欢迎访问作物学报,今天是

作物学报 ›› 2006, Vol. 32 ›› Issue (07): 1018-1023.

• 研究论文 • 上一篇    下一篇

应用混合线性模型(AD)分析热带温带玉米群体间的遗传关系

梁文科1,2;张世煌4;戚廷香2;庹洪章3;邱法展1;刘永忠1;郑用琏1;徐尚忠1,*   

  1. 1华中农业大学作物遗传改良国家重点实验室,湖北武汉430070;2中国农业科学院棉花研究所,河南安阳455112;3湖北省十堰市农业科学院,湖北十堰442000;4中国农业科学院作物科学研究所,北京100081
  • 收稿日期:2005-03-15 修回日期:1900-01-01 出版日期:2006-07-12 网络出版日期:2006-07-12
  • 通讯作者: 徐尚忠

Assessment of Genetic Relationship among Tropical and Temperate Maize Populations by Mixed (AD) Model

LIANG Wen-Ke1 2,ZHANG Shi-Huang4,QI Ting-Xiang2,TUO Hong-Zhang3,QIU Fa-Zhan1,LIU Yong-Zhong1,ZHENG Yong-Lian1, XU Shang-Zhong1 *   

  1. 1 National Key Laboratory of Crop Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei,; 2 Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang 455112, Henan; 3 Shiyan City Academy of Agricultural Science, Shiyan 442000, Hubei; 4 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2005-03-15 Revised:1900-01-01 Published:2006-07-12 Published online:2006-07-12
  • Contact: XU Shang-Zhong

摘要:

按Griffing双列杂交方法Ⅳ,对9个热带和温带玉米群体进行组配,获得36个杂交组合。2002年和2003年,采用混合线性(AD)模型和最小范数二阶无偏估算法(1)法(minimum norm quadratic unbiased estimation, MINQUE),分别在河南安阳和湖北十堰进行田间鉴定,对产量和产量构成因素的遗传方差分量、杂交组合的基因型值进行了分析。结果显示,产量和产量构成因素的遗传方差分量及其与环境的互作效应大多达到极显著水平,但各项遗传方差分量对总表型变异的贡献有差异。对小区产量而言,各效应的贡献是显性>显性与环境互作>加性与环境互作>加性;而加性方差分量对总表型变异的贡献为穗行数>穗粒数>百粒重>小区产量。对这36个组合的群体平均优势和群体超亲优势进行了估计,并在此基础上引入群体间遗传差异的度量参数ω/(2μ),ω/(2μ) = 群体平均优势-群体超亲优势。对9个群体的比较表明,遗传差异与杂种优势之间不存在线性关系,亲本的遗传差异过大和过小都不利于产生强优势组合,具有中等遗传差异的亲本群体表现出了强的杂种优势。如组合3´6 (BSSS C9´Stay Green C4)、2´3 (BS16´BSSS C9)和1´3 (Suwan1´BSSS C9)都具有中等的遗传差别,有较好的杂种优势表现;BSSS C9与Stay Green C4和Suwan1、BS16和Suwan1在温带育种中值得关注,有可能形成新的杂种优势模式。

关键词: 玉米, 混合线性(AD)模型, 群体平均优势, 群体超亲优势, 亲本间遗传差异

Abstract:

Nowadays the most common methods for evaluating heterosis population and its genetic pattern in maize are based on analyses of parentage, SCA and molecular markers, but each method has its limitation. In the present study, a mixed linear (AD) model and the Minimum Norm Quadratic Unbiased Estimation (MINQUE) (1) method were introduced to estimate the variance components of yield and the values of F1 heterosis, using 2 tropical and 7 temperate maize (Zea mays L.) populations. The 9 populations were crossed by Griffing Ⅳ design, and 36 combinations were made. All hybrids were planted by random block with 4 replications in Anyang of Henan Province and Shiyan of Hubei Province in 2002 and 2003, respectively. The number of rows per ear (RPE), number of kernels per row (KPR), hundred-kernel weight (HKW) and plot-kernel weight (PKW) were measured with 24 plants in the middle of each plot. A parameter for genetic differences measurement between parent populations, i.e. ω/(2μ) = heterosis over mid-parent value—heterosis over better-parent value, was introduced. The analysis of AD model showed that additive (VA) and dominative (VD) effects of yield and its components as well as their interactions with environment (VAE and VDE) reached highly significant level (P<0.01) (Table 2). For PKW, the ratios of variance components to total variances were sequenced as dominance > dominance ´ environment > additive ´ environment > additive, while the ratios of additive effect to total variances were ranked as RPE > KPR > HKW > PKW (Table 2). The estimation of genetic differences (GD) among the 9 populations was ranged from 0.02% to 21.61% (Table 4), and there was no linear relationship between the GD and heterosis. Three crosses, 3´6 (BSSS C9´Stay Green C4), 2´3 (BS16´BSSS C9) and 1´3 (Suwan1´ BSSS C9), with parents of medium GD in this study showed strong heterosis and great potential in maize breeding in temperate zones. This study provided valuable information for developing new heterosis pattern between tropical and temperate maize germplasm.

Key words: Maize (Zea mays L.), Mixed linear (AD) model, Heterosis over mid-parent value, Heterosis over better-parent value, Genetic differences between parents

中图分类号: 

  • S513
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!