欢迎访问作物学报,今天是

作物学报 ›› 2005, Vol. 31 ›› Issue (10): 1333-1339.

• 研究论文 • 上一篇    下一篇

冬小麦不同株型品种光谱响应及株型识别方法研究

卢艳丽;李少昆;王纪华;谢瑞芝;黄文江;高世菊;刘良云   

  1. 中国农业科学院作物科学研究所,北京 100081
  • 收稿日期:2004-09-27 修回日期:1900-01-01 出版日期:2005-10-12 网络出版日期:2005-10-12
  • 通讯作者: 李少昆

Spectral and Recongnized Method for Different Plant Type Wheat Cultivars

LU Yan-Li;LI Shao-Kun;WANG Ji-Hua;XIE Rui-Zhi;HUANG Wen-Jiang;GAO Shi-Ju;Liu Liangyun;Wang Zhijie   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2004-09-27 Revised:1900-01-01 Published:2005-10-12 Published online:2005-10-12
  • Contact: Li Shaokun

摘要:

以直立和平展2种株型的冬小麦品种为材料,研究了它们的光谱响应以及田间植被覆盖度的差异,探讨了利用冠层光谱反射率、光谱特征参量NDVI及植被覆盖度识别小麦株型的方法。结果表明,(1)小麦不同株型品种在近红外波段(700~1300 nm)光谱反射率有明显差异,生育前期平展型品种高于直立型品种,并以拔节期的差异为最显著,随着生育进程差异逐渐变小。拔节期是进行株型识别的最佳时期,并且此期冠层的敏感波段680 nm和760~900 nm的反射率在2种株型品种之间差异明显。(2)小麦冠层叶面积指数(LAI)与归一化差异植被指数NDVI(680,890)呈正相关,并且不同生育阶段其相关程度有差异,这是利用NDVI和植被覆盖度(COV)识别不同株型的基础。(3)相同COV条件下,直立型品种的NDVI高于平展型品种的NDVI,并且随着COV的增加,差异逐渐变小,二者的变化关系体现了直立型品种株型紧凑和平展型品种株型披散的特点,利用NDVI和COV的关系可以对株型进行识别,以小麦拔节期为最佳识别阶段,此期2种株型品种的NDVI具有显著差异(P<0.05)。

关键词: 小麦, 株型, 冠层光谱, 覆盖度, 植被指数, 叶面积指数

Abstract:

With the application of remote sensing in estimating crop biochemical composition, the estimation precision has became a research focus. Plant-type is the main influential factor to canopy spectral due to its influence on canopy structure. It is very important to identify plant type of wheat cultivars for improving estimation accuracy. 10 winter wheat cultivars with two plant types were used to discuss their canopy spectral reflectance and the method to identify plant type using spectral characteristics and vegetation coverage (COV). The results were as follows: (1) Their canopy spectral reflectance had obvious difference in near infrared bands at earlier stages, especially at jointing stage (Fig.1). It was proved that Jointing was the best stage to identify plant-type, and in this stage there was a big differences for canopy spectral reflectance between 2 plant types in wavebands of 680 nm and 760-900 nm (Table 2). These bands lied in the position of red edge and near infrared, which were the plant canopy sensitive bands. So it was very useful to improve the measurement accuracy of leaf biochemical composition. (2) Leaf area index (LAI) was positively correlated with normal difference vegetable index [NDVI(680, 890)]. The correlation coefficient was different at different stage(Fig.3,4). The correlation between LAI and NDVI was the foundation to identify plant type by using NDVI and COV(vegetable coverage). (3)With COV increasing, NDVI was increased, but the difference between two plant types became diminishing. It reflected their plant-type characteristics, that is to say, leaves are erect and upwards in erect cultivars but horizontal and downwards in horizontal cultivars. So COV of horizontal cultivars was higher than that of erect ones under the same NDVI. On the other hand, when COV of the two cultivars was equal, NDVI of the erect leaf type varieties was higher than that of horizontal leaf type cultivars (Fig.5). As for wheat, jointing stage with low and different COV in two pant-type cultivars is the best stage to identify plant-type. There was significant difference in NDVI of erect and horizontal cultivars (P<0.05) at jointing stage. It is feasible to know plant type information using COV and NDVI. This method is fast and non-destructive. It provides the foundation to assess plant biochemical composition quantitatively by remote sensing.

Key words: Wheat, Plant type, Spectral, Coverage density, NDVI, LAI

中图分类号: 

  • S512,S123
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[4] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[5] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[6] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[7] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[8] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[9] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[10] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[11] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[12] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[13] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[14] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[15] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!