欢迎访问作物学报,今天是

作物学报 ›› 2008, Vol. 34 ›› Issue (09): 1637-1643.doi: 10.3724/SP.J.1006.2008.01637

• 耕作栽培·生理生化 • 上一篇    下一篇

以盒维数法分形分析水稻根系形态特征及初探其与锌吸收积累的关系

汪洪1;金继运1;山内章2   

  1. 1 中国农业科学院农业资源与农业区划研究所 / 农业部植物营养与养分循环重点开放实验室, 北京100081; 2 名古屋大学生命农学研究科, 日本名古屋市464-8601
  • 收稿日期:2007-08-22 修回日期:1900-01-01 出版日期:2008-09-12 网络出版日期:2008-09-12
  • 通讯作者: 汪洪

Fractal Analysis of Root System Architecture by Box-Counting Method and Its Relationship with Zn Accumulation in Rice (Oryza sativa L.)

WANG Hong1,JIN Ji-Yun1,YAMAUCHI Akira2   

  1. 1 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences / Key Laboratory of Plant Nutrition and Nu-trient Cycling Research, Ministry of Agriculture, Beijing 100081, China; 2 Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
  • Received:2007-08-22 Revised:1900-01-01 Published:2008-09-12 Published online:2008-09-12
  • Contact: WANG Hong

摘要: 利用特定根盒装土, 培养4个水稻品种(MADHUKAR、IR8192-200、IR26、IR8192-31)植株, 用钉板法结合透明塑料膜固定获得近似原位根系样品, 扫描得到根系的二维平面图像, 以分形理论为基础, 利用盒维数法结合根系图像分形分析程序计算根系构型的分形维数和分形丰度, 比较各品种根系的形态特征, 并对分形参数、根系长度和 植株锌含量间的相关关系做了初步探讨。结果表明, 根系分形维数和分形丰度以MADHUKAR最大, IR8192-200最小, 说明MADHUKAR根系分支多, 在土壤中拓展体积大。分形维数、分形丰度与根系总长度之间均呈明显正相关, 而且根系总长度与分形丰度相关系数高于与分形维数的相关系数。分形维数和分形丰度与植株地上部干重、单位Zn浓度所产出的地上部生物量、地上部Zn吸收总量之间均呈显著正相关, 与地上部Zn浓度呈负相关。水稻根系形态和构型的变化影响植株生长, 影响植株Zn吸收积累及体内Zn的利用效率。盒维数法分形分析模型可用于研究水稻根系形态和构型, 为其提供新方法。

关键词: 分形, 根系, 水稻, 锌分形, 根系, 水稻

Abstract: The analysis on the characterization of root system architecture would assist to better understand the functional and growth strategies of root systems of rice plants, which is closely related to rice plant’s adaptation to insufficient supply of soil water and nutrient. The fractal analytical method was used to examine the difference of the root systems of four rice genotypes (MADHUKAR, IR8192-200, IR26, and IR8192-31) and the relationship between root length and plant Zn uptake was explored. The root systems were grown for one month in root boxes with 25 cm in length, 2 cm in width and 40 cm in depth, which were filled with soil. The root systems were harvested following the needle-pinboard method, and then spread on the transparent plastic films with nets after carefully washing out the soils. The two-dimensional images of root systems were digitized by using a scan-ner. The digitized images were used for analysis based on fractal geometry with the box-counting method. The fractal parameters differed among the four selected rice genotypes. Variety of MADHUKAR had the greatest values of fractal dimension (FD) and fractal abundance (FA). IR8192-200’s roots had the smallest FD and FA. It was suggested that MADHUKAR had a higher capac-ity of root branch and a larger volume of soils explored by the whole root systems than other three rice genotypes. The FD and FA had significant correlations with total root length. Moreover, the correlation coefficient between FA and total root length was higher than that FD and total root length. The FD and the FA of rice roots were observed to positively correlate with shoot dry weight, shoot biomass per unit of Zn concentration, and Zn accumulation in shoot. However, shoot Zn concentration was negatively correlated with FD and FA. Root configuration changes might affect the growth of rice plants, plant Zn uptake and Zn use efficiency. The fractal analysis of root structure by box-counting method can be used to evaluate root system of different rice genotypes.

Key words: Fractal analysis, Root systems, Rice (Oryza sativa L.), Zn

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[8] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[9] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[10] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[11] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[12] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!