in Chinese with English abstract).
[42] 王利民, 符真珠, 高杰, 董晓宇, 张晶, 袁欣, 蒋卉, 王慧娟, 李艳敏, 师曼, 等. 植物不饱和脂肪酸的生物合成及调控. 基因组学与应用生物学, 2020, 39: 254-258.
Wang L M, Fu Z Z, Gao J, Dong X Y, Zhang J, Yuan X, Jiang H, Wang H J, Li Y M, Shi M, et al. Molecular mechanism of unsaturated fatty acids synthesis and regulation in plant. Genom Appl Biol, 2020, 39: 254-258 (in Chinese with English abstract).
[43] Miquel M, James D Jr, Dooner H, Browse J. Arabidopsis requires polyunsaturated lipids for low-temperature survival. Proc Natl Acad Sci USA, 1993, 90: 6208-6212.
doi: 10.1073/pnas.90.13.6208 pmid: 11607410
[44] Wang C, Chin C K, Chen A. Expression of the yeast Δ-9 desaturase gene in tomato enhances its resistance to powdery mildew. Physiol Mol Plant Pathol, 1998, 52: 371-383.
[45] Madi L A, Wang X J, Kobiler I, Lichter A, Prusky D. Stress on avocado fruits regulates Δ9-stearoyl ACP desaturase expression, fatty acid composition, antifungal diene level and resistance to Colletotrichum gloeosporioides attack. Physiol Mol Plant Pathol, 2003, 62: 277-283.
[46] Boudière L, Michaud M, Petroutsos D, Rébeillé F, Falconet D, Bastien O, Roy S, Finazzi G, Rolland N, Jouhet J, et al. Glycerolipids in photosynthesis: composition, synthesis and trafficking. Biochim Biophys Acta, 2014, 1837: 470-480.
doi: 10.1016/j.bbabio.2013.09.007 pmid: 24051056
[47] 刘潇潇, 巩迪, 高天鹏, 殷俐娜, 王仕稳. 植物类囊体主要膜脂及其生物合成. 植物学报, 2024, 59: 144-155.
doi: 10.11983/CBB23028
Liu X X, Gong D, Gao T P, Yin L N, Wang S W. Thylakoid membrane lipids in plants and their biosynthesis. Acta Bot, 2024, 59: 144-155 (in Chinese with English abstract).
[48] Fujii S, Kobayashi K, Nakamura Y, Wada H. Inducible knockdown of MONOGALACTOSYLDIACYLGLYCEROLSYNTHASE 1 reveals roles of galactolipids in organelle differentiation in Arabidopsis cotyledons. Plant Physiol, 2014, 166: 1436-1449.
doi: 10.1104/pp.114.250050 pmid: 25253888
[49] 王俊斌. 烟草单半乳糖甘油二酯缺失对茉莉酸生物合成的影响. 中国科学院大学研究生硕士论文, 北京, 2007.
Wang J B. The Impact of Tobacco Monogalactosyldiacylglycerol Deficiency on Jasmonate Biosynthesis. MS Thesis of Chinese Academy of Sciences, Beijing, China, 2007 (in Chinese with English abstract).
[1] 黄梦欣, 庄灵玲, 程佩佩, 李秦, 徐建堂, 陶爱芬, 方平平, 祁建民, 张立武. 黄麻U6启动子克隆及其转录活性分析[J]. 作物学报, 2025, 51(5): 1156-1165.
[2] 刘波, 池明, 曹梦琦, 唐达, 杨恒照, 张卫华, 薛聪. 过表达马铃薯StuPPO9基因对烟草抗旱能力的影响[J]. 作物学报, 2024, 50(9): 2237-2247.
[3] 刘颖超, 方敦煌, 徐海明, 童治军, 肖炳光. 烟草生物碱性状的QTL定位[J]. 作物学报, 2024, 50(1): 42-54.
[4] 文利超, 熊涛, 邓智超, 刘涛, 郭存, 李伟, 郭永峰. 烟草转录因子NtNAC080在非生物胁迫下的表达分析及功能鉴定[J]. 作物学报, 2023, 49(8): 2171-2182.
[5] 王会伟, 张向歌, 李春鑫, 许欣然, 胡海燕, 朱雅婧, 王艳, 张新友. 油莎豆耐盐性评估及盐胁迫下幼苗根系转录组学分析[J]. 作物学报, 2023, 49(7): 1882-1894.
[6] 丁洪艳, 冯晓溪, 汪柏宇, 张积森. 甘蔗割手密种LRRII-RLK基因家族演化和表达分析[J]. 作物学报, 2023, 49(7): 1769-1784.
[7] 崔芳芳, 孟林峰, 刘苗苗, 张建强, 王建革, 刘齐元. 烟草细胞质雄性不育系K326 MADS-boxSUPERMAN基因的特征[J]. 作物学报, 2023, 49(12): 3204-3214.
[8] 曾健, 徐先超, 徐昱斐, 王秀成, 于海燕, 冯贝贝, 邢光南. 利用动态转录组学挖掘大豆百粒重候选基因[J]. 作物学报, 2021, 47(11): 2121-2133.
[9] 李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析[J]. 作物学报, 2021, 47(11): 2184-2198.
[10] 甘卓然,石文茜,黎永力,侯智红,李海洋,程群,董利东,刘宝辉,芦思佳. 大豆生物钟基因GmLNK1/2GmRVE4/8GmTOC1 CRISPR/Cas9组织表达分析及敲除靶点的鉴定[J]. 作物学报, 2020, 46(8): 1291-1300.
[11] 秦天元, 孙超, 毕真真, 梁文君, 李鹏程, 张俊莲, 白江平. 基于WGCNA的马铃薯根系抗旱相关共表达模块鉴定和核心基因发掘[J]. 作物学报, 2020, 46(7): 1033-1051.
[12] 董庆园,马德清,杨学,刘勇,黄昌军,袁诚,方敦煌,于海芹,童治军,沈俊儒,许银莲,罗美中,李永平,曾建敏. 高抗黑胫病烤烟BAC文库的构建及分析[J]. 作物学报, 2020, 46(6): 869-877.
[13] 衡友强,游西龙,王艳. 费尔干猪毛菜病程相关蛋白SfPR1a基因的异源表达增强了烟草对干旱、盐及叶斑病的抗性[J]. 作物学报, 2020, 46(4): 503-512.
[14] 陈杉彬, 孙思凡, 聂楠, 杜冰, 何绍贞, 刘庆昌, 翟红. 甘薯IbCAF1基因的克隆及耐盐性、抗旱性鉴定[J]. 作物学报, 2020, 46(12): 1862-1869.
[15] 马晓寒,张杰,张环纬,陈彪,温心怡,许自成. 通过外源MeJA抑制H2O2积累提高烟草的耐冷性[J]. 作物学报, 2019, 45(3): 411-418.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!