欢迎访问作物学报,今天是

作物学报 ›› 2007, Vol. 33 ›› Issue (04): 612-619.

• 研究论文 • 上一篇    下一篇

作物高产群体LAI动态模拟模型的建立与检验

张宾1;赵明2,*;董志强2;李建国1;陈传永1;孙锐1   

  1. 1中国农业大学农学与生物技术学院,北京100094;2中国农业科学院作物科学研究所,北京100081
  • 收稿日期:2006-10-08 修回日期:1900-01-01 出版日期:2007-04-12 网络出版日期:2007-04-12
  • 通讯作者: 赵明

Establishment and Test of LAI Dynamic Simulation Model for High Yield Population

ZHANG Bin1,ZHAO Ming2*,DONG Zhi-Qiang2,LI Jian-Guo1,CHEN Chuan-Yong1,SUN Rui1   

  1. 1 College of Agronomy and Biotechnology, China Agricultural University, Beijing 100094, 2 Crop Science Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2006-10-08 Revised:1900-01-01 Published:2007-04-12 Published online:2007-04-12
  • Contact: ZHAO Ming

摘要:

针对目前已有群体叶面积指数(LAI)模拟模型形式多样、参数较多以及应用性不强等问题,对春玉米、水稻和冬小麦的LAI及出苗至成熟天数进行归一化处理,分别将最大LAI和出苗至成熟天数定为1,以相对LAI (0~1)和相对时间(0~1)为参数进行LAI动态模拟,筛选、建立了一个适用于这3种作物的相对化LAI动态模拟模型y= (a+bx) / (1+cx+dx2)。其中,春玉米y= (0.0134+0.3234x) / (1-2.774x+2.4178x2),r=0.9859**;水稻y= (0.0777+0.0205x) / (1-2.73744x+2.0484x2),r=0.9865**;冬小麦y= (0.0131+0.0035x) / (1-2.4515x+1.5273x2),r=0.9719**。利用该模型,自拔节期起就能够较准确地进行LAI的动态预测,其在春玉米、水稻和冬小麦上的准确度(以k表示)分别为1.050、1.0357和1.1168,精确度(以R2表示)分别为0.8728、0.9270和0.9254。3种作物整个生育期内模型的模拟值与测量值的精确度均在0.98以上,准确度达0.86以上,表明相对化LAI动态模型能够准确地反映作物群体动态变化。不仅可以计算出作物生育期间的平均LAI、总光合势,还能计算任一时刻的LAI以及任一时段的光合势。结合田间调查还可得到作物生长期间的平均净同化率和平均作物生长率等产量相关的重要生理参数。根据作物群体中各光合生理参数与产量的关系,提出了3种作物进一步增产的可能途径。

关键词: 高产, 作物, 相对叶面积指数, 模型

Abstract:

Leaf Area Index (LAI) simulation models is an indispensable tool for supporting crop scientific research, population and community growth analysis, and crop management. However, LAI is very difficult to be quantified properly, owing to ecological and varietal factors and temporal variability. Many methods have been developed to quantify LAI and yielded good results, but most of them have different formats with many parameters, which hamper their application. In this paper, an extensively suitable LAI simulation model, y= (a+bx) / (1+cx+dx2), was developed with normalized LAI and crop growth duration data. And by means of which, the specific normalized models y= (0.0134+0.3234x) / (1-2.774x+2.4178x2) for spring maize (r=0.9858**), y= (0.0777+0.0205x) / (1-2.7374x+2.0484x2) for rice (r=0.9865**), and y= (0.0131+0.0035x) / (1-2.4515x+1.5273x2) for winter wheat (r=0.9719**) were established. Compared with other LAI simulation models, normalized LAI dynamic model can not only generate reliable prediction for the evolution of LAI, but also estimate leaf area duration (LAD) and LAI in any period. Once the crop life span and a total leaf area of a crop population in any moment are acquired, the crop LAI and LAD can be estimated easily. From the time of jointing stage, the model could make a good pre-estimation of LAI dynamics with the accuracy of 1.050, 1.0357, and 1.1168 and the precision (R2) were 0.8728, 0.9270, and 0.9254 for spring maize, rice and winter wheat, respectively. Compared with the measured values, the simulated LAI had a linear coefficient (k) over 0.98, with R2 above 0.86. The results showed that normalized LAI dynamic model provided a better description for crop population dynamics. Combined with dry matter accumulation, the average LAI, NAR (net assimilation rate), and CGR (crop growth rate) can be calculated. By means of which, the relationships between the physiological parameters and crop yield were analyzed, and the possible ways for higher crop yield were put forward accordingly.

Key words: High yield, Crop, Normalized leaf area index, Simulation model

[1] 王靖天, 张亚雯, 杜应雯, 任文龙, 李宏福, 孙文献, 葛超, 章元明. 数量性状主基因+多基因混合遗传分析R软件包SEA v2.0[J]. 作物学报, 2022, 48(6): 1416-1424.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 严圣吉, 邓艾兴, 尚子吟, 唐志伟, 陈长青, 张俊, 张卫建. 我国作物生产碳排放特征及助力碳中和的减排固碳途径[J]. 作物学报, 2022, 48(4): 930-941.
[4] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[5] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[6] 蹇述莲, 李书鑫, 刘胜群, 李向楠. 覆盖作物及其作用的研究进展[J]. 作物学报, 2022, 48(1): 1-14.
[7] 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823.
[8] 张学林, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 周亚男, 郝晓峰, 杨青华. 丛枝菌根真菌对玉米籽粒产量和氮素吸收的影响[J]. 作物学报, 2021, 47(8): 1603-1615.
[9] 江建华, 张武汉, 党小景, 荣慧, 叶琴, 胡长敏, 张瑛, 何强, 王德正. 水稻核不育系柱头性状的主基因+多基因遗传分析[J]. 作物学报, 2021, 47(7): 1215-1227.
[10] 徐益, 张力岚, 祁建民, 张列梅, 张立武. 主要麻类作物基因组学与遗传改良: 现状与展望[J]. 作物学报, 2021, 47(6): 997-1019.
[11] 黄冰艳, 孙子淇, 刘华, 房元瑾, 石磊, 苗利娟, 张毛宁, 张忠信, 徐静, 张梦圆, 董文召, 张新友. 花生巢式群体的脂肪含量遗传分析[J]. 作物学报, 2021, 47(6): 1100-1108.
[12] 闫彩霞, 王娟, 赵小波, 宋秀霞, 姜常松, 孙全喜, 苑翠玲, 张浩, 单世华. 全生育期鉴定筛选耐盐碱花生品种[J]. 作物学报, 2021, 47(3): 556-565.
[13] 雷永, 王志慧, 淮东欣, 高华援, 晏立英, 李建国, 李威涛, 陈玉宁, 康彦平, 刘海龙, 王欣, 薛晓梦, 姜慧芳, 廖伯寿. 花生籽仁蔗糖含量近红外模型构建及在高糖品种培育中的应用[J]. 作物学报, 2021, 47(2): 332-341.
[14] 张久权, 闫慧峰, 褚继登, 李彩斌. 运用广义线性混合模型分析随机区组重复测量的试验资料[J]. 作物学报, 2021, 47(2): 294-304.
[15] 史梦霞, 张佳笑, 石晓宇, 褚庆全, 陈阜, 雷永登. 近20年河北省几种高耗水作物的水分利用效率分析[J]. 作物学报, 2021, 47(12): 2450-2458.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!