欢迎访问作物学报,今天是

作物学报 ›› 2007, Vol. 33 ›› Issue (03): 378-383.

• 研究论文 • 上一篇    下一篇

大豆苗期耐低磷性及其QTL定位

崔世友1,2; 耿雷跃1; 孟庆长1 ; 喻德跃1,*   

  1. 1 南京农业大学国家大豆改良中心/作物遗传与种质创新国家重点实验室,江苏南京210095;2 江苏沿江地区农科所,江苏南通226541
  • 收稿日期:2006-05-17 修回日期:1900-01-01 出版日期:2007-03-12 网络出版日期:2007-03-12
  • 通讯作者: 喻德跃

QTL Mapping of Phosphorus Deficiency Tolerance in Soybean (Glycine max L.) during Seedling Stage

CUI Shi-You 1,2; GENG Lei-Yue1;MENG Qing-Chang 1;YU De-Yue 1,*   

  1. 1 National Key Laboratory of Crop Genetics and Germplasm Enhancement/ National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, Jiangsu; 2 Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong 226541, Jiangsu, China
  • Received:2006-05-17 Revised:1900-01-01 Published:2007-03-12 Published online:2007-03-12
  • Contact: YU De-Yue

摘要:

利用来自波高和南农94-156(耐低磷种质)的重组自交系群体NJ(SP)BN(151个家系)通过盆栽试验研究与耐低磷有关的性状,并进行耐低磷性状的QTL定位。初步结果表明,不施磷处理的总干重主要由单株P吸收量决定,而与磷利用效率无关;而单株P吸收量与根干重、根效率均极显著正相关,单株P吸收量变异的76.2%由根效率决定。不施磷处理的根冠比(R/S)显著增加主要是茎干重无显著变化而根干重显著增加所致。在D1b+W、F、G、N和O等5个连锁群上共检测到7个QTL与耐低磷有关。分别可解释所对应性状表型变异的4.8%~17.0%,其中5个QTL的增效基因来自亲本波高,2个QTL的增效基因来自亲本南农94-156。

关键词: 大豆, RIL群体, 数量性状位点, 耐低磷

Abstract:

Phosphorus (P) deficiency is a major abiotic stress that limits productivity of crops such as soybean throughout the world. In the present investigation, 151 recombinant inbred line (RIL) families derived from a cross between Bogao and Nannong 94-156 (low phosphorus tolerant germplasm) and their genetic maps were used to detect quantitative trait locus (QTL) associated with P deficiency tolerance by pot culture of soybean seedlings with two treatments of minus-P and plus-P. After six weeks of seeding, the relative total dry weight (RTDW), relative phosphorus uptake per plant (RPU), relative phosphorus use efficiency (RPUE), and relative root to shoot ratio (RR/S) were measured as indices for tolerance to phosphorus deficiency. The primary results showed that total dry weight under P-minus condition was determined by phosphorus uptake per plant, and no correlation between phosphorus use efficiency and total dry weight. Phosphorus uptake per plant was significantly and positively correlated with root dry weight and root efficiency (P uptake per unit weight of root), and 76.2% of variation of phosphorus uptake per plant came from root efficiency. Root/shoot ratio under P-minus condition was increased significantly due to no significant change of shoot dry weight and significant increase of root dry weight. Seven QTLs associated with phosphorus deficiency tolerance were detected and mapped on the linkage groups of D1b+W, F, G, N, and O. Each QTL explained 4.8%–17.0% of phenotypic variation, positive alleles of five QTLs among them were from female parent ‘Bogao’, and those of the other QTLs from male parent ‘Nannong 94-156’. Three of seven QTLs were mapped on linkage group G, among them one major QTL for RTDW explained more than 10% of the phenotypic variation was detected between sat_203 and sat_185 on LG-G by using CIM and MIM methods.

Key words: Soybean (Glycine max L.), RIL population, Quantitative trait locus, Phosphorus deficiency tolerance

[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[14] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
[15] 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!