作物学报 ›› 2025, Vol. 51 ›› Issue (11): 3096-3104.doi: 10.3724/SP.J.1006.2025.54028
张顺杰1,2,3,4(
), 吴维泰1, 冉禧玥1,2,3,4, 赵梓含1,2,3,4, 韩永辉1,2,3,4, 吴正丹1,5,*(
), 张凯1,*(
)
ZHANG Shun-Jie1,2,3,4(
), WU Wei-Tai1, RAN Xi-Yue1,2,3,4, ZHAO Zi-Han1,2,3,4, HAN Yong-Hui1,2,3,4, WU Zheng-Dan1,5,*(
), ZHANG Kai1,*(
)
摘要:
甘薯(Ipomoea batatas (L.) Lam.)块根中的β-淀粉酶可以分解淀粉产生糖组分, 影响甘薯的干率、甜度、口感, 进而影响其经济价值。鉴定甘薯中关键β-淀粉酶基因, 解析其功能, 可为甘薯品质和适口性改良奠定重要基础。本研究针对前期甘薯转录组数据筛选到的块根发育过程中差异表达的β-淀粉酶候选基因IbBAM48829, 通过RT-qPCR分析其在甘薯不同部位的表达模式; 构建pCAMBIA1300-IbBAM48829-GFP表达载体, 瞬时转化本氏烟草进行亚细胞定位分析; 采用Gateway技术构建pEarleyGate101-IbBAM48829超量表达载体, 通过蘸花法转入拟南芥野生型Col-0中进行异源表达和功能鉴定。结果表明, IbBAM48829在甘薯块根中的表达量较低, 而在叶柄和叶片中的表达量较高。亚细胞定位结果显示, IbBAM48829可能定位于细胞质和叶绿体中。异源表达IbBAM48829基因的拟南芥植株与野生型相比生长无明显差异, 转基因株系营养生长和开花表现正常。异源表达IbBAM48829基因的拟南芥叶片中的淀粉含量、可溶性糖含量和种子千粒重均显著提高, 但根尖淀粉含量无明显差别。推测IbBAM48829在叶片淀粉代谢过程发挥重要作用, 可能通过加速淀粉代谢产生促进气孔开放的渗透活性代谢物, 进而促进气孔开放, 提高光合产物的积累。
| [1] |
Lai Y C, Wang S Y, Gao H Y, Nguyen K M, Nguyen C H, Shih M C, Lin K H. Physicochemical properties of starches and expression and activity of starch biosynthesis-related genes in sweet potatoes. Food Chem, 2016, 199: 556-564.
doi: 10.1016/j.foodchem.2015.12.053 pmid: 26776008 |
| [2] | 杨世雄, 张玲, 张欢欢, 张雪梅, 李雪, 梁叶星, 高飞虎. 甘薯淀粉的食品应用研究进展. 贵州农业科学, 2022, 50(10): 114-119. |
| Yang S X, Zhang L, Zhang H H, Zhang X M, Li X, Liang Y X, Gao F H. Research progress on application of sweet potato starch in food. Guizhou Agric Sci, 2022, 50(10): 114-119 (in Chinese with English abstract). | |
| [3] |
王欣, 李强, 曹清河, 马代夫. 中国甘薯产业和种业发展现状与未来展望. 中国农业科学, 2021, 54: 483-492.
doi: 10.3864/j.issn.0578-1752.2021.03.003 |
|
Wang X, Li Q, Cao Q H, Ma D F. Current status and future prospective of sweetpotato production and seed industry in China. Sci Agric Sin, 2021, 54: 483-492 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.03.003 |
|
| [4] | David L C, Lee S K, Bruderer E, Abt M R, Fischer-Stettler M, Tschopp M A, Solhaug E M, Sanchez K, Zeeman S C. BETA-AMYLASE9 is a plastidial nonenzymatic regulator of leaf starch degradation. Plant Physiol, 2022, 188: 191-207. |
| [5] |
Zeeman S C, Kossmann J, Smith A M. Starch: its metabolism, evolution, and biotechnological modification in plants. Annu Rev Plant Biol, 2010, 61: 209-234.
doi: 10.1146/annurev-arplant-042809-112301 pmid: 20192737 |
| [6] |
Toda H, Nitta Y, Asanami S, Kim J P, Sakiyama F. Sweet potato β-amylase. Eur J Biochem, 1993, 216: 25-38.
pmid: 8103452 |
| [7] | Ziegler P. CerealBeta-amylases. J Cereal Sci, 1999, 29: 195-204. |
| [8] |
Weise S E, Kim K S, Stewart R P, Sharkey T D. Beta-Maltose is the metabolically active anomer of maltose during transitory starch degradation. Plant Physiol, 2005, 137: 756-761.
doi: 10.1104/pp.104.055996 pmid: 15665241 |
| [9] | Smith S M, Fulton D C, Chia T, Thorneycroft D, Chapple A, Dunstan H, Hylton C, Zeeman S C, Smith A M. Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptional and posttranscriptional regulation of starch metabolism in Arabidopsis leaves. Plant Physiol, 2004, 136: 2687-2699. |
| [10] | Monroe J D, Breault J S, Pope L E, Torres C E, Gebrejesus T B, Berndsen C E, Storm A R. Arabidopsis β-Amylase2 is a K+-requiring, catalytic tetramer with sigmoidal kinetics. Plant Physiol, 2017, 175: 1525-1535. |
| [11] | Fulton D C, Stettler M, Mettler T, Vaughan C K, Li J, Francisco P, Gil M, Reinhold H, Eicke S, Messerli G, et al. Beta-AMYLASE4, a noncatalytic protein required for starch breakdown, acts upstream of three active beta-amylases in Arabidopsis chloroplasts. Plant Cell, 2008, 20: 1040-1058. |
| [12] |
Lao N T, Schoneveld O, Mould R M, Hibberd J M, Gray J C, Kavanagh T A. An Arabidopsis gene encoding a chloroplast-targeted beta-amylase. Plant J, 1999, 20: 519-527.
pmid: 10652124 |
| [13] | Reinhold H, Soyk S, Simková K, Hostettler C, Marafino J, Mainiero S, Vaughan C K, Monroe J D, Zeeman S C. β-amylase- like proteins function as transcription factors in Arabidopsis, controlling shoot growth and development. Plant Cell, 2011, 23: 1391-1403. |
| [14] |
Sparla F, Costa A, Lo Schiavo F, Pupillo P, Trost P. Redox regulation of a novel plastid-targeted beta-amylase of Arabidopsis. Plant Physiol, 2006, 141: 840-850.
doi: 10.1104/pp.106.079186 pmid: 16698902 |
| [15] | Wang Y, Feng Y F, Yan M, Pu X Q, Lu D Y, Yuan H Z, Wu C Y. Transcriptome analyses reveal the mechanism of changes in the sugar constituents of jujube fruits under saline-alkali stress. Agronomy, 2023, 13: 2243. |
| [16] | Liang G P, Hou Y J, Wang H, Wang P, Mao J, Chen B H. VaBAM1 weakens cold tolerance by interacting with the negative regulator VaSR1 to suppress β-amylase expression. Int J Biol Macromol, 2023, 225: 1394-1404. |
| [17] |
杨泽峰, 徐暑晖, 王一凡, 张恩盈, 徐辰武. 禾本科植物β-淀粉酶基因家族分子进化及响应非生物胁迫的表达模式分析. 科技导报, 2014, 32(31): 29-36.
doi: 10.3981/j.issn.1000-7857.2014.31.002 |
|
Yang Z F, Xu S H, Wang Y F, Zhang E Y, Xu C W. Molecluar evolution and expression patterns under abiotic stresses of beta-amylase gene family in grasses. Sci Technol Rev, 2014, 32(31): 29-36 (in Chinese with English abstract).
doi: 10.3981/j.issn.1000-7857.2014.31.002 |
|
| [18] | Zhang Y, Zhu J, Khan M, Wang Y, Xiao W, Fang T, Qu J, Xiao P, Li C L, Liu J H. Transcription factors ABF4 and ABR1 synergistically regulate amylase-mediated starch catabolism in drought tolerance. Plant Physiol, 2023, 191: 591-609. |
| [19] | Yang Y L, Sun F L, Wang P L, Yusuyin M, Kuerban W, Lai C X, Li C P, Ma J, Xiao F. Genome-wide identification and preliminary functional analysis of BAM (β-amylase) gene family in upland cotton. Genes, 2023, 14: 2077. |
| [20] |
Nakamura K, Ohto M A, Yoshida N, Nakamura K. Sucrose-induced accumulation of beta-amylase occurs concomitant with the accumulation of starch and sporamin in leaf-petiole cuttings of sweet potato. Plant Physiol, 1991, 96: 902-909.
doi: 10.1104/pp.96.3.902 pmid: 16668273 |
| [21] | 陈显让, 李红兵, 康乐, 郭尚洙, 邓西平. 甘薯块根膨大后期β-淀粉酶和淀粉含量相关性分析. 食品工业科技, 2013, 34(19): 93-96. |
| Chen X R, Li H B, Kang L, Guo S Z, Deng X P. Analysis on relativity between the starch contents and β-amylase activities during storageroot development later stage of sweetpotato. Sci Technol Food Ind, 2013, 34(19): 93-96 (in Chinese with English abstract). | |
| [22] | 黄小芳, 毕楚韵, 黄伟群, 刘江洪, 胡韵卓, 黄碧芳, 林世强, 陈选阳. 甘薯β-淀粉酶家族基因的全基因组鉴定和表达分析. 华南农业大学学报, 2021, 42(5): 50-59. |
| Huang X F, Bi C Y, Huang W Q, Liu J H, Hu Y Z, Huang B F, Lin S Q, Chen X Y. Genome-wide identification and expression analysis of the β-amylase gene family in Ipomoea batatas. J South China Agric Univ, 2021, 42(5): 50-59 (in Chinese with English abstract). | |
| [23] |
Zhang K, Wu Z D, Tang D B, Lyu C W, Luo K, Zhao Y, Liu X, Huang Y X, Wang J C. Development and identification of SSR markers associated with starch properties and β-carotene content in the storage root of sweet potato (Ipomoea batatas L.). Front Plant Sci, 2016, 7: 223.
doi: 10.3389/fpls.2016.00223 pmid: 26973669 |
| [24] | Xiong Y F, Tian C X, Zhu J J, Zhang S J, Wang X, Chen W X, Han Y H, Du Y Z, Wu Z D, Zhang K. Dynamic changes of starch properties, sweetness, and β-amylases during the development of sweet potato storage roots. Food Biosci, 2024, 61: 104964. |
| [25] | 吴正丹. 甘薯块根淀粉性状关键调控基因及关联SSR标记鉴定. 西南大学博士学位论文, 重庆, 2021. |
| Wu Z D. Development and Identification of SSR Markers Associated with Starch Properties and Functional Identification of Key Candidate Genes Controlling Starch Properties in the Storage Root of Sweet Potato (Ipomoea batatas L.). PhD Dissertation of Southwest University, Chongqing, China, 2021 (in Chinese with English abstract). | |
| [26] | Park S C, Kim Y H, Ji C Y, Park S, Jeong J C, Lee H S, Kwak S S. Stable internal reference genes for the normalization of real-time PCR in different sweetpotato cultivars subjected to abiotic stress conditions. PLoS One, 2012, 7: e51502. |
| [27] |
冯倩倩, 王文娟, 李海东, 潘勋. 利用激光扫描共聚焦显微镜研究叶绿体自发荧光. 清华大学学报(自然科学版), 2017, 57: 651-654.
doi: 10.16511/j.cnki.qhdxxb.2017.26.034 |
| Feng Q Q, Wang W J, Li H D, Pan X. Autofluorescence of chloroplasts measured by a laser scanning confocal microscope. J Tsinghua Univ (Sci Technol), 2017, 57: 651-654 (in Chinese with English abstract). | |
| [28] |
Feldmann K A, Marks M D, Christianson M L, Quatrano R S. A dwarf mutant of Arabidopsis generated by T-DNA insertion mutagenesis. Science, 1989, 243: 1351-1354.
pmid: 17808268 |
| [29] | Kunz H H, Häusler R E, Fettke J, Herbst K, Niewiadomski P, Gierth M, Bell K, Steup M, Flügge U I, Schneider A. The role of plastidial glucose-6-phosphate/phosphate translocators in vegetative tissues of Arabidopsis thaliana mutants impaired in starch biosynthesis. Plant Biol, 2010, 12: 115-128. |
| [30] |
Zeeman S C, Smith S M, Smith A M. The diurnal metabolism of leaf starch. Biochem J, 2007, 401: 13-28.
doi: 10.1042/BJ20061393 pmid: 17150041 |
| [31] |
Outlaw W H, Manchester J. Guard cell starch concentration quantitatively related to stomatal aperture. Plant Physiol, 1979, 64: 79-82.
doi: 10.1104/pp.64.1.79 pmid: 16660919 |
| [32] | Francisco P, Li J, Smith S M. The gene encoding the catalytically inactive β-amylase BAM4 involved in starch breakdown in Arabidopsis leaves is expressed preferentially in vascular tissues in source and sink organs. J Plant Physiol, 2010, 167: 890-895. |
| [33] | Zhu H, Yang X, Wang X, Li Q Y, Guo J Y, Ma T, Zhao C M, Tang Y Y, Qiao L X, Wang J S, et al. The sweetpotato β-amylase gene IbBAM1.1 enhances drought and salt stress resistance by regulating ROS homeostasis and osmotic balance. Plant Physiol Biochem, 2021, 168: 167-176. |
| [34] |
Valerio C, Costa A, Marri L, Issakidis-Bourguet E, Pupillo P, Trost P, Sparla F. Thioredoxin-regulated beta-amylase (BAM1) triggers diurnal starch degradation in guard cells, and in mesophyll cells under osmotic stress. J Exp Bot, 2011, 62: 545-555.
doi: 10.1093/jxb/erq288 pmid: 20876336 |
| [35] |
Outlaw W H Jr, De Vlieghere-He X. Transpiration rate: an important factor controlling the sucrose content of the guard cell apoplast of broad bean. Plant Physiol, 2001, 126: 1716-1724.
pmid: 11500569 |
| [36] |
Lee M, Choi Y, Burla B, Kim Y Y, Jeon B, Maeshima M, Yoo J Y, Martinoia E, Lee Y. The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO2. Nat Cell Biol, 2008, 10: 1217-1223.
doi: 10.1038/ncb1782 pmid: 18776898 |
| [37] | 梁国平. β-淀粉酶调控糖代谢参与葡萄的抗寒机理研究. 甘肃农业大学博士学位论文, 甘肃兰州, 2022. |
| Liang G P. Study on the Mechanism of Cold Resistance via β-amylase Regulating Sugar Metabolism in Grapes. PhD Dissertation of Gansu Agricultural University, Lanzhou, Gansu, China, 2022 (in Chinese with English abstract). | |
| [38] | Flütsch S, Wang Y Z, Takemiya A, Vialet-Chabrand S R M, Klejchová M, Nigro A, Hills A, Lawson T, Blatt M R, Santelia D. Guard cell starch degradation yields glucose for rapid stomatal opening in Arabidopsis. Plant Cell, 2020, 32: 2325-2344. |
| [39] |
Drake P L, Froend R H, Franks P J. Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. J Exp Bot, 2013, 64: 495-505.
doi: 10.1093/jxb/ers347 pmid: 23264516 |
| [40] |
Talbott L D, Zeiger E. Central roles for potassium and sucrose in guard-cell osmoregulation. Plant Physiol, 1996, 111: 1051-1057.
pmid: 12226347 |
| [41] | Amodeo G, Talbott L D, Zeiger E. Use of potassium and sucrose by onion guard cells during a daily cycle of osmoregulation. Plant Cell Physiol, 1996, 37: 575-579. |
| [42] |
Horrer D, Flütsch S, Pazmino D, Matthews J S A, Thalmann M, Nigro A, Leonhardt N, Lawson T, Santelia D. Blue light induces a distinct starch degradation pathway in guard cells for stomatal opening. Curr Biol, 2016, 26: 362-370.
doi: 10.1016/j.cub.2015.12.036 pmid: 26774787 |
| [43] | Thalmann M, Pazmino D, Seung D, Horrer D, Nigro A, Meier T, Kölling K, Pfeifhofer H W, Zeeman S C, Santelia D. Regulation of leaf starch degradation by abscisic acid is important for osmotic stress tolerance in plants. Plant Cell, 2016, 28: 1860-1878. |
| [1] | 杨颖聪, 张俊豪, 唐一哲, 乔唱唱, 王鹏博, 黄明, 徐国伟, 王贺正. 秸秆还田和施磷量对旱地小麦籽粒淀粉及其合成相关酶活性的影响[J]. 作物学报, 2025, 51(9): 2467-2484. |
| [2] | 卓峰琦, 唐振三, 雷雨俊, 程李香, 赵甜甜, 吕汰, 杨晨, 张峰. 基于烹饪方式及回生温度筛选低升糖马铃薯品种(系)[J]. 作物学报, 2025, 51(9): 2538-2546. |
| [3] | 张海燕, 解备涛, 董顺旭, 张立明, 段文学. 滴灌条件下不同水溶肥种类和配比对鲜食甘薯产量和品质的影响[J]. 作物学报, 2025, 51(9): 2485-2500. |
| [4] | 马娟娥, 姚有华, 姚晓华, 吴昆仑, 崔永梅. 青稞HvERF039基因的克隆及功能研究[J]. 作物学报, 2025, 51(9): 2341-2357. |
| [5] | 万慧兰, 吴华英, 曾丹, 钱禛锋, 赵昌祖, 廖然超, 何丽莲, 李富生. 蔗茅耐寒相关基因EfWRKY51克隆分析及功能验证[J]. 作物学报, 2025, 51(8): 2048-2059. |
| [6] | 宋改利, 王璐倩, 屈柯飞, 唐建卫, 董纯豪, 黄振朴, 高艳, 牛吉山, 殷贵鸿, 李巧云. Bipolaris sorokiniana黑胚病对中筋小麦淀粉含量、粒度分布与糊化特性的影响[J]. 作物学报, 2025, 51(8): 2164-2175. |
| [7] | 王若楠, 张颖星, 于筱菡, 刘少雄, 王跃, 薛亚鹏, 辛旭霞, 张莉, 刘敏轩. 基于近红外快速检测技术的谷子淀粉多样性分析及模型构建[J]. 作物学报, 2025, 51(7): 1757-1768. |
| [8] | 尹雨萌, 王雁楠, 康志河, 乔守晨, 卞倩倩, 李亚蔚, 曹郭郑, 赵国瑞, 徐丹丹, 杨育峰. 甘薯谷胱甘肽S-转移酶基因IbGSTU7的克隆及功能分析[J]. 作物学报, 2025, 51(7): 1736-1746. |
| [9] | 吴美娟, 张寅辉, 李元昊, 刘海霞, 黄以琳, 李甜, 刘红霞, 张学勇, 郝晨阳, 郭杰, 侯健. 小麦蔗糖合酶基因TaSUS2调控籽粒淀粉合成及品质的功能研究[J]. 作物学报, 2025, 51(6): 1514-1525. |
| [10] | 肖正午, 张珂骞, 曹放波, 陈佳娜, 郑华斌, 王慰亲, 黄敏. 糙米粉蒸煮食味品质与糙米淀粉组分含量和糊化特性的关系[J]. 作物学报, 2025, 51(4): 1102-1109. |
| [11] | 朱建平, 李文奇, 许扬, 王芳权, 李霞, 蒋彦婕, 范方军, 陶亚军, 陈智慧, 吴莹莹, 杨杰. 水稻粉质胚乳突变体we2的表型分析与基因定位[J]. 作物学报, 2025, 51(4): 1110-1117. |
| [12] | 苏明, 吴佳瑞, 洪自强, 李翻过, 周甜, 吴宏亮, 康建宏. 西北半干旱区马铃薯块茎淀粉形成及产量对磷肥减量的响应[J]. 作物学报, 2025, 51(3): 713-727. |
| [13] | 阳新月, 肖人滈, 张林茜, 唐铭均, 孙光燕, 杜康, 吕长文, 唐道彬, 王季春. 不同生育期涝渍对甘薯抗逆生理特性及产量形成的影响[J]. 作物学报, 2025, 51(3): 744-754. |
| [14] | 霍如雪, 葛祥菡, 石嘉, 李雪蕊, 戴圣杰, 刘振宁, 李宗芸. 甘薯组氨酸激酶蛋白IbHK5响应干旱和盐胁迫的功能分析[J]. 作物学报, 2025, 51(3): 650-666. |
| [15] | 王语新, 陈天羽, 翟红, 张欢, 高少培, 何绍贞, 赵宁, 刘庆昌. 甘薯激酶基因IbHT1的克隆及抗旱性功能鉴定[J]. 作物学报, 2025, 51(2): 301-311. |
|
||