欢迎访问作物学报,今天是

作物学报 ›› 2008, Vol. 34 ›› Issue (11): 2010-2018.doi: 10.3724/SP.J.1006.2008.02010

• 耕作栽培·生理生化 • 上一篇    下一篇

用株高旱胁迫系数分析小麦发育中的抗旱性动态

武仙山;王正航;昌小平;景蕊莲   

  1. 国家基因资源与遗传改良重大科学工程 / 农业部作物种质资源与生物技术重点实验室/中国农业科学院作物科学研究所,北京100081
  • 收稿日期:2008-02-29 修回日期:1900-01-01 出版日期:2008-11-13 网络出版日期:2008-09-06
  • 通讯作者: 景蕊莲
  • 基金资助:

    国家高技术研究发展计划(863计划)项目(2006AA100201);国家科技支撑计划项目(2007BAD69B01-6)

Dynamics of Drought Resistance Based on Drought Stress Coefficient Derived from Plant Height in Wheat Development

WU Xian-Shan,WANG Zheng-Hang,CHANG Xiao-Ping,JING Rui-Lian*   

  1. National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Crop Germplasm and Biotechnology, Ministry of Agriculture / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2008-02-29 Revised:1900-01-01 Published:2008-11-13 Published online:2008-09-06
  • Contact: JING Rui-Lian

摘要:

以小麦DH群体(旱选10号 × 鲁麦14)为材料,根据雨养(DS)和灌溉(WW)条件下5个年点环境中5个发育时期的株高估算反映材料发育过程中抗旱能力的旱胁迫系数(DS|WW),分析抗旱性的动态关系。结果表明,在不同年点环境间,不同发育时期的条件旱胁迫系数(CDS|CWW)、非条件旱胁迫系数(UDS|UWW)间存在显著差异,但发育中后期的抗旱性在部分年点环境中趋于一致。各个年点不同发育时期DS|WW间的10个相关系数,UDS|UWW间除Ch05环境的5个相关系数不显著外,其他所有相关系数均达显著水平;而CDS|CWW间仅3~6个相关系数显著,相邻发育时段之间的抗旱性关系密切。同时,任一时期的UDS|UWW总与其前面至少一个时段的CDS|CWW呈显著正相关,表明某发育时期的抗旱性可归因于该时期之前的一个或几个时段的抗旱性。通径分析结果表明,出苗至拔节期(CDS1|CWW1)、抽穗至开花期(CDS5|CWW5)的抗旱性对成熟期株高具有重要作用。

关键词: 小麦, 株高, 抗旱性, 发育, 环境

Abstract:

Plant height is a crucial agronomic trait for grain yield in wheat (Triticum aestivum L.). To detect changes of drought resistance in wheat development, drought stress coefficient (DS|WW) was calculated in five environments (year &#61620; experimental site) based on plant heights of 150 doubled haploid (DH) lines derived from Hanxuan 10× Lumai 14 at five measuring stages using conditional analysis method. The plant heights were measured every 7 d from jointing to flowering (S1–S5) in both rain-fed (drought stress, DS) and well-watered (WW) conditions in five environments including Fenyang, Shanxi in 2001 (F01), Haidian, Beijing in 2005 (H05) and 2006 (H06), Changping, Beijing in 2005 (Ch05) and 2006 (Ch06). DS|WW is the special responding of plant height to DS condition relative to WW condition. Unconditional drought stress coefficient (UDS|UWW) represents drought resistance before time t, and conditional drought stress coefficient (CDS|CWW) represents drought resistance within the period from time(t-1) to t. In all five environments, the plant heights were significantly lower under DS than under WW at all five stages (P<0.005). The largest plant height difference between under DS and under WW appeared in F01. The differences among environments for both UDS|UWW and CDS|CWW at each developmental stage were significant at P<0.0001. However, the result from multiple comparison analysis showed that part differences between environments in the same experimental site or year after S2 were insignificant, such as UDS3|UWW3 between H06 and Ch06, UDS5|UWW5 between H05 and H06. The significant positive correlations were detected for UDS|UWW between stages except five of ten correlation coefficients in Ch05. Poor correlations were observed for CDS|CWW between stages, however, the correlations between the adjacent stages appeared closer. In all environments, the significant positive correlations were always detected between UDS|UWW at time t and CDS|CWW before time t in one or more periods, indicating that the drought resistance at time t might partially attribute to that before time t. Path analysis suggested that drought resistance before jointing stage (CDS1|CWW1) and from heading to flowering (CDS5|CWW5) might play important roles for plant height at maturity, so, an ample supply of water at these periods are helpful for gaining higher yield.

Key words: Wheat, Plant height, Drought resistance, Development, Environment

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 王兴荣, 李玥, 张彦军, 李永生, 汪军成, 徐银萍, 祁旭升. 青稞种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2022, 48(5): 1279-1287.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[6] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[7] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[8] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[9] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[10] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[11] 郭艳春, 姚嘉瑜, 张镕斌, 陈思远, 何青垚, 陶爱芬, 方平平, 祁建民, 张列梅, 张立武. 中国黄麻炭疽病病原菌的分离鉴定及系统发育分析[J]. 作物学报, 2022, 48(3): 770-777.
[12] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[13] 杨谨, 白爱宁, 白雪, 陈娟, 郭林, 刘春明. 水稻胚胎和胚乳双缺陷突变体eed1的表型与遗传分析[J]. 作物学报, 2022, 48(2): 292-303.
[14] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[15] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!