欢迎访问作物学报,今天是

作物学报 ›› 2006, Vol. 32 ›› Issue (12): 1823-1830.

• 研究论文 • 上一篇    下一篇

大豆脂肪及脂肪酸组分含量的QTL定位

郑永战1,2;盖钧镒1,*;卢为国2;李卫东2;周瑞宝3;田少君3   

  1. 1南京农业大学大豆研究所/国家大豆改良中心/作物遗传与种质创新国家重点实验室, 江苏南京210095; 2河南省农科院棉花油料作物研究所 河南郑州450002; 3河南工业大学大豆精深加工研究所, 河南郑州450052
  • 收稿日期:2006-03-17 修回日期:1900-01-01 出版日期:2006-12-12 网络出版日期:2006-12-12
  • 通讯作者: 盖钧镒

QTL Mapping for Fat and Fatty Acid Composition Contents in Soybean

ZHENG Yong-Zhan12,GAI Jun-Yi1*,LU Wei-Guo12,LI Wei-Dong2,ZHOU Rui-Bao3,TIAN Shao-Jun3   

  1. 1 Soybean Research Institute of Nanjing Agricultural University/ National Center for Soybean Improvement/ National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing 210095, Jiangsu; 2Institute of Cotton and Oil Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002; 3 Soybean Processing Research Institute, Henan University of Technology, Zhengzhou 450052, Henan, China
  • Received:2006-03-17 Revised:1900-01-01 Published:2006-12-12 Published online:2006-12-12
  • Contact: GAI Jun-Yi

摘要:

脂肪及脂肪酸组分的改良是大豆油脂品质育种的主要方面。本研究旨在构建遗传图谱,定位大豆脂肪及脂肪酸组分的QTL,为大豆油脂品质育种提供参考。以Essex×ZDD2315的114个BC1F1单株为作图群体,构建了250个SSR标记和1个形态标记,具有25个连锁群的遗传图谱,覆盖大豆基因组2 963.5 cM,平均每个连锁群上10.0个标记,标记平均间距11.8 cM。用BC1F3家系3个重复的表型平均值代表相对应的BC1F1单株表型值,采用Win QTL Cartographer 2.5复合区间作图法(CIM)检测到18个控制脂肪及脂肪酸组分含量的QTL,位于9个不同的连锁群上,表型贡献率为9.6%~34.5%;多区间作图法(MIM)检测到与CIM区间相同的7个QTL(fat-1, pal-1, st-1, ole-1, lin-1, lin-4lio-2),区间相近的2个QTL(ole-4lin-5),位于6个不同的连锁群上,表型贡献率为8.2%~39.3%。CIM法检测到的其他9个QTL有待进一步验证。大豆脂肪及脂肪酸组分含量的主效QTL数量不多,效应大的不多,可能还受许多未能检测出来的微效基因控制,育种中既要注意主效QTL的利用,又要考虑微效多基因的积聚。

关键词: 大豆, 脂肪, 脂肪酸组分, QTL定位

Abstract:

Genetic improvement of fat and fatty acid composition content of soybean seed is interesting to both farmers and processors. The objective of the present study was to aim at constructing a genetic linkage map and mapping QTLs conferring fat and fatty acid composition contents in soybean. The mapping population with 114 BC1F1 plants of the soybean backcross (Essex×ZDD2315)×ZDD2315 was established and tested for their genetic variation, and then used to construct a genetic linkage map by using MAPMAKER 3.0. The genetic linkage map contained 250 SSR markers and one morphological marker, spanning 25 linkage groups (LG) at a total distance of 2 963.5 cM. Each LG contained 2 to 20 markers, with average distance being about 11.8 cM. The methods of composite interval mapping (CIM) and multiple interval mapping (MIM) of Win QTL Cartographer Version 2.5 were used for QTL mapping. With CIM, 18 QTLs conferring the contents of fat and fatty acid composition in soybean seed were mapped on nine LGs, i.e. B2, C1, D1b-1, D2, E, H-1, I, L and N-1, explaining 8.2%–39.3% of the total phenotypic variation, while with MIM nine QTLs were detected on six LGs, i.e. B2, C1, D1b-1, D2, H-1 and N-1, explaining 9.6%–34.5% of the total phenotypic variation. Of which seven QTLs, i.e. fat-1, pal-1, st-1, ole-1, lin-1, lin-4 and lio-2, were located on the same regions as that under CIM, while the other two, i.e. ole-4 and lin-5, were close to those under CIM. The other nine QTLs detected with CIM, but not common with MIM, need to be further verified. The number of major QTLs with large effect conferring the contents of fat and fatty acids appeared not as many as expected, while the minor QTLs with small effect accounted for a certain amount of the variation. Therefore, both major and minor QTLs should be considered in the improvement of fat quantity and quality in soybean seeds.

Key words: Soybean, Fat, Fatty acid composition, QTL mapping

中图分类号: 

  • S565
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[14] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[15] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!