欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (7): 1969-1978.doi: 10.3724/SP.J.1006.2025.44210

• 研究简报 • 上一篇    

谷子m6A甲基化转移酶基因SiMTA1的启动子序列特征和基因表达模式分析

沈傲1,2,刘敏2,倪迪安1,*,刘炜2,*   

  1. 1上海应用技术大学生态技术与工程学院, 上海201418; 2山东省农业科学院农作物种质资源研究所, 山东济南250100
  • 收稿日期:2024-12-17 修回日期:2024-04-30 接受日期:2024-04-30 出版日期:2025-07-12 网络出版日期:2025-05-12
  • 基金资助:
    本研究由山东省重点研发计划项目(2021LZGC025), 国家自然科学基金项目(32171955, 32201736)和山东省农业科学院农业科技创新工程项目(CXGC2023F13)资助。

Promoter characterization and expression pattern analysis of the m6A methyltransferase gene SiMTA1 in foxtail millet

SHEN Ao1,2,LIU Min2,NI Di-An1,*,LIU Wei2,*   

  1. 1 School of Ecological Technology & Engineering, Shanghai Institute of Technology, Shanghai 201418, China; 2 Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
  • Received:2024-12-17 Revised:2024-04-30 Accepted:2024-04-30 Published:2025-07-12 Published online:2025-05-12
  • Supported by:
    This study was supported by the Shandong Provincial Key Research and Development Program (2021LZGC025), the National Natural Science Foundation of China (32171955, 32201736), and the Agricultural Science and Technology Innovation Project of the Shandong Academy of Agricultural Sciences (CXGC2023F13).

摘要:

MTA作为植物m6A甲基化转移酶之一,主要参与RNA的甲基化修饰,同时还可与其他酶相互作用,影响胚胎发育,在植物的生长发育中扮演着关键角色。本研究通过拟南芥甲基化转移酶序列同源比对,得到谷子SiMTA1基因(accession no. PQ801843),该基因DNA序列全长4239 bpCDS序列2121 bp,包含706个氨基酸残基。对其核苷酸及蛋白序列进行生物信息学分析、并解析其启动子顺式作用元件,通过qRT-PCR方法对SiMTA1在时空表达和各种胁迫及激素处理下的表达模式进行研究。结果显示,SiMTA1具有MT-A70结构域,即N6-腺苷-甲基转移酶(MTase)S-腺苷甲硫氨酸(SAM)结合亚基;二级结构预测显示,SiMTA1主要是由无规则卷曲和α-螺旋组成;SiMTA1启动子包含多种胁迫和植物激素信号应答元件;SiMTA1在孕穗期的茎节部的表达量较高;盐、干旱、生长素、细胞分裂素等均可诱导SiMTA1表达。本研究通过对谷子中甲基化转移酶基因SiMTA1启动子特性及其在正常及胁迫条件下时空表达模式的研究发现,SiMTA1可能在谷子发育及胁迫和植物激素响应过程中发挥作用。研究结果为后续谷子耐逆品种的改良及新品种培育提供了理论依据及候选基因资源。

关键词: 谷子, 甲基化转移酶SiMTA1, 启动子序列特征, 胁迫及植物激素响应, 时空表达模式

Abstract:

MTA, a key RNA methyltransferase responsible for m6A methylation, also influences embryonic development and plays crucial roles in plant growth by interacting with other enzymes. In this study, the SiMTA1 gene (accession no. PQ801843) from foxtail millet was identified through homology alignment with Arabidopsis methyltransferase sequences. The gene is 4,239 bp in length, with a 2,121 bp coding sequence (CDS) encoding a protein of 706 amino acids. Bioinformatic analyses were conducted on both the nucleotide and protein sequences, and cis-acting elements in the promoter region were characterized. The spatiotemporal expression patterns of SiMTA1 under various abiotic stresses and hormone treatments were examined using qRT-PCR. The results showed that SiMTA1 contains the MT-A70 domain, subunit of N6-adenosine methyltransferase (MTase) that binds S-adenosylmethionine (SAM), and its secondary structure is mainly composed of random coils and α-helices. The SiMTA1 promoter harbors multiple stress- and hormone-responsive cis-elements. SiMTA1 is highly expressed in stem internodes during the heading stage of foxtail millet, and its expression is upregulated by salt, drought, auxin, cytokinin, and other treatments. These findings suggest that SiMTA1 may participate in developmental processes and responses to environmental and hormonal signals in foxtail millet. This study provides a theoretical foundation and a potential candidate gene for the genetic improvement of stress-resistant foxtail millet varieties.

Key words: foxtail millet, methyltransferase SiMTA1, promoter characteristics, stress and plant hormone response, spatiotemporal expression pattern

[1] Chmielowska-Bak J, Arasimowicz-Jelonek M, Deckert J. In search of the mRNA modification landscape in plants. BMC Plant Biol, 2019, 19: 421.

[2] 张盼, 余永旭, 曹领改, 朱广兵, 吴伟, 郭玉双, 尹国英, 贾蒙骜. m6A甲基化修饰响应植物生物胁迫和非生物胁迫的研究进展. 园艺学报, 2023, 50: 1841–1853.

Zhang P, Yu Y X, Cao L G, Zhu G B, Wu W, Guo Y S, Yin G Y, Jia M A. Research progress of m6A methylation modification response to plant biotic and abiotic stresses. Acta Hortic Sin, 2023, 50: 1841–1853 (in Chinese with English abstract).

[3] Kennedy T D, Lane B G. Wheat embryo ribonucleates. XIII. Methyl-substituted nucleoside constituents and 5'-terminal dinucleotide sequences in bulk poly (AR)-rich RNA from imbibing wheat embryos. Can J Biochem, 1979, 57: 927–931.

[4] Haugland R A, Cline M G. Post-transcriptional modifications of oat coleoptile ribonucleic acids. 5'-Terminal capping and methylation of internal nucleosides in poly(A)-rich RNA. Eur J Biochem, 1980, 104: 271–277.

[5] Luo G Z, MacQueen A, Zheng G Q, Duan H C, Dore L C, Lu Z K, Liu J, Chen K, Jia G F, Bergelson J, et al. Unique features of the m6A methylome in Arabidopsis thaliana. Nat Commun, 2014, 5: 5630.

[6] Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature, 2012, 485: 201–206.

[7] Meyer K D, Saletore Y, Zumbo P, Elemento O, Mason C E, Jaffrey S R. Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. Cell, 2012, 149: 1635–1646.

[8] Yue H, Nie X J, Yan Z G, Song W N. N6-methyladenosine regulatory machinery in plants: composition, function and evolution. Plant Biotechnol J, 2019, 17: 1194–1208.

[9] Zhong S L, Li H Y, Bodi Z, Button J, Vespa L, Herzog M, Fray R G. MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor. Plant Cell, 2008, 20: 1278–1288.

[10] Bodi Z, Zhong S L, Mehra S, Song J, Graham N, Li H Y, May S, Fray R G. Adenosine methylation in Arabidopsis mRNA is associated with the 3' end and reduced levels cause developmental defects. Front Plant Sci, 2012, 3: 48.

[11] Hu J Z, Manduzio S, Kang H. Epitranscriptomic RNA methylation in plant development and abiotic stress responses. Front Plant Sci, 2019, 10: 500.

[12] Lu L, Zhang Y, He Q, Qi Z X, Zhang G, Xu W C, Yi T, Wu G N, Li R L. MTA, an RNA m6A methyltransferase, enhances drought tolerance by regulating the development of trichomes and roots in poplar. Int J Mol Sci, 2020, 21: 2462.

[13] Hu J Z, Cai J, Park S J, Lee K, Li Y X, Chen Y, Yun J Y, Xu T, Kang H. N6-Methyladenosine mRNA methylation is important for salt stress tolerance in Arabidopsis. Plant J, 2021, 106: 1759–1775.

[14] Huong T T, Ngoc L N T, Kang H. Functional characterization of a putative RNA demethylase ALKBH6 in Arabidopsis growth and abiotic stress responses. Int J Mol Sci, 2020, 21: 6707.

[15] 王庆国, 王莹莹, 李臻, 潘教文, 王一帆, 李颖秀, 刘炜. 水稻蛋白激酶基因启动子OsSRLp的分离及特性分析. 中国水稻科学, 2018, 32: 335341.
Wang Q G, Wang Y Y, Li Z, Pan J W, Wang Y F, Li Y X, Liu W. Isolation and characteristic analysis of protein kinase promoter OsSRLp from rice. Chin J Rice Sci, 2018, 32: 335341 (in Chinese with English abstract).

[16] 胡廷章, 罗凯, 甘丽萍, 石汝杰. 植物基因启动子的类型及其应用. 湖北农业科学, 2007, 46(1): 149151.

Hu T Z, Luo K, Gan L P, Shi R J. Classification and application of the plant gene promoters. Hubei Agric Sci, 2007, 46(1): 149151 (in Chinese with English abstract).

[17] 王一帆, 潘教文, 李臻, 王庆国, 李颖秀, 管延安, 刘炜. 谷子胁迫诱导型启动子SiRLK35P的分离及生物信息学分析. 山东农业科学, 2017, 49(7): 711.
Wang Y F, Pan J W, Li Z, Wang Q G, Li Y X, Guan Y A, Liu W. Isolation and bioinformatics analysis of stress induced promoter SiRLK35P from foxtail millet. Shandong Agric Sci, 2017, 49(7): 711 (in Chinese with English abstract).

[18] Qin L, Chen E Y, Li F F, Yu X, Liu Z Y, Yang Y B, Wang R F, Zhang H W, Wang H L, Liu B, et al. Genome-wide gene expression profiles analysis reveal novel insights into drought stress in foxtail millet (Setaria italica L.). Int J Mol Sci, 2020, 21: 8520.

[19] Zhao Z Y, Tang S, Zhang Y M, Yue J J, Xu J Q, Tang W Q, Sun Y X, Wang R J, Diao X M, Zhang B W. Evolutionary analysis and functional characterization of SiBRI1 as a Brassinosteroid receptor gene in foxtail millet. BMC Plant Biol, 2021, 21: 291.

[20] 王庆国, 李臻, 刘炜, 潘教文. 应用定量蛋白质组学对谷子干旱响应蛋白的研究. 山东农业科学, 2018, 50(4): 18.

Wang Q G, Li Z, Liu W, Pan J W. Studies on drought-responsive proteins of foxtail millet by applying quantitative proteomic. Shandong Agric Sci, 2018, 50(4): 18 (in Chinese with English abstract).

[21] Xie L N, Chen M, Min D H, Feng L, Xu Z S, Zhou Y B, Xu D B, Li L C, Ma Y Z, Zhang X H. The NAC-like transcription factor SiNAC110 in foxtail millet (Setaria italica L.) confers tolerance to drought and high salt stress through an ABA independent signaling pathway. J Integr Agric, 2017, 16: 559571.

[22] Brutnell T P, Wang L, Swartwood K, Goldschmidt A, Jackson D, Zhu X G, Kellogg E, Van Eck J. Setaria viridis: a model for C4 photosynthesis. Plant Cell, 2010, 22: 2537–2544.

[23] Pan J W, Li Z, Wang Q G, Garrell A K, Liu M, Guan Y N, Zhou W Q, Liu W. Comparative proteomic investigation of drought responses in foxtail millet. BMC Plant Biol, 2018, 18: 315.

[24] 孟凡花, 李臻, 王庆国, 刘炜. 谷子脂质转移蛋白基因SiLTP1的克隆及表达分析. 山东农业科学, 2021, 53(10): 17.

Meng F H, Li Z, Wang Q G, Liu W. Cloning and expression analysis of lipid transfer protein gene SiLTP1 of foxtail millet. Shandong Agric Sci, 2021, 53(10): 17 (in Chinese with English abstract).

[25] Ye R Q, Wang W, Iki T, Liu C, Wu Y, Ishikawa M, Zhou X P, Qi Y J. Cytoplasmic assembly and selective nuclear import of Arabidopsis Argonaute4/siRNA complexes. Mol Cell, 2012, 46: 859870.

[26] Bujnicki J M, Feder M, Radlinska M, Blumenthal R M. Structure prediction and phylogenetic analysis of a functionally diverse family of proteins homologous to the MT-A70 subunit of the human mRNA: m6A methyltransferase. J Mol Evol, 2002, 55: 431444.

[27] Luo Q, Mo J Z, Chen H, Hu Z T, Wang B H, Wu J B, Liang Z Y, Xie W H, Du K X, Peng M L, et al. Structural insights into molecular mechanism for N6-adenosine methylation by MT-A70 family methyltransferase METTL4. Nat Commun, 2022, 13: 5636.

[28] 房孝良, 刘炜, 安静, 王庆国. 水稻种胚特异性启动子OsESP1的克隆及其表达特性. 作物学报, 2011, 37: 19041909.

Fang X L, Liu W, An J, Wang Q G. Isolation and characterization of an embryo-specific promoter OsESP1 from rice. Acta Agron Sin, 2011, 37: 19041909 (in Chinese with English abstract).

[29] 杨春霞, 陈英, 黄敏仁, 李火根. 拟南芥逆境诱导型启动子rd29A的克隆及活性检测. 南京林业大学学报(自然科学版), 2008, 32(1): 610
Yang C X, Chen Y, Huang M R, Li H G. Cloning of stress-inducible promoter rd29A from Arabidopsis thaliana and its activity detection in transgenic tobacco. J Nanjing For Univ (Nat Sci Edn), 2008, 32(1): 610 (in Chinese with English abstract).

[30] 姜骁, 吴拥军, 杨亚, 赵杰宏. 烟草钾外流通道基因NTORK1的启动子克隆及激素诱导分析. 江苏农业学报, 2016, 32(2): 274277.

Jiang X, Wu Y J, Yang Y, Zhao J H. Cloning and phytohormone induction of the promotor of potassium outward channel gene NTORK1 from tobacco. Jiangsu J Agric Sci, 2016, 32(2): 274277 (in Chinese with English abstract).

[31] Bokar J A, Shambaugh M E, Polayes D, Matera A G, Rottman F M. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA, 1997, 3: 12331247.

[32] Scutenaire J, Deragon J M, Jean V, Benhamed M, Raynaud C, Favory J J, Merret R, Bousquet-Antonelli C. The YTH domain protein ECT2 is an m6A reader required for normal trichome branching in Arabidopsis. Plant Cell, 2018, 30: 9861005.

[33] Luo J H, Guo T, Wang M, Liu J H, Zheng L M, He Y. RNA m6A modification facilitates DNA methylation during maize kernel development. Plant Physiol, 2024, 194: 21652182.

[1] 王若楠, 张颖星, 于筱菡, 刘少雄, 王跃, 薛亚鹏, 辛旭霞, 张莉, 刘敏轩. 基于近红外快速检测技术的谷子淀粉多样性分析及模型构建[J]. 作物学报, 2025, 51(7): 1757-1768.
[2] 梁红凯, 赵苏蒙, 陆琼, 周鹏, 智慧, 刁现民, 贺强. 谷子微核心种质的构建[J]. 作物学报, 2025, 51(6): 1435-1444.
[3] 郭冰, 秦家范, 李娜, 宋梦瑶, 王黎明, 李君霞, 马小倩. 谷子SHMT基因家族全基因组鉴定与表达分析[J]. 作物学报, 2025, 51(3): 586-5897.
[4] 王媛, 许佳茵, 董二伟, 王劲松, 刘秋霞, 黄晓磊, 焦晓燕. 有机肥替代化肥氮对谷子氮素累积、产量及品质的影响[J]. 作物学报, 2025, 51(1): 149-160.
[5] 孟凡花, 刘敏, 沈傲, 刘炜. 脂质转移蛋白SiLTP1基因参与谷子耐盐响应初探[J]. 作物学报, 2025, 51(1): 58-67.
[6] 闫锋, 董扬, 李清泉, 赵富阳, 侯晓敏, 刘洋, 李青超, 赵蕾, 范国权, 刘凯. 谷子育成品种萌芽期耐冷性综合评价[J]. 作物学报, 2024, 50(9): 2207-2218.
[7] 秦娜, 叶珍言, 朱灿灿, 付森杰, 代书桃, 宋迎辉, 景雅, 王春义, 李君霞. 谷子籽粒类黄酮含量和粒色的QTL定位[J]. 作物学报, 2024, 50(7): 1719-1727.
[8] 李博洋, 叶茵, 楚睿雯, 井苗, 张岁岐, 严加坤. 施加生物炭对谷子干物质积累、转运、分配和土壤理化性质的影响[J]. 作物学报, 2024, 50(3): 695-708.
[9] 刁现民, 王立伟, 智慧, 张俊, 李顺国, 程汝宏. 谷子中矮秆资源创制、遗传解析和育种利用[J]. 作物学报, 2024, 50(2): 265-279.
[10] 阳世杰, 王华智, 潘怡敏, 黄蕊, 侯森, 秦慧彬, 穆志新, 王海岗. 山西谷子种质资源株高全基因组关联分析[J]. 作物学报, 2024, 50(12): 2984-2997.
[11] 薛亚鹏, 辛旭霞, 王若楠, 于筱菡, 刘少雄, 王瑞云, 刘敏轩. 国内外谷子资源农艺、品质性状差异分析以及遗传多样性研究[J]. 作物学报, 2024, 50(10): 2468-2482.
[12] 代书桃, 朱灿灿, 马小倩, 秦娜, 宋迎辉, 魏昕, 王春义, 李君霞. 谷子HAK/KUP/KT钾转运蛋白家族全基因组鉴定及其对低钾和高盐胁迫的响应[J]. 作物学报, 2023, 49(8): 2105-2121.
[13] 万夷曼, 肖圣慧, 白依超, 范佳音, 王琰, 吴长艾. 谷子毛状根诱导方法的建立与优化[J]. 作物学报, 2023, 49(7): 1758-1768.
[14] 刘佳, 邹晓悦, 马继芳, 王永芳, 董志平, 李志勇, 白辉. 谷子MAPK家族成员的鉴定及其对生物胁迫的响应分析[J]. 作物学报, 2023, 49(6): 1480-1495.
[15] 王蓉, 陈小红, 王倩, 刘少雄, 陆平, 刁现民, 刘敏轩, 王瑞云. 中国谷子名米品种遗传多样性与亲缘关系研究[J]. 作物学报, 2022, 48(8): 1914-1925.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .