欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (12): 3144-3156.doi: 10.3724/SP.J.1006.2025.51056

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

西藏大麦SSIIa基因自然变异对淀粉组成及特性的影响

刘佳荟, 李雨龙1, 王雅茹1, 贺宏1,2, 张云书2, 吴郁1, 曾秀丽3, 刘廷辉4, 陈国跃1, 祁鹏飞1, 魏育明1, 江千涛1,*()   

  1. 1四川农业大学小麦研究所, 四川成都 611130
    2四川省阿坝州农业科学研究所, 四川马尔康 624000
    3西藏自治区农牧科学院, 西藏拉萨 850000
    4甘孜藏族自治州农业科学研究所, 四川康定 626000
  • 收稿日期:2025-06-09 接受日期:2025-09-10 出版日期:2025-12-12 网络出版日期:2025-09-26
  • 通讯作者: *江千涛, E-mail: qiantaojiang@sicau.edu.cn
  • 基金资助:
    本研究由四川省重点研发计划项目(2025YFHZ0113)

Effects of natural variation in the SSIIa gene on starch composition and properties in Tibetan barley

LIU Jia-Hui, LI Yu-Long1, WANG Ya-Ru1, HE Hong1,2, ZHANG Yun-Shu2, WU Yu1, ZENG Xiu-Li3, LIU Ting-Hui4, CHEN Guo-Yue1, QI Peng-Fei1, WEI Yu-Ming1, JIANG Qian-Tao1,*()   

  1. 1Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
    2Aba Prefecture Institute of Agricultural Sciences, Barkam 624000, Sichuan, China
    3Xizang Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, Xizang, China
    4Ganzi Tibetan Autonomous Prefecture Academy of Agricultural Sciences, Kangding 626000, Sichuan, China
  • Received:2025-06-09 Accepted:2025-09-10 Published:2025-12-12 Published online:2025-09-26
  • Contact: *E-mail: qiantaojiang@sicau.edu.cn
  • Supported by:
    Sichuan Science and Technology Program(2025YFHZ0113)

摘要: 大麦是世界第四大禾谷类作物和我国藏区农牧民的主要口粮, 其籽粒中淀粉含量高达50%~70%, 是决定产量与品质的核心组分。淀粉含量直接影响籽粒粒重, 而淀粉结构则决定其理化特性与水解性能, 最终影响大麦的加工品质与用途。可溶性淀粉合酶SSIIa是支链淀粉合成的关键酶, 其基因多态性对淀粉结构及功能具有重要调控作用。本研究以165份西藏大麦资源为材料, 通过分子标记鉴定、淀粉组分及理化特性分析, 系统解析了SSIIa基因自然变异对淀粉组成及特性的影响。结果表明, 西藏大麦SSIIa基因存在2种主要自然变异类型(命名为SSIIa1SSIIa2)。基于序列差异, 开发了特异性分子标记用于高效基因分型, 发现33 bp缺失是区分SSIIa1SSIIa2基因型的共同关键特征。淀粉特性分析显示, 相较于SSIIa1基因型, SSIIa2基因型材料的直链淀粉含量, B型淀粉粒的平均直径与体积占比, 以及糊化温度均显著升高。本研究揭示了西藏大麦SSIIa基因的自然变异规律及其对淀粉品质关键指标的影响, 为西藏大麦的品质定向改良与功能化利用提供了重要的分子靶点和理论基础。

关键词: 西藏大麦, SSIIa, 自然变异, 籽粒形态, 淀粉特性

Abstract:

Barley is the world’s fourth-largest cereal crop and serves as a staple food for farmers and herders in the Tibetan region of China. Starch, which accounts for 50%-70% of grain weight, is the primary component determining both yield and quality. While starch content directly influences grain weight, its structure dictates physicochemical properties and hydrolysis performance, ultimately affecting processing quality and end-use applications. Soluble starch synthase IIa (SSIIa) is a key enzyme involved in amylopectin biosynthesis, and natural polymorphisms in its gene play a significant regulatory role in starch structure and functionality. In this study, 165 Tibetan barley accessions were used to systematically investigate the effects of natural variation in the SSIIa gene on starch composition and properties through molecular marker identification and starch physicochemical analysis. Two major SSIIa gene variants (designated SSIIa1 and SSIIa2) were identified in Tibetan barley. Based on sequence differences, specific molecular markers were developed for efficient genotyping, revealing a characteristic 33 bp deletion that distinguishes the SSIIa2 genotype. Starch property analysis showed that, compared with SSIIa1, the SSIIa2 genotype was associated with significantly higher amylose content, a larger average diameter and greater volume proportion of type B starch granules, and a higher pasting temperature. These findings clarify the natural variation pattern of the SSIIa gene and its influence on key starch quality traits in Tibetan barley, providing valuable molecular targets and a theoretical basis for quality-oriented breeding and functional utilization of this important crop.

Key words: Tibetan barley, SSIIa, natural variation, grain morphology, starch properties

表1

SSIIa基因特异性PCR标记"

引物对
Primer pair
PCR扩增引物的正向与反向序列
Forward and reverse PCR primer sequences (5′-3′)
退火温度
Anneal temperature (℃)
扩增区域
Amplified region
P1
CCCGTCCTGAAACCCATGC
GGAGCTTCTTTGACAATCAGCGC
60
1791-3017
P2
CCATCAGTAACAAGGTGCCG
GAAGAACACTTTCATGTCTTGCAC
60
2862-3589
P3
GAATCATGGACTTGGCTAGAC
CAAGTTCAAGCAGCACTGG
60
4702-5883
P4
TGCCGAGTTACATGCTTTGGTC
ATCTGCAAGTGCGCAATGCG
60
11,159-12,272
P5
CCGACCAGCATAGTGGATGTCG
GGAGCTTCTTTGACAATCAGCGC
60
2813-3087

图1

大麦SSIIa自然变异体鉴定及基因序列分析 A: SDS-PAGE分离西藏大麦SGAPs。左侧标注蛋白分子量标准, 右侧标注蛋白质名称。M: 蛋白分子量标准; GP: 栽培品种Golden Promise。B: SSIIa基因多态性位点。绿色方框: 外显子; 黑色实线: 内含子; g: 基因组DNA序列变异位点; p: 蛋白质氨基酸替换位点; 红色框区域为SSIIa1和SSIIa2唯一共同差异位点。C: SSIIa基因型特异PCR标记筛选。图下方标注基因型名称, 右侧标记DNA片段大小。M: DNA分子量标准; GP: 栽培品种Golden Promise。"

附表1

165份西藏大麦SSIIa自然变异类型鉴定"

种质编号
Accession
类型
Type
标记验证
Marker validation
种质编号
Accession
类型
Type
标记验证
Marker validation
种质编号
Accession
类型
Type
标记验证
Marker validation
P542126048-5-1 SSIIa2 SSIIa2 P542129050-8-2 SSIIa2 SSIIa2 P542128041-4-3 SSIIa1 SSIIa1
P542126048-5-2 SSIIa1 SSIIa1 P542129050-8-3 SSIIa2 SSIIa2 P542128041-6-1 SSIIa1 SSIIa1
P542126048-3-3 SSIIa1 SSIIa1 P542129050-15-3 SSIIa2 SSIIa2 P542128041-6-3 SSIIa1 SSIIa1
P542126048-3-2 SSIIa1 SSIIa1 P542129050-16-1 SSIIa1 SSIIa1 P542128041-7-1 SSIIa1 SSIIa1
P542126048-3-1 SSIIa2 SSIIa2 P542129050-16-2 SSIIa1 SSIIa1 P542128041-7-2 SSIIa1 SSIIa1
P542126035-5-1 SSIIa2 SSIIa2 P542129050-16-3 SSIIa1 SSIIa1 P542128041-7-3 SSIIa1 SSIIa1
P542126035-5-2 SSIIa2 SSIIa2 P542129050-18-1
P542129050-7
P542129050-25
SSIIa1 SSIIa1 P542128041-8-1 SSIIa1 SSIIa1
P542126042-3-1 SSIIa1 SSIIa1 P542129050-18-2 SSIIa1 SSIIa1 P542128041-8-2 SSIIa1 SSIIa1
P542126042-3-2 SSIIa1 SSIIa1 P542129050-18-3 SSIIa1 SSIIa1 P542128041-8-3 SSIIa1 SSIIa1
P542126042-1 SSIIa1 SSIIa1 P542129050-21-1
P542129050-12
SSIIa2 SSIIa2 P542128041-10-1 SSIIa1 SSIIa1
P542126042-2 SSIIa1 SSIIa1 P542129050-21-2 SSIIa1 SSIIa1 P542128041-10-2 SSIIa1 SSIIa1
P542126042-3 SSIIa1 SSIIa1 P542129050-21-3 SSIIa1 SSIIa1 P542128041-11-1 SSIIa1 SSIIa1
P542126042-1-1 SSIIa1 SSIIa1 P542129050-26-1 SSIIa2 SSIIa2 P542128041-11-3 SSIIa1 SSIIa1
P542126042-1-2 SSIIa1 SSIIa1 P542129050-26-2 SSIIa2 SSIIa2 P542126019-1 SSIIa2 SSIIa2
P542126042-1-3 SSIIa1 SSIIa1 P542129050-26-3 SSIIa2 SSIIa2 P542126019-2 SSIIa2 SSIIa2
P542126042-4-1 SSIIa1 SSIIa1 P542129050-28-1 SSIIa2 SSIIa2 P542126019-3 SSIIa2 SSIIa2
P542126042-4-2 SSIIa1 SSIIa1 P542129050-28-2 SSIIa2 SSIIa2 P542126019-1-1 SSIIa2 SSIIa2
P542126042-4-3 SSIIa1 SSIIa1 P542129050-28-3 SSIIa2 SSIIa2 P542126019-1-2 SSIIa2 SSIIa2
P542126042-5-1 SSIIa1 SSIIa1 P542129050-31-1 SSIIa1 SSIIa1 P542126019-1-3 SSIIa2 SSIIa2
P542126045-5-1 SSIIa2 SSIIa2 P542129050-31-2 SSIIa1 SSIIa1 P542126019-2-1 SSIIa2 SSIIa2
P542126045-3 SSIIa2 SSIIa2 P542129050-31-3 SSIIa1 SSIIa1 P542126019-3-1 SSIIa2 SSIIa2
P542126045-2 SSIIa2 SSIIa2 P542129050-34-2 SSIIa1 SSIIa1 P542126019-3-2 SSIIa2 SSIIa2
P542126035-5-3 SSIIa2 SSIIa2 P542129050-34-3 SSIIa2 SSIIa2 P542126019-3-3 SSIIa2 SSIIa2
P542126048-1 SSIIa1 SSIIa1 P542129050-36-1 SSIIa1 SSIIa1 P542126019-4-1 SSIIa2 SSIIa2
P542126048-2 SSIIa2 SSIIa2 P542129050-36-2 SSIIa1 SSIIa1 P542126019-4-2 SSIIa2 SSIIa2
P542126048-3 SSIIa2 SSIIa2 P542129050-36-3 SSIIa2 SSIIa2 P542126030-1 SSIIa1 SSIIa1
P542126048-1-1 SSIIa2 SSIIa2 P542129050-41-1 SSIIa2 SSIIa2 P542126030-2 SSIIa1 SSIIa1
P542126048-1-2 SSIIa1 SSIIa1 P542129050-41-2 SSIIa2 SSIIa2 P542126030-3 SSIIa1 SSIIa1
P542129049-1 SSIIa1 SSIIa1 P542129050-41-3 SSIIa2 SSIIa2 P542126030-1-1 SSIIa1 SSIIa1
P542129049-3 SSIIa2 SSIIa2 P542129050-43-1 SSIIa2 SSIIa2 P542126030-1-2 SSIIa1 SSIIa1
P542129049-2-1 SSIIa2 SSIIa2 P542129050-43-2 SSIIa2 SSIIa2 P542126030-1-3 SSIIa1 SSIIa1
P542129049-2-2 SSIIa2 SSIIa2 P542129050-44-1 SSIIa1 SSIIa1 P542126030-2-1 SSIIa1 SSIIa1
P542129049-8-1 SSIIa2 SSIIa2 P542129050-44-2 SSIIa1 SSIIa1 P542126030-2-2 SSIIa1 SSIIa1
P542129049-8-2 SSIIa2 SSIIa2 P542129050-44-3 SSIIa1 SSIIa1 P542126030-2-3 SSIIa1 SSIIa1
P542129049-8-3 SSIIa2 SSIIa2 P542129050-45-1 SSIIa1 SSIIa1 P542126030-3-1 SSIIa1 SSIIa1
P542129050-1-1 SSIIa2 SSIIa2 P542129050-45-2 SSIIa1 SSIIa1 P542126030-3-3 SSIIa1 SSIIa1
P542129050-2-1 SSIIa2 SSIIa2 P542129050-45-3 SSIIa1 SSIIa2 P542126030-4-1 SSIIa1 SSIIa1
P542129050-3-1 SSIIa2 SSIIa2 P542129050-48-1-1 SSIIa1 SSIIa2 P542126030-4-2 SSIIa1 SSIIa1
P542129050-1-2 SSIIa2 SSIIa2 P542129050-48-1-2 SSIIa1 SSIIa1 P542126030-4-3 SSIIa1 SSIIa1
P542129050-2-2 SSIIa1 SSIIa1 P542129050-48-2 SSIIa1 SSIIa2 P542126030-5-1 SSIIa1 SSIIa1
P542129050-3-2 SSIIa1 SSIIa1 P542129050-48-3 SSIIa1 SSIIa1 P542126035-1 SSIIa1 SSIIa1
P542129050-4-2 SSIIa1 SSIIa1 P542129050-49-1 SSIIa2 SSIIa2 P542126035-2 SSIIa1 SSIIa1
P542129050-5-2 SSIIa1 SSIIa1 P542129050-49-2 SSIIa1 SSIIa1 P542126035-3 SSIIa1 SSIIa1
P542129050-6-2 SSIIa1 SSIIa1 P542129050-49-3 SSIIa1 SSIIa1 P542126035-1-1 SSIIa1 SSIIa1
P542129050-7-2 SSIIa1 SSIIa1 P542128041-1-1 SSIIa1 SSIIa1 P542126035-1-2 SSIIa1 SSIIa1
P542129050-9-2 SSIIa1 SSIIa1 P542128041-2-1 SSIIa1 SSIIa1 P542126035-1-3 SSIIa1 SSIIa1
P542129050-1-2-1 SSIIa1 SSIIa1 P542128041-3-1 SSIIa1 SSIIa1 P542126035-2-1 SSIIa1 SSIIa1
P542129050-1-2-2 SSIIa1 SSIIa1 P542128041-1-2 SSIIa1 SSIIa1 P542126035-2-2 SSIIa1 SSIIa1
P542129050-1-2-3 SSIIa1 SSIIa1 P542128041-2-2 SSIIa1 SSIIa1 P542126035-2-3 SSIIa1 SSIIa1
P542129050-2-1 SSIIa2 SSIIa2 P542128041-3-2 SSIIa1 SSIIa1 P542126035-3-1 SSIIa1 SSIIa1
P542129050-2-2 SSIIa2 SSIIa2 P542128041-1-1 SSIIa1 SSIIa1 P542126035-3-2 SSIIa1 SSIIa1
P542129050-2-3 SSIIa1 SSIIa1 P542128041-1-2 SSIIa1 SSIIa1 P542126035-3-3 SSIIa1 SSIIa1
P542129050-4-2 SSIIa2 SSIIa2 P542128041-1-3 SSIIa1 SSIIa1 P542126035-4-1 SSIIa1 SSIIa1
P542129050-4-3 SSIIa2 SSIIa2 P542128041-4-1 SSIIa1 SSIIa1 P542126035-4-2 SSIIa1 SSIIa1
P542129050-8-1 SSIIa2 SSIIa2 P542128041-4-2 SSIIa1 SSIIa1 P542126035-4-3 SSIIa1 SSIIa1
Golden Promise SSIIa1 SSIIa1

附表2

大麦扩增材料中SSIIa外显子核苷酸变异"

种质编号
Accession
位置Position (bp)
2830 2939-2971 5177 5197 5611 12,130
P542126042-4-1 T GCGCCGCCGTCGTCCGTTGTCCCGGCCAAGAAG T G G A
P542129050-48-3 T GCGCCGCCGTCGTCCGTTGTCCCGGCCAAGAAG G G G A
P542128041-1-1 G GCGCCGCCGTCGTCCGTTGTCCCGGCCAAGAAG T G G A
P542126048-3-2 T GCGCCGCCGTCGTCCGTTGTCCCGGCCAAGAAG T G G A
P542126030-1-2 G GCGCCGCCGTCGTCCGTTGTCCCGGCCAAGAAG T A G A
P542126019-3-1 T T G G G
P542129049-8-2 T T G G G
P542129050-3 T T G G G
P542126048-2 T T G G G
P542126048-3 T T G G G
Golden Promise T GCGCCGCCGTCGTCCGTTGTCCCGGCCAAGAAG G A A G

图2

SSIIa蛋白三级结构分析 A: SNPs导致的氨基酸替换位点局部放大图, 展示替换残基(球棍模型)及周围分子相互作用变化, p: 蛋白质氨基酸替换位点。B: SSIIa1 (绿色)与SSIIa2 (蓝色)蛋白结构预测对比。中心为有序结构域, 外围区域为固有无序区域(IDRs); 红色球棍表示多态性位点, 全局RMSD = 2.22 ?。"

表2

SSIIa自然变异体蛋白理化特征信息"

类型
Type
编码区长度
CDS length (bp)
分子量
Molecular weight (kD)
等电点
Isoelectric point
不稳定系数
Instability index
平均疏水性
Grand average of hydropathicity
SSIIa1 2778 100.20 9.13 49.93 -0.34
SSIIa2 2745 99.20 9.21 49.25 -0.35

附表3

20份材料信息"

类型
Type
样品编号
Sample number
种质编号
Accession
类型
Type
样品编号
Sample number
种质编号
Accession
SSIIa1 1-1 P542126042-5-1 SSIIa2 2-1 P542126019-1-3
1-2 P542126042-4-1 2-2 P542126019-3-1
1-3 P542126035-1 2-3 P542126019-3-2
1-4 P542129050-48-3 2-4 P542129049-8-2
1-5 P542129050-36-2 2-5 P542129050-28-3
1-6 P542128041-1-1 2-6 P542129050-3
1-7 P542128041-2 2-7 P542129050-21-1
1-8 P542126048-3-2 2-8 P542126048-2
1-9 P542126030-1-1 2-9 P542126048-3-1
1-10 P542126030-1-2 2-10 P542126048-3

图3

SSIIa1和SSIIa2型籽粒形态与粒重分析 A: 20份大麦材料的籽粒表型观察。标尺: 1 cm。B~E: 数量性状测定: 千粒重(B)、籽粒投影面积(C)、籽粒长度(D)、籽粒宽度(E)。不同小写字母表示基因型间差异显著(P < 0.05, ANOVA), 误差棒为标准差, 柱状图上的每个散点(黑点)代表一个独立的数据样本。"

表3

西藏大麦总淀粉含量差异比较"

类型
Type
材料数
No. of accession
极差
Range (%)
总淀粉含量
Total starch content (%)
SSIIa1 106 45.68-83.48 66.81±7.31
SSIIa2 59 37.09-82.40 64.07±8.56
合计Total 165 37.09-83.48 65.44±7.89

图4

总淀粉与直链淀粉含量分析 A: 直链淀粉含量。B: 总淀粉含量。不同小写字母表示基因型间差异显著(P < 0.05); *表示同一基因型内不同处理间差异显著(P < 0.05); ns表示无显著差异。误差棒为标准差。"

图5

SSIIa1和SSIIa2型淀粉颗粒扫描电镜图 A~E: SSIIa1型淀粉颗粒; F~J: SSIIa2型淀粉颗粒。从左至右总淀粉含量递增。成像条件: 加速电压1.00 kV, 标尺为10 μm。A: P542126042-4-1; B: P542129050-48-3; C: P542128041-1-1; D: P542126048-3-2; E: P542126030-1-2; F: P542126019-1-3; G: P542129019- 3-1; H: P542129050-3; I: P542126048-2; J: P542126048-3。"

图6

SSIIa1和SSIIa2型淀粉结构分析 A: SSIIa自然变异类型淀粉颗粒体积占比分布。B: A型淀粉颗粒体积占比。C: B型淀粉颗粒体积占比。D: B型淀粉颗粒直径大小。不同小写字母表示处理间差异显著(P < 0.05, ANOVA检验), 误差棒为标准差, 柱状图上的每个散点(黑点)代表一个独立的数据样本。"

表4

淀粉热力学特性分析"

类型
Type
大麦类型 Barley type 编号
Number
种质编号
Accession
∆H (J g-1) TO (℃) TP (℃) TC (℃)
SSIIa1 皮大麦
Hulled barley
1-1 P542126042-5-1 6.60±0.36 a 62.09±0.30 a 65.48±0.18 a 69.62±0.49 b
1-2 P542126042-4-1 3.83±0.37 cd 56.51±0.75 gh 61.63±0.54 f 65.96±0.79 fgh
1-3 P542126035-1 3.84±0.80 cd 56.57±0.26 g 63.13±0.25 cd 69.06±0.37 b
1-4 P542129050-48-3 3.45±0.22 def 57.27±0.33 f 61.53±0.35 f 66.10±0.05 fg
1-5 P542129050-36-2 1.90±0.11 j 55.59±0.02 i 59.26±0.32 k 63.92±0.32 k
1-6 P542128041-1-1 1.95±0.20 ij 56.70±0.26 g 60.35±0.14 i 64.67±0.46 j
1-7 P542128041-2 2.70±0.66 ghi 55.50±0.55 i 59.83±0.36 j 65.56±0.45 ghi
裸大麦
Naked barley
1-8 P542126048-3-2 5.68±0.16 b 56.00±0.07 hi 60.77±0.08 gh 69.68±0.56 b
1-9 P542126030-1-1 3.73±0.34 cd 56.42±0.13 gh 60.92±0.03 g 65.42±0.04 ghi
1-10 P542126030-1-2 4.37±0.59 c 54.96±0.12 j 59.26±0.06 k 63.92±0.17 k
3.80±0.23 cd 56.76±0.23 g 61.22±0.16 fg 66.39±0.23 ef
SSIIa2 皮大麦
Hulled barley
2-1 P542126019-1-3 2.95±0.90 efgh 58.52±0.46 bc 62.83±0.13 d 65.81±0.81 fghi
2-2 P542126019-3-1 1.98±0.01 ij 57.76±0.07 def 61.46±0.00 f 65.29±0.14 hij
2-3 P542126019-3-2 1.06±0.07 k 57.90±0.17 de 61.56±0.14 f 65.46±0.36 ghi
2-4 P542129049-8-2 2.39±0.64 hij 58.10±0.34 cd 62.80±0.10 d 67.60±0.20 d
2-5 P542129050-28-3 2.20±0.12 hij 57.57±0.13 def 62.26±0.36 e 66.34±0.16 ef
SSIIa2 皮大麦
Hulled barley
2-6 P542129050-3 2.76±0.05 fgh 58.92±0.03 b 63.36±0.08 c 68.44±0.13 c
2-7 P542129050-21-1 3.37±0.27 defg 58.88±0.54 b 64.35±0.13 b 71.51±0.05 a
裸大麦
Naked barley
2-8 P542126048-2 5.22±0.29 b 55.73±0.17 i 60.51±0.05 hi 65.64±0.12 ghi
2-9 P542126048-3-1 3.51±0.30 de 57.35±0.13 ef 61.68±0.17 f 66.83±0.08 e
2-10 P542126048-3 5.32±0.25 b 55.57±0.17 i 60.53±0.05 hi 65.20±0.13 ij
3.08±0.29 efgh 57.63±0.22 def 62.13±0.12 e 66.81±0.22 e
[1] Punia S. Barley starch: structure, properties and in vitro digestibility: a review. Int J Biol Macromol, 2020, 155: 868-875.
doi: S0141-8130(19)39129-9 pmid: 31786300
[2] 韦存虚, 张静, 钟方旭, 周卫东, 许如根, 马雷. 啤酒大麦与饲用大麦籽粒结构和淀粉粒的比较研究. 麦类作物学报, 2006, 26: 133-138.
Wei C X, Zhang J, Zhong F X, Zhou W D, Xu R G, Ma L. Comparative study on grain structure and starch granules between malting barley and feed barley. J Triticeae Crops, 2006, 26: 133-138 (in Chinese with English abstract).
[3] 赵神彳, 王辉, 康辉, 孔保华, 胡公社, 刘骞. 不同品种来源的大麦淀粉理化和功能特性的研究. 食品研究与开发, 2019, 40(20): 1-8.
Zhao S C, Wang H, Kang H, Kong B H, Hu G S, Liu Q. Physicochemical and functional properties of starches from diverse barley varieties. Food Res Dev, 2019, 40(20): 1-8 (in Chinese with English abstract).
[4] Ball S G, van de Wal M H B J, Visser R F G F. Progress in understanding the biosynthesis of amylose. Trends Plant Sci, 1998, 3: 462-467.
doi: 10.1016/S1360-1385(98)01342-9
[5] Jeon J S, Ryoo N, Hahn T R, Walia H, Nakamura Y. Starch biosynthesis in cereal endosperm. Plant Physiol Biochem, 2010, 48: 383-392.
doi: 10.1016/j.plaphy.2010.03.006
[6] 史盈盈, 谈宇婷, 张倩, 汤尚文, 李卫华, 豁银强. 小麦淀粉结构、特性及改性和应用研究进展. 食品科技, 2025, 50(1): 240-247.
Shi Y Y, Tan Y T, Zhang Q, Tang S W, Li W H, Huo Y Q. Research progress on structure, properties, modification and applications of wheat starch. Food Sci Technol, 2025, 50(1): 240-247 (in Chinese with English abstract).
[7] Ellis R P, Cochrane M P, Dale M F B, Duffus C M, Lynn A, Morrison I M, Prentice R D M, Swanston J S, Tiller S A. Starch production and industrial use. J Sci Food Agric, 1998, 77: 289-311.
doi: 10.1002/(ISSN)1097-0010
[8] Takeda Y, Takeda C, Mizukami H, Hanashiro I. Structures of large, medium and small starch granules of barley grain. Carbohydr Polym, 1999, 38: 109-114.
doi: 10.1016/S0144-8617(98)00105-2
[9] Crofts N, Nakamura Y, Fujita N. Critical and speculative review of the roles of multi-protein complexes in starch biosynthesis in cereals. Plant Sci, 2017, 262: 1-8.
doi: S0168-9452(16)30902-5 pmid: 28716405
[10] Liu F S, Romanova N, Lee E A, Ahmed R, Evans M, Gilbert E P, Morell M K, Emes M J, Tetlow I J. Glucan affinity of starch synthase IIa determines binding of starch synthase I and starch-branching enzyme IIb to starch granules. Biochem J, 2012, 448: 373-387.
doi: 10.1042/BJ20120573 pmid: 22963372
[11] Luo J X, Ahmed R, Kosar-Hashemi B, Larroque O, Butardo V M Jr, Tanner G J, Colgrave M L, Upadhyaya N M, Tetlow I J, Emes M J, et al. The different effects of starch synthase IIa mutations or variation on endosperm amylose content of barley, wheat and rice are determined by the distribution of starch synthase I and starch branching enzyme IIb between the starch granule and amyloplast stroma. Theor Appl Genet, 2015, 128: 1407-1419.
doi: 10.1007/s00122-015-2515-z pmid: 25893467
[12] Morell M K, Kosar-Hashemi B, Cmiel M, Samuel M S, Chandler P, Rahman S, Buleon A, Batey I L, Li Z Y. Barley sex 6 mutants lack starch synthase IIa activity and contain a starch with novel properties. Plant J, 2003, 34: 173-185.
doi: 10.1046/j.1365-313X.2003.01712.x
[13] Wang B, Liu J, Chen X L, Xu Q, Zhang Y Z, Dong H X, Tang H P, Peng-Fei Q I, Deng M, Jian M A. Barley SS2a single base mutation at the splicing site led to obvious change in starch. J Integr Agric, 2025, 24: 1359-1371.
doi: 10.1016/j.jia.2023.10.031
[14] Kharabian-Masouleh A, Waters D L E, Reinke R F, Ward R, Henry R J. SNP in starch biosynthesis genes associated with nutritional and functional properties of rice. Sci Rep, 2012, 2: 557.
doi: 10.1038/srep00557 pmid: 22870386
[15] Nakamura Y, Francisco P B Jr, Hosaka Y, Sato A, Sawada T, Kubo A, Fujita N. Essential amino acids of starch synthase IIa differentiate amylopectin structure and starch quality between japonica and indica rice varieties. Plant Mol Biol, 2005, 58: 213-227.
doi: 10.1007/s11103-005-6507-2
[16] Umemoto T, Aoki N. Single-nucleotide polymorphisms in rice starch synthase IIa that alter starch gelatinisation and starch association of the enzyme. Funct Plant Biol, 2005, 32: 763-768.
doi: 10.1071/FP04214 pmid: 32689173
[17] Pan Z F, Deng X Q, Li Q, Xie R, Zhai H S, Zeng X Q, Luobu Z X, Tashi N, Li Z Y. Effects of two starch synthase iia isoforms on grain components and other grain traits in barley. J Agric Food Chem, 2021, 69: 1206-1213.
doi: 10.1021/acs.jafc.0c05445
[18] Fu M Z, Zhang Y, Chen H J, Peng X W, Kan J Q. Effects of three hydrophilic colloids on gelatinization, retrogradation properties, microstructure of highland barley starch and the quality of highland barley noodles. Food Chem, 2025, 476: 143424.
[19] Wu Y Y, Liu Y N, Jia Y Q, Ren F Y, Zhou S M. Effect of different thermal treatments on starch digestion of Tsamba (highland barley products): insights from starch structural properties and enzyme activity. Food Chem, 2025, 473: 143054.
[20] 王志龙, 王志伟, 乔祥梅, 程耿, 程加省, 于亚雄. 密度和氮肥对青稞‘云大麦12号’品质的影响. 中国农学通报, 2023, 39(16): 1-6.
doi: 10.11924/j.issn.1000-6850.casb2022-0518
Wang Z L, Wang Z W, Qiao X M, Cheng G, Cheng J S, Yu Y X. Effects of planting density and nitrogen fertilizer on quality of hulless barley ‘Yun Damai 12’. Chin Agric Sci Bull, 2023, 39(16): 1-6 (in Chinese with English abstract).
[21] Yang C H Y, Gong L X, Zhang Y, Jane J L. Pysicochemical properties of Tibetan hull-less barley starch. Carbohydr Polym, 2016, 137: 525-531.
doi: 10.1016/j.carbpol.2015.10.061
[22] Yamamori M, Endo T R. Variation of starch granule proteins and chromosome mapping of their coding genes in common wheat. Theor Appl Genet, 1996, 93: 275-281.
doi: 10.1007/BF00225757 pmid: 24162229
[23] Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 1980, 8: 4321-4325.
doi: 10.1093/nar/8.19.4321 pmid: 7433111
[24] South J B, Morrison W R. Isolation and analysis of starch from single kernels of wheat and barley. J Cereal Sci, 1990, 12: 43-51.
doi: 10.1016/S0733-5210(09)80156-2
[25] Du J, Qi Y J, Liu S Y, Xu B. Potential relation between starch granule-associated proteins and retrogradation properties of buckwheat starch. Int J Biol Macromol, 2024, 265: 130686.
[26] Ma M T, Chen X J, Zhou R Z, Li H T, Sui Z Q, Corke H. Surface microstructure of rice starch is altered by removal of granule-associated proteins. Food Hydrocoll, 2021, 121: 107038.
[27] Xu Z K, Song L L, Ming S X, Zhang C C, Li Z J, Wu Y Y, Sui Z Q, Corke H. Removal of starch granule associated proteins affects annealing of normal and waxy maize starches. Food Hydrocoll, 2022, 131: 107695.
[28] Ferreon A C M, Ferreon J C, Wright P E, Deniz A A. Modulation of allostery by protein intrinsic disorder. Nature, 2013, 498: 390-394.
doi: 10.1038/nature12294
[29] Ji T, Ge P, Zhang S, Wan C J, Liu H L, Qu X Z, Zhu F, Gong Q G, Xu W Y, Wang C, et al. Remote on-off switching of protein activity by intrinsically disordered region. Nat Struct Mol Biol, Published online [2025-06-04], 2025, 32: 2088-2098.
doi: 10.1038/s41594-025-01585-7 pmid: 40467883
[30] Fan X Y, Zhu J, Dong W B, Sun Y D, Lv C, Guo B J, Xu R G. Comparative mapping and candidate gene analysis of SSIIa associated with grain amylopectin content in barley (Hordeum vulgare L.). Front Plant Sci, 2017, 8: 1531.
doi: 10.3389/fpls.2017.01531
[31] 宋巍伟, 霍冀川, 郭宝刚, 霍泳霖, 孙春芳. 不同直链含量高直链玉米淀粉糊化特性的研究. 玻璃, 2022, 49(6): 10-15.
Song W W, Huo J C, Guo B G, Huo Y L, Sun C F. Study on the gelatinization properties of corn starch with different amylose contents. Glass, 2022, 49(6): 10-15 (in Chinese with English abstract).
[1] 王梦宁, 谢可冉, 高逖, 王飞, 任孝俭, 熊栋梁, 黄见良, 彭少兵, 崔克辉. 水稻幼穗分化期至抽穗期高温对籽粒形态和充实的影响及其与粒重的关系[J]. 作物学报, 2025, 51(5): 1347-1362.
[2] 王媛, 王劲松, 董二伟, 刘秋霞, 武爱莲, 焦晓燕. 施氮量对高粱籽粒灌浆及淀粉累积的影响[J]. 作物学报, 2023, 49(7): 1968-1978.
[3] 姚姝, 张亚东, 刘燕清, 赵春芳, 周丽慧, 陈涛, 赵庆勇, 朱镇, Balakrishna Pillay, 王才林. 水稻Wxmp背景下SSIIaSSIIIa等位变异及其互作对蒸煮食味品质的影响[J]. 作物学报, 2020, 46(11): 1690-1702.
[4] 张卫星;朱德峰;徐一成;林贤青;张玉屏;陈惠哲;赵致;周平. 不同水分条件下水稻籽粒形态及其与粒重的关系[J]. 作物学报, 2008, 34(10): 1826-1835.
[5] 翟红梅;田纪春. 小麦Wx基因突变体的建立及其淀粉特性的研究[J]. 作物学报, 2007, 33(07): 1059-1066.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!