欢迎访问作物学报,今天是

作物学报 ›› 2006, Vol. 32 ›› Issue (10): 1530-1536.

• 研究论文 • 上一篇    下一篇

油菜生长发育模拟模型研究

曹宏鑫1;张春雷2;李光明2;张保军3;赵锁劳3;汪宝卿3;金之庆1;高亮之1
  

  1. 1江苏省农业科学院农业资源与环境研究所,江苏南京210014; 2中国农业科学院油料作物研究所,湖北武汉430062;3西北农林科技大学,陕西杨凌712100
  • 收稿日期:2005-08-11 修回日期:1900-01-01 出版日期:2006-10-12 网络出版日期:2006-10-12
  • 通讯作者: 曹宏鑫

Researches of Simulation Models of Rape(Brassica napus L.) Growth and Development

CAO Hong-Xin1,ZHANG Chun-Lei2,LI Guang-Ming2,ZHANG Bao-Jun3,ZHAO Suo-Lao3,WANG Bao-Qing3,JIN Zhi-Qing1,GAO Liang-Zhi1   

  1. 1 Institute of Agricultural Resources and Environment Research, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu; 2 Institute of Oil Crops Research, Chinese Academy of Agricultural Sciences, Wuhan 430062, Hubei; 3 Northwest Sci-Tech University of Agriculture and Forestry, Yangling 712100, Shaanxi, China
  • Received:2005-08-11 Revised:1900-01-01 Published:2006-10-12 Published online:2006-10-12
  • Contact: CAO Hong-Xin

摘要:

以2002—2005年中国长江中游地区田间试验为基础,结合相关文献资料,借鉴R/WCSODS思路,建立油菜生长发育模拟模型,包括油菜发育期、叶龄、干物质、叶面积及分枝数动态模型,并确定参数、检验与验证。例如,中双9号与中油杂2号在武汉和芜湖生育期观察值与模拟值平均绝对误差-0.9~-0.3 d,相关系数0.9996~0.9997,差值标准误2.2~2.3 d,最大绝对误差4 d。干物质与叶面积指数实测值与模拟值平均绝对误差分别为7.3 g·m-2和-0.1043,差值标准误分别为59.13 g·m-2和0.1506,相关系数分别为0.9916和0.9583,最大绝对误差分别为98.8 g·m-2和-0.27。油菜发育期和叶龄模型以温、光为主要驱动因子,油菜生长发育全过程划分为播种至出苗、出苗至抽薹、抽薹至初花以及初花至成熟4个生育阶段,精度较高,适用性好,通用性强,更符合管理要求且易掌握;春化模型同时考虑冬性、半冬性及春性品种,更为全面;油菜群体动态模拟模型初步考虑了绿色茎与角果光合;讨论了油菜模拟优化决策系统的结构与功能。

关键词: 油菜, 生长发育, 模拟模型

Abstract:

Agricultural model is one of core technology for digital agriculture, and crop simulation model is an important content in agriculture model. The aim of simulation model of rape growth and development (SMRGD) was to develop Rape Cultivation Simulation-Optimization-Decision Making System(Rape-CSODS) , to design its planting , to regulate and control its growth and development, and to fulfill its high yield, good quality, high benefits and standard production eventually. The SMRGD were developed based on field experiments with 2 cultivars, 6 sowing dates and 3 sites from 2002 to 2005 in middle valley of Yangtze river in China and relative data from references of rape researches, employed ideas of R/WCSODS (Rice/Wheat Cultivation Simulation-Optimization-Decision Making System), which included phenology, leaf age, biomass, leaf area index (LAI), and shoot and ramification number dynamics models, in the same time, the SMRGD and its parameters were also assessed, calibrated and tested. The average absolute deviation(de), correlation coefficients(r) and the standard errors of their absolute deviation(Sde) of the observed and simulated values for growth period duration of two cultivars in Wuhan and Wuhu were -0.9 to -0.3 d, with the correlation coefficient from 0.9996 to 0.9997 and 2.2 to 2.3 d, respectively, the most absolute deviation was 4 d. The de, Sde, r and the most absolute deviation of dry matter weight and LAI for “Zhongshuang 9” in Wuhan between the observed and simulated values were 7.3 g·m-2 and -0.1043, 59.13 g·m-2 and 0.1506, with the correlation coefficients 0.9916 and 0.9863, and 98.8 g·m-2 and -0.27, respectively, 1:1 line of them was in Fig.2 to 4. Temperature and light were main driving factors in the models of phenology and leaf age for rape, a life cycle of rape was divided into 4 development phases including from sowing to emergence, from emergence to enlongation, from enlongation to early anthesis, and from early anthesis to maturity, which made the model higher precision, good adaptability, wide usability, easy to master and suitable to use in management of rape production. The vernalization models for rape could be use in winter, semi-winter and spring rape varieties. The photosynthesis of green stem and pods were taken account simply in the population dynamic models for rape. The structure and functions of Rape-CSODS also were discussed in this study.

Key words: Rape, Growth and development, Simulation models

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180.
[4] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[5] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[6] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[7] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[8] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[9] 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39.
[10] 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740.
[11] 张明聪, 何松榆, 秦彬, 王孟雪, 金喜军, 任春元, 吴耀坤, 张玉先. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805.
[12] 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823.
[13] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[14] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[15] 姚佳瑜, 于吉祥, 王志琴, 刘立军, 周娟, 张伟杨, 杨建昌. 水稻内源油菜素甾醇对施氮量的响应及其对颖花退化的调控作用[J]. 作物学报, 2021, 47(5): 894-903.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!