欢迎访问作物学报,今天是

作物学报 ›› 2005, Vol. 31 ›› Issue (10): 1253-1259.

• 研究论文 • 上一篇    下一篇

不同生态环境下玉米产量性状QTL分析

兰进好;李新海;高树仁;张宝石;张世煌   

  1. 中国农业科学院作物科学研究所/农业部作物遗传育种重点实验室,北京 100081
  • 收稿日期:2004-10-20 修回日期:1900-01-01 出版日期:2005-10-12 网络出版日期:2005-10-12
  • 通讯作者: 张世煌

QTL Analysis of Yield Components in Maize under Different Environments

LAN Jin-Hao;LI Xin-Hai;GAO Shu-Ren;ZHANG Bao-Shi;ZHANG Shi-Huang   

  1. 1Institute of Crop Sciences,Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Genetics and Breeding,Ministry of Agriculture,Beijing 100081
  • Received:2004-10-20 Revised:1900-01-01 Published:2005-10-12 Published online:2005-10-12
  • Contact: ZHANG Shi-Huang

摘要:

以玉米(Zea mays L.)自交系黄早四和Mo17为亲本得到的191个F2单株为作图群体,衍生的184个F2∶3 家系作为性状评价群体,分析了单株穗数、穗行数、行粒数、百粒重和单株籽粒产量在北京和新疆2个生态环境下的表现和数量性状基因位点的定位结果。QTL检测结果表明,2个环境共检测出47个QTL,分布于除第10染色体以外的9条染色体,其中与单株穗数相关的QTL共10个,可解释的表型变异为5.3%~25.6%;与穗行数相关的QTL共13个,可解释的表型变异为4.5%~23.2%;与行粒数相关的QTL有9个,解释的表型变异为5.4%~13.7%;与百粒重相关的QTL达10个,可解释的表型变异为4.9%~13.3%;与单株籽粒产量相关的QTL有5个,可解释的表型变异为6.1%~35.8 %。大部分产量QTL只在单一环境下被检测到,说明产量相关QTL与环境之间存在明显的互作。表型相关显著的产量性状,它们的QTL容易在相同或相邻标记区间检测到。研究还发现了若干个QTL富集区域,可能是发掘通用QTL的候选位点。

关键词: 玉米, 产量性状, 环境, 数量性状位点

Abstract:

Maize (Zea mays L.) is one of the crops studied widely by QTL mapping. There are a lot of reports about QTL for important traits, including yield components, plant height, grain moisture and growth data and so on. Thereinto, grain yield is a very complicated quantitative trait, existing interactions not only with gene by gene, but also gene by environment. Studying the relationship of the interaction between genes and environments and finding the yield QTL expressed in given environment are of importance in practice for cultivating new varieties adapting to some area. If consensus QTL of yield and its adjacent marker can be found, it will provide possibility for molecular breeding by marker assisted selection (MAS). The objective of this experiment was to analysis the expression character of QTL controlling yield, and to detect common genetic loci of yield, as well as adjacent marker, in different environment, which could provide technical basis for fine mapping of yield QTL and MAS. One hundred and ninety-one F2 individuals derived from the cross, Mo17×Huangzao4, were genotyped by SSR and AFLP markers to construct the genetic linkage map, and 184 corresponding F2∶3 families were phenotyped for maize yield components in Beijing and Xinjiang. The performance and correlations among 5 yield components including ears per plant (EPP), row number per ear (RN), kernel number per row (KR), 100-kernel weight (KW) and grain yield per plant (GY) were evaluated, and the quantitative trait loci (QTL) were characterized. Totally, 47 QTLs were identified for 5 traits, locating on 9 chromosomes with exception of the chromosome 10. 10, 13, 9, 10 and 5 QTLs were detected for EPP, RN, KR, KW and GY, respectively. Each of these QTLs could explain 5.3% to 25.6% phenotypic variation of EPP, 4.5% to 23.2% of RN, 5.4% to 13.7% of KR, 4.9% to 13.3% of KW and 6.1% to 35.8% of GY. Most of the QTLs are detected in single environment, indicating the significant interactions between QTL and environments. Different QTLs relevant to the yield components which are correlated each other can be identified easily in the same or adjacent chromosome regions. Several regions with clustered QTLs relevant to multiple yield components identified in the study may provide the genetic loci of the universal yield QTLs.

Key words: Zea mays L., Yield components, Environment, Quantitative trait loci

中图分类号: 

  • S513
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!