欢迎访问作物学报,今天是

作物学报 ›› 2005, Vol. 31 ›› Issue (09): 1105-1109.

• 研究论文 •    下一篇

小麦抗白粉病新基因的AFLP和SSR标记及其染色体定位

李韬;张增艳;林志珊;陈孝;高珊;辛志勇   

  1. 中国农业科学院作物科学研究所,农业部遗传育种重点开放实验室,北京100081
  • 收稿日期:2005-01-06 修回日期:1900-01-01 出版日期:2005-09-12 网络出版日期:2005-09-12
  • 通讯作者: 辛志勇

Mapping of a Novel Gene Conferring Resistance to Wheat Powdery Mildew Using AFLP and SSR Markers

LI Tao;ZHANG Zeng-Yan;LIN Zhi-Shan;CHEN Xiao;GAO Shan;XIN Zhi-Yong   

  1. Key Laboratory of Crop Genetics & Breeding, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2005-01-06 Revised:1900-01-01 Published:2005-09-12 Published online:2005-09-12
  • Contact: XIN Zhi-Yong

摘要:

M53 (YAV2/TEZ//Ae.squarrosa 249) 是硬粒小麦与粗山羊草的双二倍体合成种,携带一个抗白粉病新基因,暂命名为Pm-M53,该基因对北京地区白粉病优势生理小种15号表现免疫抗性。本研究利用来源于杂交组合M53/宛7107的一个F2群体,在苗期采用白粉病15号小种(Blumeria graminis f. sp. tritici)接种,抗病反应型鉴定表明,抗感比例符合3∶1,说明其抗性受显性单基因控制;对部分F2植株的F3株系的抗病鉴定进一步证明了F2鉴定的可靠性;利用AFLP和SSR标记技术结合F2分离群体对目的基因进行了遗传作图,将目的基因定位在5D染色体的长臂上。其中AFLP标记P16M16-109(Apm109)和P5M16-161(Apm161)与目的基因的遗传距离分别为1.0和3.0 cM。SSR标记Xwmc289b、Xgwm583和Xgwm292与目的基因的遗传距离分别为20.0、33.0和24.0 cM。这些标记位于目的基因的两侧。利用中国春遗传背景的缺-四体和双端体结合AFLP标记Apm109确证了SSR标记定位的可靠性,进一步证明该基因是一个新的抗白粉病基因。

关键词: 小麦, 白粉病, 新基因, 遗传作图, 染色体定位

Abstract:

Powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) is one of the most serious diseases in wheat. DNA markers such as AFLP and SSR have been very effective for defining and mapping new resistance genes in plants. M53 (YAV2/TEZ//Ae. squarrosa 249) is a synthetic wheat of Triticum durum and Aegilops tauschii. This synthetic wheat carries a resistance gene, tentatively designated Pm-M53, conferring resistance to the No.15 isolate of Bgt that has been prevailing in wheat fields in Beijing area and endangering the local wheat production in recent years. In the present study, the resistance pattern of a F2 population (118 individuals) derived from cross of M53 and Wan7107 was analyzed through inoculation with No.15 isolate. The response patterns showed that the R∶S segregation ratio fits 3∶1, suggesting that the gene of interest be a single dominant gene, which was confirmed by F3 progeny test. AFLP and SSR markers were then used to search genetically linked markers to the target gene. Using JoinMap V3.0 with Kosambi’s function and other options left at default values, two AFLP markers P16M16-109 (Apm109) and P5M16-161 (Apm161) were identified to be tightly linked to Pm-M53, with genetic distances of 1.0 and 3.0 cM, respectively, and three SSR markers, Xwmc289b, Xgwm583 and Xgwm292, all assigned to the long arm of chromosome 5D, were also found to be associated with the gene, with genetic distances of 20.0, 33.0 and 24.0 cM, respectively. These markers flanked Pm-M53. Apm161, Xwmc289b and Xgwm583 were placed at one side, Apm109 and Xgwm292 at the opposite. From proximal to distal in order, the arrangement of the gene and its coupling markers on the long arm of chromosome 5D was Xgwm583, Xwmc289b, Apm161, Pm-M53 Apm109 and Xgwm292. Physical location of the gene was carried out using two Chinese Spring nullisomic-tetrasomic lines CSN5BT5D and CSN5DT5B, and two ditelosomic lines CSDT5DS and CSDT5DL by means of tightly linked AFLP marker APm109. The results therefore corroborate the allocation of the gene to chromosome arm 5DL. The specific position on the chromosome indicated Pm-M53 was a new powdery mildew resistance gene. It could play an important role in wheat breeding programs for powdery mildew resistance. The relationship of the gene with other reported resistant genes to powdery mildew on the D genome was discussed.

Key words: Wheat, Powdery mildew, Resistance gene, Molecular mapping, Physical location

中图分类号: 

  • S512
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[6] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[7] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[8] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[9] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[10] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[11] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[12] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[13] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[14] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[15] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!