欢迎访问作物学报,今天是

作物学报 ›› 2007, Vol. 33 ›› Issue (01): 1-8.

• 研究论文 •    下一篇

两个抗小麦白粉病新基因的遗传分析与染色体定位

马强1;罗培高1;任正隆1,2,*;蒋华仁1;杨足君2   

  1. 1四川农业大学植物遗传育种省级重点实验室, 四川雅安 625014; 2电子科技大学生命科学与技术学院, 四川成都 610054
  • 收稿日期:2006-01-06 修回日期:1900-01-01 出版日期:2007-01-12 网络出版日期:2007-01-12
  • 通讯作者: 任正隆

Genetic Analysis and Chromosomal Location of Two New Genes for Resistance to Powdery Mildew in Wheat (Triticum aestivum L.)

MA Qiang1,LUO Pei-Gao1,REN Zheng-Long12*,JIANG Hua-Ren1,YANG Zu-Jun2   

  1. 1Sichuan Provincial Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Ya’an 625014, Sichuan; 2School of Life Science and Technology, University of Electronic Science and Technology, Chengdu 610054, Sichuan, China
  • Received:2006-01-06 Revised:1900-01-01 Published:2007-01-12 Published online:2007-01-12
  • Contact: REN Zheng-Long

摘要:

YU25是从八倍体小偃麦TAI7047与小麦栽培品种川麦107杂交后代中选育出的对白粉病免疫的小麦育种新材料。以感白粉病小麦品种MY11与YU25杂交和回交的后代F1、F2、BC1F1和BC2F1为材料,采用四川省当前流行的小麦白粉病优势生理小种人工接种,对YU25的白粉病抗性进行了遗传分析。结果表明,YU25含有2对表现免疫反应和高抗反应的显性抗病基因,暂命名为PmE(免疫)和PmYU25(高抗)。用294对小麦微卫星引物和221个F2植株,对这2个基因进行连锁分析,发现小麦微卫星标记Xgwm-297-7B与PmE基因的遗传距离为13.0 cM,而Xgwm-210-2D与PmYU25基因的遗传距离为16.6 cM,因此将PmEPmYU25分别定位在7BS和2DL上。根据系谱和基因位点分析,推断PmEPmYU25均为起源于中间偃麦草、不同于已知的抗小麦白粉病基因的2个新基因。小麦育种新材料YU25含有可能来源于小麦-中间偃麦草的染色体多重易位,其细胞学基础和在实际育种中的应用值得进一步研究。

关键词: 小麦, 白粉病, 抗性基因, SSR, 基因定位

Abstract:

Powdery mildew, caused by Erysiphe graminis f. sp. tritici, is a major wheat (Triticum aestivum L. em Thell) disease in the world. The use of resistant cultivars is the most economical, effective and environmentally safe way to control this disease. A new wheat line YU25, which derived from a wide cross between a wheat cultivar CM107 and octoploid Trititrigia TAI7047 (Taiyuan 768/ Elytrigia intermedium//76(64)), exhibit immune to wheat powdery mildew. In the present study, for genetic analysis of its resistance to powdery mildew, the line YU25 was crossed with a susceptive wheat cultivar Mianyang 11 (MY11) and backcrossed both with MY11 and YU25 to produce their F1 (25 individuals), F2 (352 individuals), BC1F1 (55 individuals) and BC2F1 (80 individuals) populations, which were grown in greenhouse and inoculated by the epidemic predominant race of powdery mildew in Southwest China. The response patterns of F2 population showed that the I (immune):R (resistant):S (susceptible) segregation ratio closely fit to 12:3:1, suggesting that the wheat line YU25 carried two different dominant resistance genes to powdery mildew, one of them exhibited immune and the other showed highly resistant. The results was also supported by the 2:1:1 segregation ratio of I:R:S in the BC1F1 population. F2 population consisting of 221 individuals was screened with 294 wheat microsatellite primer pairs to detect molecular markers linked to genes responsible for powdery mildew resistance. The results indicated that the microsatellite marker Xgwm297-7B on chromosomal arm 7BS and Xgwm210-2D on chromosomal arm 2DL were linked with the immune gene and highly resistant gene to wheat powdery mildew, with the genetic distance 13.0 cM and 16.6 cM, respectively. So far, there is no reported resistant gene to powdery mildew on chromosome arm both 7BS and 2DL. Moreover, there are also no genes conferring resistance to wheat powdery mildew with the origin of E. intermedium. Hence, pedigree analysis of YU25 and chromosomal location of the genes afforded a persuasive evidence to support the conclusion that the immune gene and highly resistant gene in YU25 derived from E. intermedium, are new genes for resistance to powdery mildew in wheat and are temporarily designated PmE and PmYU25, respectively. It could play an important role in wheat breeding programs for powdery mildew resistance. The application value of the line YU25 in wheat breeding, which should contain double translocation between wheat and E. intermedium chromosomes, was discussed in this paper.

Key words: Wheat (Triticum aestivum), Powdery mildew(Erysiphe graminis f. sp. tritici), Resistance genes, SSR, Gene location

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[4] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[5] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[6] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[7] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[8] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[9] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[10] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[11] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[12] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[13] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[14] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[15] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!