欢迎访问作物学报,今天是

作物学报

• •    

甘薯β淀粉酶基因IbBAM48829的功能解析

张顺杰1,2,3,4,吴维泰1,冉禧玥1,2,3,4,赵梓含1,2,3,4,韩永辉1,2,3,4,吴正丹1,5,*,张凯1,*   

  1. 1 西南大学农学与生物科技学院, 重庆400715; 2 薯类生物学与遗传育种重庆市重点实验室, 重庆400715; 3 南方山地农业教育部工程研究中心, 重庆400715; 4 重庆市作物种质北碚薯类资源库, 重庆400715; 5 广西大学农学院 / 植物科学国家级实验教学示范中心, 广西南宁530004
  • 收稿日期:2025-02-27 修回日期:2025-08-14 接受日期:2025-08-14 网络出版日期:2025-08-26
  • 基金资助:
    本研究由重庆市技术创新与应用发展专项重点项目(cstc2021jscx-gksbX0022), 广西自然科学基金项目(2023GXNSFBA026297), 重庆市作物种质北碚薯类资源库专项资金项目(ZWZZ2020005)和重庆市薯类产业技术体系创新团队专项资金项目资助。

Functional analysis of the sweetpotato β-Amylase IbBAM48829

ZHANG Shun-Jie1,2,3,4,WU Wei-Tai1,RAN Xi-Yue1,2,3,4,ZHAO Zi-Han1,2,3,4,HAN Yong-Hui1,2,3,4,WU Zheng-Dan1,5,*,ZHANG Kai1,*   

  1. 1 College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; 2 Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400715, China; 3 Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China; 4 Chongqing Beibei Germplasm Bank of Tuber and Root Crops, Chongqing 400715, China; 5 College of Agriculture, Guangxi University / National Demonstration Center for Experimental Plant Science Education, Nanning 530004, Guangxi, China

  • Received:2025-02-27 Revised:2025-08-14 Accepted:2025-08-14 Published online:2025-08-26
  • Supported by:
    This study was supported by the Technology Innovation and Application Development Key Project of Chongqing (cstc2021jscx-gksbX0022), the Guangxi Natural Science Foundation Project (2023GXNSFBA026297), the Special Fund for Chongqing Beibei Germplasm Bank of Tuber and Root Crops (ZWZZ2020005), and the Special Fund for the Innovation Team of Tuber and Root Crops Industry Technology System in Chongqing.

摘要:

甘薯(Ipomoea batatas (L.) Lam.)块根中的β-淀粉酶可以分解淀粉产生糖组分,影响甘薯的干率、甜度、口感,进而影响其经济价值。鉴定甘薯中关键β-淀粉酶基因,解析其功能,可为甘薯品质和适口性改良奠定重要基础。本研究针对前期甘薯转录组数据筛选到块根发育过程中差异表达的β-淀粉酶候选基因IbBAM48829,通过RT-qPCR分析其在甘薯不同部位的表达模式;构建pCAMBIA1300-IbBAM48829-GFP表达载体,瞬时转化本氏烟草进行亚细胞定位分析;采用Gateway技术构建pEarleyGate101-IbBAM48829超量表达载体,通过蘸花法转入拟南芥野生型Col-0中进行异源表达和功能鉴定。结果表明IbBAM48829在甘薯块根中表达量较低,而在叶柄和叶片中表达量较高。亚细胞定位结果显示,IbBAM48829可能定位于细胞质和叶绿体异源表达IbBAM48829基因的拟南芥植株与野生型相比生长无明显差异,转基因株系营养生长和开花表现正常。异源表达IbBAM48829基因的拟南芥叶片中的淀粉含量、可溶性糖含量和种子千粒重显著提高,但根尖淀粉含量无明显差别。推测IbBAM48829在叶片淀粉代谢过程发挥重要作用,可能通过加速淀粉代谢产生促进气孔开放的渗透活性代谢物,进而促进气孔开放,提高光合产物的积累。

关键词: 甘薯, β-淀粉酶, 淀粉, 异源表达, 功能分析

Abstract:

β-Amylase in the storage roots of sweetpotato (Ipomoea batatas (L.) Lam.) catalyzes the hydrolysis of starch into sugars, influencing dry matter content, sweetness, texture, and ultimately, commercial value. Identifying key β-amylase genes and elucidating their functions is essential for improving the quality and palatability of sweetpotato. In this study, we focused on the β-amylase candidate gene IbBAM48829, previously identified through transcriptome analysis based on its differential expression during storage root development. The expression pattern of IbBAM48829 across various sweetpotato tissues was analyzed by RT-qPCR. To investigate its subcellular localization, the pCAMBIA1300-IbBAM48829-GFP expression vector was constructed and transiently expressed in Nicotiana benthamiana leaves. In addition, the pEarleyGate101-IbBAM48829 overexpression vector was generated using Gateway cloning and introduced into Arabidopsis thaliana Col-0 plants via the floral dip method for heterologous expression and functional analysis. The results showed that IbBAM48829 was expressed at lower levels in storage roots but at higher levels in petioles and leaves. Subcellular localization analysis suggested that the IbBAM48829 protein may localize to both the cytoplasm and chloroplasts. Transgenic Arabidopsis lines overexpressing IbBAM48829 displayed no significant differences in growth or flowering phenotypes compared to wild-type plants. However, these lines exhibited significantly increased starch and soluble sugar contents in the leaves, along with a higher thousand-seed weight, while starch content in the root tips remained unchanged. These findings suggest that IbBAM48829 may play a critical role in leaf starch metabolism, potentially accelerating starch degradation and generating osmotically active metabolites that promote stomatal opening and enhance the accumulation of photosynthetic products.

Key words: sweetpotato, β-amylase, starch, heterologous expression, functional analysis

[1] Lai Y C, Wang S Y, Gao H Y, Nguyen K M, Nguyen C H, Shih M C, Lin K H. Physicochemical properties of starches and expression and activity of starch biosynthesis-related genes in sweet potatoes. Food Chem, 2016, 199: 556–564. 

[2] 杨世雄, 张玲, 张欢欢, 张雪梅, 李雪, 梁叶星, 高飞虎. 甘薯淀粉的食品应用研究进展. 贵州农业科学, 2022, 50(10): 114–119.
Yang S X, Zhang L, Zhang H H, Zhang X M, Li X, Liang Y X, Gao F H. Research progress on application of sweet potato starch in food. Guizhou Agric Sci, 2022, 50(10): 114–119 (in Chinese with English abstract).

[3] 王欣, 李强, 曹清河, 马代夫. 中国甘薯产业和种业发展现状与未来展望. 中国农业科学, 2021, 54: 483–492.
Wang X, Li Q, Cao Q H, Ma D F. Current status and future prospective of sweetpotato production and seed industry in China. Sci Agric Sin, 2021, 54: 483–492 (in Chinese with English abstract). 

[4] David L C, Lee S K, Bruderer E, Abt M R, Fischer-Stettler M, Tschopp M A, Solhaug E M, Sanchez K, Zeeman S C. BETA-AMYLASE9 is a plastidial nonenzymatic regulator of leaf starch degradation. Plant Physiol, 2022, 188: 191–207. 

[5] Zeeman S C, Kossmann J, Smith A M. Starch: its metabolism, evolution, and biotechnological modification in plants. Annu Rev Plant Biol, 2010, 61: 209–234. 

[6] Toda H, Nitta Y, Asanami S, Kim J P, Sakiyama F. Sweet potato β-amylase. Eur J Biochem, 1993, 216: 25–38. 

[7] Ziegler P. CerealBeta-amylases. J Cereal Sci, 1999, 29: 195–204. 

[8] Weise S E, Kim K S, Stewart R P, Sharkey T D. Beta-Maltose is the metabolically active anomer of maltose during transitory starch degradation. Plant Physiol, 2005, 137: 756–761. 

[9] Smith S M, Fulton D C, Chia T, Thorneycroft D, Chapple A, Dunstan H, Hylton C, Zeeman S C, Smith A M. Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptional and posttranscriptional regulation of starch metabolism in Arabidopsis leaves. Plant Physiol, 2004, 136: 2687–2699. 

[10] Monroe J D, Breault J S, Pope L E, Torres C E, Gebrejesus T B, Berndsen C E, Storm A R. Arabidopsis β-Amylase2 is a K+-requiring, catalytic tetramer with sigmoidal kinetics. Plant Physiol, 2017, 175: 1525–1535. 

[11] Fulton D C, Stettler M, Mettler T, Vaughan C K, Li J, Francisco P, Gil M, Reinhold H, Eicke S, Messerli G, et al. Beta-AMYLASE4, a noncatalytic protein required for starch breakdown, acts upstream of three active beta-amylases in Arabidopsis chloroplasts. Plant Cell, 2008, 20: 1040–1058. 

[12] Lao N T, Schoneveld O, Mould R M, Hibberd J M, Gray J C, Kavanagh T A. An Arabidopsis gene encoding a chloroplast-targeted beta-amylase. Plant J, 1999, 20: 519–527. 

[13] Reinhold H, Soyk S, Simková K, Hostettler C, Marafino J, Mainiero S, Vaughan C K, Monroe J D, Zeeman S C. β-amylase-like proteins function as transcription factors in Arabidopsis, controlling shoot growth and development. Plant Cell, 2011, 23: 1391–1403. 

[14] Sparla F, Costa A, Lo Schiavo F, Pupillo P, Trost P. Redox regulation of a novel plastid-targeted beta-amylase of Arabidopsis. Plant Physiol, 2006, 141: 840–850. 

[15] Wang Y, Feng Y F, Yan M, Pu X Q, Lu D Y, Yuan H Z, Wu C Y. Transcriptome analyses reveal the mechanism of changes in the sugar constituents of jujube fruits under saline–alkali stress. Agronomy, 2023, 13: 2243. 

[16] Liang G P, Hou Y J, Wang H, Wang P, Mao J, Chen B H. VaBAM1 weakens cold tolerance by interacting with the negative regulator VaSR1 to suppress β-amylase expression. Int J Biol Macromol, 2023, 225: 1394–1404.

[17] 杨泽峰, 徐暑晖, 王一凡, 张恩盈, 徐辰武. 禾本科植物β-淀粉酶基因家族分子进化及响应非生物胁迫的表达模式分析. 科技导报, 2014, 32(31): 29–36.
Yang Z F, Xu S H, Wang Y F, Zhang E Y, Xu C W. Molecluar evolution and expression patterns under abiotic stresses of beta-amylase gene family in grasses. Sci Technol Rev, 2014, 32(31): 29–36 (in Chinese with English abstract). 

[18] Zhang Y, Zhu J, Khan M, Wang Y, Xiao W, Fang T, Qu J, Xiao P, Li C L, Liu J H. Transcription factors ABF4 and ABR1 synergistically regulate amylase-mediated starch catabolism in drought tolerance. Plant Physiol, 2023, 191: 591–609. 

[19] Yang Y L, Sun F L, Wang P L, Yusuyin M, Kuerban W, Lai C X, Li C P, Ma J, Xiao F. Genome-wide identification and preliminary functional analysis of BAM (β-amylase) gene family in upland cotton. Genes, 2023, 14: 2077. 

[20] Nakamura K, Ohto M A, Yoshida N, Nakamura K. Sucrose-induced accumulation of beta-amylase occurs concomitant with the accumulation of starch and sporamin in leaf-petiole cuttings of sweet potato. Plant Physiol, 1991, 96: 902–909. 

[21] 陈显让, 李红兵, 康乐, 郭尚洙, 邓西平. 甘薯块根膨大后期β-淀粉酶和淀粉含量相关性分析. 食品工业科技, 2013, 34(19): 93–96.
Chen X R, Li H B, Kang L, Guo S Z, Deng X P. Analysis on relativity between the starch contents and β-amylase activities during storageroot development later stage of sweetpotato. Sci Technol Food Ind, 2013, 34(19): 93–96 (in Chinese with English abstract).

[22] 黄小芳, 毕楚韵, 黄伟群, 刘江洪, 胡韵卓, 黄碧芳, 林世强, 陈选阳. 甘薯β-淀粉酶家族基因的全基因组鉴定和表达分析. 华南农业大学学报, 2021, 42(5): 50–59.
Huang X F, Bi C Y, Huang W Q, Liu J H, Hu Y Z, Huang B F, Lin S Q, Chen X Y. Genome-wide identification and expression analysis of the β-amylase gene family in Ipomoea batatas. J South China Agric Univ, 2021, 42(5): 50–59 (in Chinese with English abstract). 

[23] Zhang K, Wu Z D, Tang D B, Lyu C W, Luo K, Zhao Y, Liu X, Huang Y X, Wang J C. Development and identification of SSR markers associated with starch properties and β-carotene content in the storage root of sweet potato (Ipomoea batatas L.). Front Plant Sci, 2016, 7: 223. 

[24] Xiong Y F, Tian C X, Zhu J J, Zhang S J, Wang X, Chen W X, Han Y H, Du Y Z, Wu Z D, Zhang K. Dynamic changes of starch properties, sweetness, and β-amylases during the development of sweet potato storage roots. Food Biosci, 2024, 61: 104964. 

[25] 吴正丹. 甘薯块根淀粉性状关键调控基因及关联SSR标记鉴定. 西南大学博士学位论文, 重庆, 2021.
Wu Z D. Development and Identification of SSR Markers Associated with Starch Properties and Functional Identification of Key Candidate Genes Controlling Starch Properties in the Storage Root of Sweet Potato (Ipomoea batatas L.). PhD Dissertation of Southwest University, Chongqing, China, 2021 (in Chinese with English abstract).

[26] Park S C, Kim Y H, Ji C Y, Park S, Jeong J C, Lee H S, Kwak S S. Stable internal reference genes for the normalization of real-time PCR in different sweetpotato cultivars subjected to abiotic stress conditions. PLoS One, 2012, 7: e51502. 

[27] 冯倩倩, 王文娟, 李海东, 潘勋. 利用激光扫描共聚焦显微镜研究叶绿体自发荧光. 清华大学学报(自然科学版), 2017, 57: 651–654.
Feng Q Q, Wang W J, Li H D, Pan X. Autofluorescence of chloroplasts measured by a laser scanning confocal microscope. J Tsinghua Univ (Sci Technol), 2017, 57: 651–654 (in Chinese with English abstract).

[28] Feldmann K A, Marks M D, Christianson M L, Quatrano R S. A dwarf mutant of Arabidopsis generated by T-DNA insertion mutagenesis. Science, 1989, 243: 1351–1354. 

[29] Kunz H H, Häusler R E, Fettke J, Herbst K, Niewiadomski P, Gierth M, Bell K, Steup M, Flügge U I, Schneider A. The role of plastidial glucose-6-phosphate/phosphate translocators in vegetative tissues of Arabidopsis thaliana mutants impaired in starch biosynthesis. Plant Biol, 2010, 12: 115–128.

[30] Zeeman S C, Smith S M, Smith A M. The diurnal metabolism of leaf starch. Biochem J, 2007, 401: 13–28.

[31] Outlaw W H, Manchester J. Guard cell starch concentration quantitatively related to stomatal aperture. Plant Physiol, 1979, 64: 79–82.

[32] Francisco P, Li J, Smith S M. The gene encoding the catalytically inactive β-amylase BAM4 involved in starch breakdown in Arabidopsis leaves is expressed preferentially in vascular tissues in source and sink organs. J Plant Physiol, 2010, 167: 890–895.

[33] Zhu H, Yang X, Wang X, Li Q Y, Guo J Y, Ma T, Zhao C M, Tang Y Y, Qiao L X, Wang J S, et al. The sweetpotato β-amylase gene IbBAM1.1 enhances drought and salt stress resistance by regulating ROS homeostasis and osmotic balance. Plant Physiol Biochem, 2021, 168: 167–176.

[34] Valerio C, Costa A, Marri L, Issakidis-Bourguet E, Pupillo P, Trost P, Sparla F. Thioredoxin-regulated beta-amylase (BAM1) triggers diurnal starch degradation in guard cells, and in mesophyll cells under osmotic stress. J Exp Bot, 2011, 62: 545–555.

[35] Outlaw W H Jr, De Vlieghere-He X. Transpiration rate. An important factor controlling the sucrose content of the guard cell apoplast of broad bean. Plant Physiol, 2001, 126: 1716–1724.

[36] Lee M, Choi Y, Burla B, Kim Y Y, Jeon B, Maeshima M, Yoo J Y, Martinoia E, Lee Y. The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO2. Nat Cell Biol, 2008, 10: 1217–1223.

[37] 梁国平. β-淀粉酶调控糖代谢参与葡萄的抗寒机理研究. 甘肃农业大学博士学位论文, 甘肃兰州, 2022.
Liang G P. Study on the Mechanism of Cold Resistance via β-amylase Regulating Sugar Metabolism in Grapes. PhD Dissertation of Gansu Agricultural University, Lanzhou, Gansu, China, 2022 (in Chinese with English abstract).

[38] Flütsch S, Wang Y Z, Takemiya A, Vialet-Chabrand S R M, Klejchová M, Nigro A, Hills A, Lawson T, Blatt M R, Santelia D. Guard cell starch degradation yields glucose for rapid stomatal opening in Arabidopsis. Plant Cell, 2020, 32: 2325–2344. 

[39] Drake P L, Froend R H, Franks P J. Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. J Exp Bot, 2013, 64: 495–505. 

[40] Talbott L D, Zeiger E. Central roles for potassium and sucrose in guard-cell osmoregulation. Plant Physiol, 1996, 111: 1051–1057. 

[41] Amodeo G, Talbott L D, Zeiger E. Use of potassium and sucrose by onion guard cells during a daily cycle of osmoregulation. Plant Cell Physiol, 1996, 37: 575–579. 

[42] Horrer D, Flütsch S, Pazmino D, Matthews J S A, Thalmann M, Nigro A, Leonhardt N, Lawson T, Santelia D. Blue light induces a distinct starch degradation pathway in guard cells for stomatal opening. Curr Biol, 2016, 26: 362–370.

[43] Thalmann M, Pazmino D, Seung D, Horrer D, Nigro A, Meier T, Kölling K, Pfeifhofer H W, Zeeman S C, Santelia D. Regulation of leaf starch degradation by abscisic acid is important for osmotic stress tolerance in plants. Plant Cell, 2016, 28: 1860–1878.

[1] 万慧兰, 吴华英, 曾丹, 钱禛锋, 赵昌祖, 廖然超, 何丽莲, 李富生. 蔗茅耐寒相关基因EfWRKY51克隆分析及功能验证[J]. 作物学报, 2025, 51(8): 2048-2059.
[2] 宋改利, 王璐倩, 屈柯飞, 唐建卫, 董纯豪, 黄振朴, 高艳, 牛吉山, 殷贵鸿, 李巧云. Bipolaris sorokiniana黑胚病对中筋小麦淀粉含量、粒度分布与糊化特性的影响[J]. 作物学报, 2025, 51(8): 2164-2175.
[3] 王若楠, 张颖星, 于筱菡, 刘少雄, 王跃, 薛亚鹏, 辛旭霞, 张莉, 刘敏轩. 基于近红外快速检测技术的谷子淀粉多样性分析及模型构建[J]. 作物学报, 2025, 51(7): 1757-1768.
[4] 尹雨萌, 王雁楠, 康志河, 乔守晨, 卞倩倩, 李亚蔚, 曹郭郑, 赵国瑞, 徐丹丹, 杨育峰. 甘薯谷胱甘肽S-转移酶基因IbGSTU7的克隆及功能分析[J]. 作物学报, 2025, 51(7): 1736-1746.
[5] 吴美娟, 张寅辉, 李元昊, 刘海霞, 黄以琳, 李甜, 刘红霞, 张学勇, 郝晨阳, 郭杰, 侯健. 小麦蔗糖合酶基因TaSUS2调控籽粒淀粉合成及品质的功能研究[J]. 作物学报, 2025, 51(6): 1514-1525.
[6] 朱建平, 李文奇, 许扬, 王芳权, 李霞, 蒋彦婕, 范方军, 陶亚军, 陈智慧, 吴莹莹, 杨杰. 水稻粉质胚乳突变体we2的表型分析与基因定位[J]. 作物学报, 2025, 51(4): 1110-1117.
[7] 肖正午, 张珂骞, 曹放波, 陈佳娜, 郑华斌, 王慰亲, 黄敏. 糙米粉蒸煮食味品质与糙米淀粉组分含量和糊化特性的关系[J]. 作物学报, 2025, 51(4): 1102-1109.
[8] 阳新月, 肖人滈, 张林茜, 唐铭均, 孙光燕, 杜康, 吕长文, 唐道彬, 王季春. 不同生育期涝渍对甘薯抗逆生理特性及产量形成的影响[J]. 作物学报, 2025, 51(3): 744-754.
[9] 苏明, 吴佳瑞, 洪自强, 李翻过, 周甜, 吴宏亮, 康建宏. 西北半干旱区马铃薯块茎淀粉形成及产量对磷肥减量的响应[J]. 作物学报, 2025, 51(3): 713-727.
[10] 霍如雪, 葛祥菡, 石嘉, 李雪蕊, 戴圣杰, 刘振宁, 李宗芸. 甘薯组氨酸激酶蛋白IbHK5响应干旱和盐胁迫的功能分析[J]. 作物学报, 2025, 51(3): 650-666.
[11] 闫秉春, 万雪, 钟敏, 刘宇奇, 赵艳泽, 姜红芳, 刘雅, 刘惠玲, 马沁春, 高继平, 张文忠. 氮素水平对北方优良食味粳米品质及精碾磨粉颗粒特性的影响[J]. 作物学报, 2025, 51(2): 503-515.
[12] 王语新, 陈天羽, 翟红, 张欢, 高少培, 何绍贞, 赵宁, 刘庆昌. 甘薯激酶基因IbHT1的克隆及抗旱性功能鉴定[J]. 作物学报, 2025, 51(2): 301-311.
[13] 辛雨宁, 任昊, 王洪章, 梁明磊, 于涛, 刘鹏. 喷施6-苄氨基腺嘌呤(6-BA)对授粉后高温胁迫下夏玉米籽粒灌浆及产量的影响[J]. 作物学报, 2025, 51(2): 418-431.
[14] 胡丽琴, 肖正午, 方升亮, 曹放波, 陈佳娜, 黄敏. 种植季节对高直链淀粉水稻品种淀粉消化特性的影响[J]. 作物学报, 2024, 50(9): 2347-2357.
[15] 李旭娟, 李纯佳, 田春艳, 孔春艳, 徐超华, 刘新龙. 甘蔗硝酸盐转运蛋白1/肽转运蛋白家族6.4基因(ScNPF6.4)克隆及其调控分蘖功能分析[J]. 作物学报, 2024, 50(8): 2131-2142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!