欢迎访问作物学报,今天是

作物学报 ›› 2006, Vol. 32 ›› Issue (07): 995-1000.

• 研究论文 • 上一篇    下一篇

小麦GMP含量发育动态的QTL定位

李卫华1,2;尤明山1;刘伟2;徐杰1;刘春雷1;李保云1,*;刘广田1   

  1. 1中国农业大学农业部作物基因组学与遗传改良重点开放实验室/北京市作物遗传改良重点实验室,北京100094; 2石河子大学,新疆石河子832003
  • 收稿日期:2005-07-11 修回日期:1900-01-01 出版日期:2006-07-12 网络出版日期:2006-07-12
  • 通讯作者: 李保云

QTL Mapping for Developmental Behavior of GMP Content in Wheat

LI Wei-Hua1 2,YOU Ming-Shan1,LIU Wei2,XU Jie1,LIU Chun-Lei1,LI Bao-Yun1 *,LIU Guang-Tian1   

  1. 1Key Laboratory of Crop Genomics & Genetic Improvement, Ministry of Agriculture / Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100094; 2Shihezi University, Shihezi 832003, Xinjiang, China
  • Received:2005-07-11 Revised:1900-01-01 Published:2006-07-12 Published online:2006-07-12
  • Contact: LI Bao-Yun

摘要:

利用小麦京771和Pm97034杂交后代重组自交系(RIL)群体,对小麦谷蛋白大聚合体(GMP)含量发育动态进行了QTL定位研究。结果表明,在籽粒灌浆的5个不同时期,共检测到8个条件QTL和10个非条件QTL,但没有一个QTL能在测定的5个时期都有效应。花后12 d,控制GMP形成的基因就已经有了一定的表达量,条件QTL能解释6.21%的表型变异,该基因位于1A染色体上。花后17 d,在1D染色体上测到了1个新表达的条件QTL位点,单独能解释14.14%的表型变异。花后22 d,控制GMP形成的基因的表达比较活跃,非条件分析检测到3个QTL位点,条件分析检测到2个QTL位点,这5个QTL位点分别位于1B、5B、6B和7B染色体上,其效应值都比较低,2个条件QTL共同能解释12.67%的净表型变异。花后27 d,在2D和3B染色体上各检测到2个条件和非条件QTL位点,加性效应值比较大。条件QTL能解释16.37%的表型变异,非条件QTL能解释23.94%的变异。花后32 d,仍有2个新的基因位点在表达,但此时QTL的净表达量已经开始下降,条件QTL仅能解释11.43%的表型变异。

关键词: 小麦, RIL群体, GMP含量, 发育动态, QTL定位

Abstract:

Glutenin macropolymer (GMP) content is a key factor influencing wheat processing quality, which is determined by quantitative trait locus (QTL). To date many QTLs related to quality characteristics, including the GMP content, have been mapped on wheat chromosomes. However, these researches were all focused on gene expression at a certain developmental stage, and could gave little information to understand the dynamic effects of corresponding QTLs at different developmental stages as well as the directions of gene action. In the present paper, QTL mapping for developmental behavior of wheat GMP content was studied, using recombinant inbred lines (RIL) population derived from Jing 771×Pm97034. The results showed that eight conditional QTLs and ten unconditional QTLs were detected in different seed filling periods totally, but no one was detected in all periods. Each of these genes expressed in a special period. The additive effects of a conditional QTL located on chromosome 1A could be detected 12 days after anthesis, which could account for 6.21% of phenotypic variation in GMP content. A new conditional QTL was detected 17 days after anthesis, accounting for 14.14% of phenotypic variation. At the period of 17–22 days after anthesis the gene expression was active, and three unconditional QTLs and the two conditional QTLs were detected to be located on chromosome 1B, 5B, 6B and 7B with smaller additive effects, and the general contribution rate of the two conditional QTLs was 12.67%. Four QTLs located on chromosome 2D and 3B were detected 27 days after anthesis with larger additive effects, in which the two conditional QTLs accounted for 16.37% of phenotypic variation, while the other two unconditional QTLs accounted for 23.94%. Up to 32 days after anthesis, there still two new expressed genes were detected, but the net genetic variation declined, and conditional QTL just explained 11.43% of phenotypic variation.

Key words: Wheat, RIL population, GMP content, Developmental behavior, QTL mapping

中图分类号: 

  • S512
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[6] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[7] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[8] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[9] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[10] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[11] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[12] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[13] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[14] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[15] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!