欢迎访问作物学报,今天是

作物学报 ›› 2007, Vol. 33 ›› Issue (03): 401-410.

• 研究论文 • 上一篇    下一篇

遥感信息应用于水分胁迫条件下的华北冬小麦生长模拟研究

张黎1;王石立1,*;何延波2;马玉平1;庄立伟2;侯英雨2   

  1. 1中国气象科学研究院,北京100081; 2国家气象中心,北京100081
  • 收稿日期:2006-04-17 修回日期:1900-01-01 出版日期:2007-03-12 网络出版日期:2007-03-12
  • 通讯作者: 王石立

Winter Wheat Growth Simulation under Water Stress by Remote Sensing in North China

ZHANG Li 1;WANG Shi-Li 1,*;HE Yan-Bo 2;MA Yu-Ping1;ZHUANG Li-Wei2;HOU Ying-Yu 2   

  1. 1 Chinese Academy of Meteorological Sciences, Beijing 100081;2 National Meteorological Centre, Beijing 100081, China
  • Received:2006-04-17 Revised:1900-01-01 Published:2007-03-12 Published online:2007-03-12
  • Contact: WANG Shi-Li

摘要:

由于初始土壤水分、灌溉量等变量的空间分布不易获得,区域尺度水分胁迫条件下作物生长模拟存在一定难度。本文在WOFOST模型本地化和区域化的基础上,采用调控型方法,重点探讨了利用MODIS数据反演的地表蒸散在大范围内估算土壤水分平衡过程中的参数或变量初始值,以实现水分胁迫条件下作物模型区域模拟的可行性。2002年模拟结果显示,引入遥感信息优化获得初始土壤有效含水量、返青期生物量及抽穗期灌溉量后,土壤水分的模拟效果得到改善;32个农业气象试验站点模拟产量的相对均方根误差(RRMSE)由0.63降至0.20;华北冬小麦模拟产量的空间分布与实际产量分布更加接近,产量低估的情况得到较好改善;河北、河南、山东3省平均产量的模拟误差分别为-4.9%、4.3%和8.6%。初步结果表明,结合卫星遥感信息通过优化方法在大范围内估算作物模型的相关参变量,以实现水分胁迫条件下作物模型的区域应用是行之有效的。

关键词: 作物生长模拟模型, 遥感信息, 华北冬小麦, 水分胁迫

Abstract:

Accurate crop growth monitoring and yield forecasting are significant to food security and sustainable development of agriculture. However, Regional crop growth simulation under water stress faces the difficulties in determining the spatial distribution of some model parameters and initial conditions, such as initial available soil water and irrigation. It appears to be a big potential in this field to couple remote sensing data with crop model. In this paper, we proposed a way of combining evapotranspiration derived from satellite remote sensing data with crop grow simulation model (WOFOST) under water stress. Some modifications of WOFOST model were performed with field experimental data to make it applicable in North China Plain. The combination method was first applied to simulate the growth, development and yield formation processes for winter wheat at two sites, Tai’an and Zhengzhou, during the growing season from 2001 to 2002. According to the results of sensitivity analysis, the initial available soil water was chosen to be recalibrated by observed evapotranspiration derived from MODIS data based on SEBS model (Surface Energy Balance System). Also the biomass at reviving and irrigation at heading stage were selected to re-estimated by observed SAVI and evapotranspiration, considering over-winter process and the importance of irrigation on winter wheat yield formation in North China. The difference between observed and simulated evapotranspiration/SAVI was minimized by re-initializing/re-parameterizing three chosen initial conditions/parameters with an optimization program (FSEOPT). The estimated values of initial available soil water and irrigation showed good agreement with observations at the two sites. And the relative errors of simulated dry matter weight of gross above-ground and storage organ were reduced also. On the basis of the regionalization of weather data, model parameters, and initial conditions, we used this method to estimate winter wheat yields in North China during the growing season from 2001 to 2002 at the scale of 0.25 degrees, especially for Henan, Hebei, and Shandong provinces. It was showed that both soil water estimates and final winter wheat production estimates were consistent with ground measurements since the initial available soil water, biomass at reviving and irrigation at heading stage were recalibrated by remote sensing data. The relative root mean square error (RRMSE) decreased from 0.63 to 0.20 for the yield from 32 experimental sites, which distribute uniformly in North China Plain. Also the aggregated yields for three provinces were improved, with relative errors -4.9%, 4.5%, and 8.6%, respectively. These results illustrated that the evapotranspiration derived from MODIS data could be used to improve the winter wheat yield estimate under water stress on a regional scale. Further study should focus on better understanding of processes, error accumulation, and improvement on validation of both evaportranspiration derived from MODIS data and simulated yields for winter wheat.

Key words: Crop growth simulation model, Remote sensing data, Winter wheat in North China: Water stress

[1] DO Thanh-Trung,李健,张风娟,杨丽涛,李杨瑞,邢永秀. 甘蔗与抗旱性相关差异蛋白质组分析[J]. 作物学报, 2017, 43(09): 1337-1346.
[2] 叶德练,齐瑞娟,管大海,李建民,张明才,李召虎. 免耕冬小麦田土壤微生物特征和土壤酶活性对水分调控的响应[J]. 作物学报, 2015, 41(08): 1212-1219.
[3] 李长宁,谢金兰,王维赞,梁强,李毅杰,董文斌,刘晓燕,杨丽涛,李杨瑞. 水分胁迫下甘蔗差异表达基因筛选及激素相关基因分析[J]. 作物学报, 2015, 41(07): 1127-1135.
[4] 金秀锋,王宪国,任万杰,张晓科,谢惠民,范锋贵. 一个水分胁迫应答蛋白与小麦抗旱性的关系及其基因的定位[J]. 作物学报, 2014, 40(02): 198-204.
[5] 王卫锋,杨晓青,张岁岐,山仑. 剪根与水分胁迫对小麦单根和细胞导水率及TaPIP基因表达的影响[J]. 作物学报, 2013, 39(08): 1462-1468.
[6] 张智猛,戴良香,宋文武,丁红,慈敦伟,康涛,宁堂原,万书波. 干旱处理迫对花生品种叶片保护酶活性和渗透物质含量的影响[J]. 作物学报, 2013, 39(01): 133-141.
[7] 冯晓敏,张永清. 水分胁迫对糜子植株苗期生长和光合特性的影响[J]. 作物学报, 2012, 38(08): 1513-1521.
[8] 张智猛, 戴良香, 丁红, 陈殿绪, 杨伟强, 宋文武, 万书波. 中国北方主栽花生品种抗旱性鉴定与评价[J]. 作物学报, 2012, 38(03): 495-504.
[9] 郭彦军, 倪郁, 郭芸江, 韩龙, 唐华, 玉永雄. 水热胁迫对紫花苜蓿叶表皮蜡质组分及生理指标的影响[J]. 作物学报, 2011, 37(05): 911-917.
[10] 孙园园, 孙永健, 王明田, 李旭毅, 郭翔, 胡蓉, 马均. 种子引发对水分胁迫下水稻发芽及幼苗生理性状的影响[J]. 作物学报, 2010, 36(11): 1931-1940.
[11] 吴妍,张岁岐,刘小芳,山仑. 水分胁迫及复水条件下外源Ca2+对玉米幼苗根系水力导度及生长的影响[J]. 作物学报, 2010, 36(06): 1044-1049.
[12] 刘小芳,张岁岐,杨晓青,山仑. 玉米根系吸水细胞水平的杂种优势[J]. 作物学报, 2009, 35(8): 1546-1551.
[13] 张丛志,张佳宝,赵炳梓,张辉,黄平,李晓鹏,朱强根. 玉米水分利用效率、碳稳定同位素判别值和叶面积之间的关系[J]. 作物学报, 2009, 35(6): 1115-1121.
[14] 胡梦芸;李辉;张颖君;刘茜. 水分胁迫下葡萄糖对小麦幼苗光合作用和相关生理特性的影响[J]. 作物学报, 2009, 35(4): 724-732.
[15] 李永春;孟凡荣;王潇;陈雷;任江萍;牛洪斌;李磊;尹钧. 水分胁迫条件下“洛旱2号”小麦根系的基因表达谱[J]. 作物学报, 2008, 34(12): 2126-2133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!