欢迎访问作物学报,今天是

作物学报 ›› 2007, Vol. 33 ›› Issue (05): 782-789.

• 研究论文 • 上一篇    下一篇

氮胁迫与非胁迫条件下玉米不同时期株高的动态QTL定位

刘宗华;汤继华*;王春丽;田国伟;卫晓轶;胡彦民;崔党群   

  1. 河南农业大学农学院,河南郑州450002
  • 收稿日期:2006-03-27 修回日期:1900-01-01 出版日期:2007-05-12 网络出版日期:2007-05-12
  • 通讯作者: 汤继华

QTL Analysis of Plant Height under N-Stress and N-Input at Different Stages in Maize

LIU Zong-Hua,TANG Ji-Hua*,WANG Chun-Li,TIAN Guo-Wei,WEI Xiao-Yi,HU Yan-Min,CUI Dang-Qun   

  1. Collage of Agronomy, Henan Agricultural University, Zhengzhou 450002, Henan, China
  • Received:2006-03-27 Revised:1900-01-01 Published:2007-05-12 Published online:2007-05-12
  • Contact: TANG Ji-Hua

摘要:

以玉米杂交种农大108的203个F2:3家系为材料,在施氮(N+)和不施氮(N-)2种条件下对拔节期到灌浆期的株高变化进行了动态QTL分析。结果表明,N胁迫条件对亲本许178影响较小,而对亲本黄C的影响较大,F2:3群体在不同时期的株高均值在2种施肥水平下没有显著差异,但变异范围存在一定的差异。利用包含199个SSR标记的遗传连锁图谱与复合区间作图法,在N-条件下,拔节期、小喇叭口期、大喇叭口期、灌浆期分别定位1、1、2和2个非条件QTL,可分别解释各时期株高表型变异的8.42%、13.86%、24.33%和22.66%;在N+条件下,相应时期分别定位1、1、2和4个非条件QTL,可分别解释各时期株高表型变异的8.10%、12.92%、21.30%和44.41%。在N-条件下,拔节期至喇叭口期、开花期至灌浆期分别定位了1和5个条件QTL,可分别解释该时期株高动态变异的9.14%和50.98%;在N+条件下,相应时期分别定位1和4个条件QTL,可分别解释该时期株高动态变异的13.33%和44.47%。这些非条件QTL和条件QTL多数表现以显性和部分显性为主。

关键词: 玉米, 氮素, 株高, 发育时期, QTL分析

Abstract:

Nitrogen is a large necessary element in maize development, and the nitrogen use efficiency is an important factor in deciding the cost of maize production, and also the plant height is served as an important index of the biomass. The purpose of this study was to locate the QTL for plant height in maize(Zea mays L.)in different developing stages under N-input (N+) and N-stress (N-) conditions. The unconditional and conditional QTLs for plant height were detected using F2:3 population derived from an elite maize cultivar Nongda 108 (Huang C × Xu 178). The results showed that N-stress had more influence to plant height in the parent Huang C than in Xu 178, and there was no significant difference in the average of plant height for the F2:3 families between the two nitrogen treatments, but the ranges of variation were different. The QTLs for plant height at different stages were detected with the composite interval mapping method and a molecular linkage map including 199 SSR markers. Under N- treatment, 1, 1, 2, and 2 QTLs were detected for plant height at elongation stage, small bell stage, large bell stage and grain filling stage, respectively. The total contribution of the detected QTLs could explain 8.42%, 13.86%, 24.33%, and 22.66% of phenotypic variation. Under N+ treatment, there were 1, 1, 2, and 4 QTLs for plant height in the four different stages above, accounting for 8.10%, 12.92%, 21.30%, and 44.41% of total phenotypic variation respectively. One and five QTLs for plant height were detected from elongation to bell stage and from large bell to grain filling stage under N- treatment, while 1, 4 QTLs were detected under N+ treatment, the total contributions of the detected QTLs were 9.14% and 50.98% as well as 13.33% and 44.47%, respectively. The inbred line Xu178 was less sensitive to low N stress than Huang C for plant height and was an inbred with high nitrogen use efficiency under low N condition. The 12 conditional and unconditional QTLs for plant height mainly located on chromosomes 1, 4, 5, and 9, four of them are different from those reported by predecessors in gene locations. About all of the conditional and unconditional QTLs detected appeared to be of dominant and partially dominant effects on plant height with explained the phenotype variation nearly ranging from 8% to 16%. Some QTLs such as qPH4b, qPH1c, and qPH7 only expressed in specific stages, that is the spatial temporal expression characteristics during the formation of plant height, which may be related with high N use efficiency.

Key words: Maize, Nitrogen, Plant height, Developing stage, QTL analysis

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[4] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[8] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[9] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[10] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[11] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[12] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[13] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[14] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[15] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!