欢迎访问作物学报,今天是

作物学报 ›› 2006, Vol. 32 ›› Issue (10): 1537-1541.

• 研究论文 • 上一篇    下一篇

低温敏核不育系与光温敏核不育系杂交后代育性遗传的初步研究

梁满中;王晓辉;吴厚雄;陈良碧*   

  1. 湖南师范大学生命科学学院,湖南长沙410081
  • 收稿日期:2005-11-14 修回日期:1900-01-01 出版日期:2006-10-12 网络出版日期:2006-10-12
  • 通讯作者: 陈良碧

Preliminary Studies on Heredity of Fertility for Low Temperature Induced Genic Male Sterile Line and Photoperiod (thermo)-Sensitive Genic Male Sterile Line in Rice (Oryza sativa L.)

LIANG Man-Zhong,WANG Xiao-Hui, WU Hou-Xiong,CHEN Liang-Bi*   

  1. College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
  • Received:2005-11-14 Revised:1900-01-01 Published:2006-10-12 Published online:2006-10-12
  • Contact: CHEN Liang-Bi

摘要:

go543S是低温诱导花粉不育的隐性核不育水稻,农垦58S是长日高温诱导花粉不育的隐性核不育水稻。为了研究诱导花粉不育条件相反的隐性不育基因之间的关系,用低温敏核不育水稻go543S与光温敏核不育水稻农垦58S以及由农垦58S衍生的光温敏核不育系7001S、培矮64S、长选3S配制4个杂种F1,结果表明在自然长日高温、短日低温和不同人工光、温处理条件下杂交F1的花粉均为不育,自交结实率为0,没有像go543S或农垦58S的育性转换期。分别用go543S、农垦58S作父本与杂种F1回交,回交组合中像父本具有育性转换期的不育株的比例约50%,与杂种F1一样的终生不育株约50%,符合隐性基因回交1∶1的分离比。

关键词: 水稻, 低温敏核不育, 光温敏核不育, 育性

Abstract:

Since the discovery of the mutant (Nongken 58S) in Nongken 58 (Oryza sativa ssp. japonica) field by SHI Ming-Song in Hubei Province in 1973, many P(T)GMS (photoperiod (thermo)-sensitive genic male sterile) lines derived from Nongken 58S have been developed. Nongken 58S is PGMS (photoperiod-sensitive genic male sterile) rice which fertilize in short day-length and low temperature condition and sterilize in long day-length and high temperature condition. Genetic studies have shown that PGMS gene of Nongken 58S is governed by one or two recessive genes. Allelism of sterile genes of Nongken 58S and its derivative lines was founded that sterile gene of Nongken 58S is allelic to that of P(T)GMS line derived from Nongken 58S, but not allelic to non-Nongken 58S derivative P(T)GMS lines. go543S is low temperature induced recessive genic male sterile rice which fertilize in high temperature condition and sterilize in low temperature condition. In order to study the interaction of those recessive sterile genes whose effects of photoperiod and temperature on the fertility are reverse, 7 hybrids between go543S and Nongken 58S and its derivatives 7001S, Pei’ai 64S, Changxuan 3S and 8 backcrosses were made. Hybrids F1 was sterile during whole growth season under natural condition(2004,Changsha, Hunan, China; Table 1), which indicated that sterile genes of go543S was phenotypically allelic to gene of P(T)GMS lines derived from Nongken 58S. However the hybrids F1 did not fertilized in high temperature condition as go543S did, and did not fertilized in low temperature and short day-length condition either as Nongken 58S and its’ derivatives. It is evident that the genes of P(T)GMS rice are epistasis to the genes of go543S under high temperature with long day-length, while under low temperature with short day-length the genes of go543S are epistasis to the genes of P(T)GMS rice. Similar results were obtained from greenhouse treatment under long day-length and high temperature condition and short day-length and low temperature condition (Table 2). Frequency distribution of fertile segregation in the backcross of the hybrids of go543S and P(T)GMS rice was founded that the backcrosses with female parent go543S were recorded half low temperature induced recessive genic male sterile plants whose fertility was similar to that of go543S (Fig.1, Fig.2), while those with male parents were recorded half P(T)GMS plants which were fertile under low temperature with short day-length, indicating goodness-of- fit to Medelian ratio for recessive sterile genes.

Key words: Rice (Oryza sativa L.), Low temperature induced genic male sterile, Photoperiod-(thermo) sensitive genic male sterile (PGMS), Fertility

中图分类号: 

  • S511
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!